
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Götz, Georg; Schlecht, Sebastian J.; Pulkki, Ville
Common-slope modeling of late reverberation in coupled rooms

Published in:
Proceedings of the 24th International Congress on Acoustics: A12: Room Acoustics

Published: 01/01/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Götz, G., Schlecht, S. J., & Pulkki, V. (2022). Common-slope modeling of late reverberation in coupled rooms. In
Proceedings of the 24th International Congress on Acoustics: A12: Room Acoustics (pp. 1-12). (Proceedings of
the ICA congress). Acoustical Society of Korea (ASK). https://ica2022korea.org/data/Proceedings_A12.pdf

https://ica2022korea.org/data/Proceedings_A12.pdf


Common-slope modeling of late reverberation in coupled rooms

Georg GÖTZ(1⇤), Sebastian J. SCHLECHT(1,2), Ville PULKKI(1)

(1)Aalto Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Finland
(2)Media Lab, Department of Art and Media, Aalto University, Finland

(*)Correspondence: georg.gotz@aalto.fi

ABSTRACT

Coupled rooms have a distinct sound energy decay behavior, which exhibits more than one decay time under
certain conditions. The sound energy decay analysis in such scenarios requires decay models consisting of
multiple exponentials with distinct decay rates and amplitudes. While multi-exponential decay analysis is com-
monly used in room acoustics, the spatial and directional sound energy decay variations in coupled rooms have
received little attention. In this work, we introduce the common-slope model of late reverberation for coupled
rooms. Common slopes are spatially and directionally invariant decay functions over time, whose amplitudes
model all decay variations with respect to the source-receiver configuration. For example, in a scene consisting
of two coupled rooms, it is possible to determine two common decay times that approximate the decay for all
source-receiver configurations in the scene. Consequently, all spatial and directional decay variations are ex-
pressed via decay amplitudes only. We apply the common-slope analysis to measurements of room transitions
between coupled rooms. Our analysis shows that the common-slope model approximates the measured sound
energy decay with little error. The proposed common-slope model can be used for room acoustic analysis and
the efficient synthesis of artificial late reverberation tails.

Keywords: late reverberation model, sound energy decay, coupled rooms, multi-exponential decay

1 INTRODUCTION

The sound energy decay of coupled rooms has received much attention in room acoustic literature [1–5]. It
is well documented in those studies that, under certain conditions, the sound energy in coupled rooms decays
with more than one decay rate. Multi-exponential models are commonly used to analyze such multi-rate energy
decays in terms of decay times and amplitudes [2]. For this purpose, different approaches to determine the
model parameters have been proposed [6, 7].

The diffuse field assumption is the foundation for many room acoustic studies and theories. In a diffuse
sound field, the energy is assumed to be spatially and directionally uniformly distributed. In more complicated
room geometries, such as coupled rooms or rooms with non-uniform absorption distribution, this assumption
may be violated. More recently, there has been a growing interest in analyzing spatial and directional sound
field variations with respect to sound energy decays [8–14, 3, 15, 5, 16].

This paper builds upon the previously cited studies on spatial and directional sound energy decay anal-
ysis, and combines them with some ideas from the common-acoustical-pole and residue (CAPR) model by
Haneda et al. [17]. We introduce the common-slope model of late reverberation, which assumes a fixed set of
common decay times for multiple source-receiver configurations. Consequently, all spatial and directional sound
energy decay variations are described only with decay and noise amplitudes. This model yields highly inter-
pretable room acoustic analysis results, because the degrees of freedom (i.e., the number of model parameters)
are approximately halved. Furthermore, the compactness of the common-slope model may be beneficial for
all acoustic applications relying on sound energy decay models, such as echo cancellation, source separation,
dereverberation, sound field equalization, and parametric spatial audio rendering.
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The remainder of this paper is structured as follows. Section 2 provides an overview of the acoustic funda-
mentals of this work. Section 3 introduces the common-slope model of reverberation and Section 4 demonstrates
its usage on a large number of acoustic measurements conducted in coupled rooms. Section 5 concludes this
work.

More details, background, and a thorough derivation of the common-slope model can be found in a re-
cently submitted journal article by the authors [18]. This paper extends the journal paper by demonstrating the
common-slope analysis on further transitions between coupled rooms, including various sound source positions.

2 BACKGROUND

The time-domain transfer function for sound traveling between a sound source at position xs = (xs,ys,zs) and a
receiver at position xr = (xr,yr,zr) can be given in terms of a room impulse response (RIR). When dealing with
directional sound sources or receivers, the propagation path’s direction of departure (DOD) from the source
and direction of arrival (DOA) at the receiver must be considered. They are denoted by WWWs = (fs,qs) and
WWWr = (fr,qr), respectively, with the azimuth angle f and the elevation angle q. In this paper, we define the
source-receiver configuration x = (xs,xr,WWWs,WWWr) as the combination of source and receiver position and the
propagation directions.

The sound energy decay of rooms is commonly described in terms of energy decay functions (EDFs).
To this end, the Schroeder backwards integration procedure [19] can be used to calculate an unnormalized
EDF d(x, t) from an RIR h(x, t) as

d(x, t) =
L

Â
l=t

h2(x, l) , (1)

where L is the number of samples in the EDF. We assume discrete time throughout this paper, i.e., t is the
discrete-time sample index.

Coupled rooms have a distinct sound energy decay behavior, which exhibits more than one decay rate under
certain conditions [1, 20]. In such scenarios, the sound energy decay is typically modeled as a superposition of
multiple exponentials with individual decay rates and amplitudes [2]. The multi-exponential model with noise
is given by [2]

d(tr.)
k (x, t) = N0,x Y(tr.)

0,x (t) +
k

Â
k=1

Ak,x
⇥
Y(tr.)

k,x (t)�Y(tr.)
k,x (L)

⇤
, (2)

with the decay kernel

Y(tr.)
k,x (t) =

(
L� t , if k = 0
exp

��13.8 t
fs Tk,x

�
, if k > 0

. (3)

In the above model, Tk,x and Ak,x are the decay times and amplitudes of the kth exponential, respectively, N0,x
is the amplitude of the noise term, fs is the sampling frequency, and �13.8 = ln(10�6) is a constant ensuring
that the sound energy has decayed by 60 dB after Tk,x seconds, where ln(·) denotes the natural logarithm. The
square brackets in Eq. (2) include the constant term Y(tr.)

k,x (L), which accounts for the finite upper limit of
integration in the Schroeder backwards integration and can be dropped for large L [21].

We will refer to this model throughout the paper as the traditional multi-exponential model. It is evident from
Eqs. (2) and (3) that the kth order traditional multi-exponential model features (2k + 1) free parameters that
have to be determined for every source-receiver configuration x, namely, k decay times, k decay amplitudes,
and 1 noise amplitude. Standard decay analysis methods like the DecayFitNet [6] or Bayesian analysis [7] can
be used for this purpose.

Position- and direction-dependent sound energy decay analysis was extensively researched during the pre-
vious years [8–14, 3, 15, 5, 16]. Among these studies, some have investigated variations of ISO 3382 pa-
rameters [22, 23] like reverberation time, early decay time, or clarity [8–14, 3], while others are based on
multi-exponential models [15, 5] or entire EDFs [16]. The studies can be divided into investigations of spatial
[8–10, 13–15, 3] or directional [11, 12] sound energy decay variations, and some of them deal specifically with
coupled rooms [3, 15, 5]. In summary, the aforementioned studies found directional and spatial sound energy



decay variations of various magnitudes, and they make clear that such variations should be considered in room
acoustic modeling.

3 COMMON-SLOPE MODEL OF REVERBERATION

This section introduces the common-slope model of reverberation and outlines how it can be used to describe
sound energy decay variations in rooms.

As elaborated before, EDFs can be modeled as a linear combination of one or more exponentials and a noise
term. The analysis is usually carried out in frequency bands under the assumption that a specific frequency band
features only a limited number of decay rates. Earlier work by Kuttruff investigates the distribution of room
modes over the frequency range and establishes their relationship to EDFs [20, 24]. More precisely, when the
room modes within a frequency band have similar decay times, the resulting EDF follows an exponential, whose
decay time is the average of the individual mode decay times [20]. In coupled rooms, multiple mode groups
with decay times scattered around distinct means may occur. This phenomenon motivates multi-exponential
decay models, in which the number of slopes corresponds to the number of mode groups.

The relationship between room modes and energy decay slopes is a central part of this work. It is par-
ticularly useful to recognize that the mode decay times only depend on the room geometry and wall prop-
erties [20]. In other words, for varying source-receiver configurations, the mode decay times stay constant,
whereas all acoustic changes can be modeled with mode decay amplitudes [20, 17]. In the following, we will
refer to this property as the common-decay property (CDP). A similar line-of-thought can be found in previous
work by Haneda et al. [17], which use the CDP in their common-acoustical-pole and residue (CAPR) model to
interpolate between RIRs. Another study relying on the CDP was presented by Das et al. [25], who extend the
CAPR toward frequency-band-wise processing. In this paper, we will utilize the CDP and combine it with the
previously elaborated insight that room modes and EDFs are closely connected.

We propose the common-slope model of reverberation, which is given by

dk(x, t) = N0,x Y0(t) +
k

Â
k=1

Ak,x
⇥
Yk(t)�Yk(L)

⇤
, (4)

with the decay kernel

Yk(t) =

(
L� t , if k = 0
exp

��13.8 t
fs Tk

�
, if k > 0

. (5)

At first sight, this model considerably resembles the traditional multi-exponential decay model in Eqs. (2)
and (3). However, it is important to note that the decay kernel Yk is now independent of the source-receiver-
configuration x, as suggested by the CDP. More precisely, the common-slope model assumes that EDFs of
multiple source-receiver-configurations can be modeled with a common set of exponential decay times Tk. We
therefore refer to the common Tk values as common decay times and to the corresponding EDF slopes as common
slopes. Consequently, all variations with respect to the source-receiver-configuration are described in terms of
the amplitude values Ak,x and noise values N0,x only. Please note that the common-slope model can only be
applied if the different source-receiver-configurations are part of the same scene. For example, a coupled room
geometry consisting of multiple connected rooms counts as one scene, but multiple non-connected rooms in
different buildings do not.

The common decay times can be obtained in three steps. Firstly, a standard decay analysis approach like
the DecayFitNet [6] or Bayesian analysis [7] is used to determine the decay times Tk,x of the traditional multi-
exponential model [c.f. Eqs. (2) and (3)]. Secondly, the k-means clustering algorithm [26, 27] is applied to
the decay times Tk,x to obtain k decay time clusters corresponding to the k assumed mode groups. Each Tk,x
value is assigned to a cluster, such that it has the smallest absolute distance to the cluster mean. The number
of clusters can be visually determined from a histogram of the Tk,x values. Lastly, one common decay time is
determined for each cluster. The common decay time is defined as the center of the histogram bin containing
the largest number of Tk,x values. Figure 1 demonstrates this procedure for all three transitions analyzed in this
paper (c.f. Section 4.1).



(a) Meeting room to hallway (b) Office to stairwell (c) Office to kitchen

Figure 1. K-means clustering of decay times Tk,x to obtain the common decay times Tk. The subplots demon-
strate the clustering on all three transitions that are analyzed in this paper (c.f. Section 4.1). Each subplot is
based on 9696 source-receiver configurations (101 receiver positions ⇥ 4 source positions ⇥ 24 beamformer
directions, c.f. Section 4.2 for more details).

After the common decay times Tk have been determined, the remaining model parameters Ak,x and N0,x need
to be estimated for all source-receiver configurations x. Due to the common decay times, all non-linearities of
the traditional multi-exponential model have been eliminated. Consequently, the remaining estimation problem
becomes solvable as a constrained linear least-squares problem with Ak,x � 0 and N0,x � 0.

4 RESULTS

In the following section, we will demonstrate the common-slope model and show how it can be used to obtain
interpretable room acoustic analysis results. We will focus specifically on coupled room geometries.

4.1 Dataset under investigation

The analyzes in this section will be based on the Room Transition dataset by McKenzie et al. [28, 29].
The Room Transition dataset contains higher-order Ambisonics RIRs, which were measured with an Eigen-
mike microphone array. During the measurements, the microphone array was placed in 5 cm intervals on
5 m long, straight transition lines centered around the aperture between the coupled rooms. Each transition
was measured with four different source positions: two in each room, one of which has clear line-of-sight
to all receiver positions (CLOS), while the other one has no clear line-of-sight (NLOS). Consequently, there
are 101⇥4 = 404 RIRs per transition, corresponding to 404 different source-receiver configurations x.

In this paper, we will demonstrate the common-slope model on the transitions “Meeting room to hallway”,
“Office to stairwell”, and “Office to kitchen”. Table 1 briefly summarizes the dimensions and properties of the
individual rooms. For more information, please refer to the dataset and its accompanying publication, which
also include the floor plans of all scenes [28, 29].

4.2 Room transition along a straight line: spatial and directional analysis

In this section, we extend the preceding analysis with directional information. To this end, we use the directional
information captured by the higher-order Ambisonic RIRs and perform beamforming into different directions.
In the present analysis, we beamform with a 15� azimuth resolution into directions on the horizontal plane.
After beamforming into a certain direction, EDFs can be calculated from the directional RIRs via the Schroeder
backwards integration procedure [19] to yield directional EDFs (DEDFs). This procedure is analogous to the
methodology in prior work [16, 30].

We obtain beamformer output signals S 2 RJ⇥L for J analysis directions as

S = Ah , (6a)

S = [s1,s2, . . . ,sJ ]
T , (6b)



where sx is the x th beamformer output, A 2 RJ⇥(N+1)2 and h 2 R(N+1)2⇥L denote the analysis matrix and
the Nth-order Ambisonic RIR1, respectively, and (·)T denotes the matrix transpose. We assume axisymmetric
beamformers, i.e., the analysis matrix A can be obtained from the beamformer weights cN 2 RN⇥1 as

A = YdiagN(cN) , (7a)

Y = [y(WWW1),y(WWW2), . . . ,y(WWWJ)]
T , (7b)

cN = [c0,c1, . . . ,cN ]
T , (7c)

where y(WWWx )2R(N+1)2⇥1 denote spherical harmonics (SHs) evaluated at the beamformer steering directions WWWx .
Due to the axisymmetry of the beamformers, we repeat the n th beamformer weight µ times, with µ and n being
the SH degree and order, respectively. This operation is formalized by diagN(·).

Previous studies on room acoustic analysis and Ambisonic RIR processing showed that a great front-to-
back-separation is important for resolving energy differences along room axes [30, 31]. Therefore, we employ
a spatial Butterworth beamformer [32, Table 3.1] in this work, whose axisymmetric weights are given by

cButterworth
n =

1p
1+(n/nc)2g

, (8)

where we set the Butterworth beamformer order g = 5, and the cuton SH order nc = 3.
In the actual common-slope analysis, we apply the DecayFitNet [6] on all 9696 DEDFs of a specific tran-

sition (101 receiver positions ⇥ 4 source positions ⇥ 24 beamformer directions) to obtain the Tk,x values of
the traditional multi-exponential model [c.f. Eqs. (2) and (3)]. Afterwards, we determine the common decay
times Tk based on all 9696 Tk,x values as outlined in Section 3. Finally, the decay amplitudes Ak,x and noise
amplitudes N0,x are calculated via a linear least-squares fit of the common-slope model [c.f. Eqs. (4) and (5)]
to the measured DEDFs.

Figure 2 shows the common-slope analysis results for the transition “Meeting room to hallway, source in
meeting room, clear line-of-sight”. Two common decay times were determined (c.f. Figure 1a) and they amount
to T1 = 0.43s and T2 = 1.53s. Figure 2a illustrates how the A1,x values change for various positions on the
transitions and beamforming directions. The values are generally higher in the meeting room, and gradually
fade out when transitioning toward the hallway. Slightly increased amplitudes can be observed near the hallway
wall (i.e., xr = 500cm), which can be attributed to reflections from the wall. Distinct peaks can be observed for
fr =±90�. The amplitude variations for different look directions indicate that the reverberation is considerably

1The channel ordering is not explicitly defined here because it is not relevant for this work as long as it is used consistently throughout the
analysis pipeline. Please note that the maximum spherical harmonic order N should not be confused with the noise term N0 of the decay model.

Transition Room description Dimensions (w ⇥ l ⇥ h) Volume

Meeting room Acoustically treated meeting room 6.6 m ⇥ 4.6 m ⇥ 2.8 m 85 m3

to
hallway Reverberant hallway 18 m ⇥ 4.5 m ⇥ 2.8 m 226.8 m3

Office Storage-room-like office 5 m ⇥ 11.7 m ⇥ 3.6 m 210.6 m3

to
stairwell Stairwell connecting three floors in total 6.3 m ⇥ 3.3 m ⇥ 14.4 m 299.4 m3

Office Acoustically treated office 9.1 m ⇥ 3.5 m ⇥ 2.9 m 92.4 m3

to
kitchen Acoustically treated office kitchen 13.7 m ⇥ 4.4 m ⇥ 2.9 m 174.8 m3

Table 1. Summary of all analyzed room transitions. The measurements are part of the Room Transition dataset
by McKenzie et al. [28, 29].
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(c) dB-MSE [c.f. Eq. (9)]

Figure 2. Common-slope analysis results (1 kHz octave band) of the “Meeting room to hallway, source in
meeting room, clear line-of-sight” transition. The plots show the a) A1,x , b) A2,x , and c) dB-MSE [c.f. Eq. (9)]
values for a common-slope analysis with the common decay times T1 = 0.43s and T2 = 1.53s.

Figure 3. Common-slope analysis results (1 kHz octave band, fr = 0�, qr = 0�) of the “Meeting room to hallway,
source in meeting room, clear line-of-sight” transition. The plots show the A1,x , A2,x , N0,x , and dB-MSE [c.f.
Eq. (9)] values for all positions along the transition line. The common-slope analysis is based on the common
decay times T1 = 0.43s and T2 = 1.53s.

anisotropic, which could be explained by an uneven distribution of absorption material in the room and the
energy transfer through the door. The A2,x values corresponding to the common decay time T2 are depicted in
Figure 2b. They gradually fade in while transitioning into the hallway. For positions closer to the door, one can
observe how the energy leaks into the meeting room, and that this effect is considerably directional. Just like
the A1,x values, the A2,x exhibit anisotropy, where clear peaks can be observed for fr =±90�. Figure 2c depicts
the dB-MSE between the common-slope fit d(dB)

k (x, t) and the true DEDFs d(dB)(x, t), which is defined as

dB-MSE =
1
L

L

Â
t=1

⇥
d(dB)

k (x, t)�d(dB)(x, t)
⇤2
, (9)

where both DEDFs are represented on a logarithmic scale in dB. We exclude some portions of the EDF because
they are not representative for the actual late reverberation decay:

1. The first 2m
343m/s ⇡ 5.8ms, because this part of the EDF only includes the direct sound and possibly one or

two reflections, which show up as a very steep energy drop. This part will inevitably introduce an error,
because the multi-exponential model cannot properly model this part.

2. The last 5 % of the EDF (i.e. t > 0.95L), because this part mostly features noise, which exhibits statistical
uncertainty. Although the Schroeder backwards integration procedure converges to a steady noise floor
after a while, it still requires to integrate a larger number of samples to account for this uncertainty.
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(d) dB-MSE [c.f. Eq. (9)]

Figure 4. Common-slope analysis results (1 kHz octave band) of the “Office to stairwell, source in office, no
line-of-sight” transition. The plots show the a) A1,x , b) A2,x , c) A3,x , and d) dB-MSE [c.f. Eq. (9)] values for
a common-slope analysis with the common decay times T1 = 0.28s, T2 = 0.42s, and T3 = 1.02s.

Figure 5. Common-slope analysis results (1 kHz octave band, fr = 0�, qr = 0�) of the “Office to stairwell, source
in office, no line-of-sight” transition. The plots show the A1,x , A2,x , A3,x , N0,x , and dB-MSE [c.f. Eq. (9)]
values for all positions along the transition line. The common-slope analysis is based on the common decay
times T1 = 0.28s, T2 = 0.42s, and T3 = 1.02s.

The dB-MSE is well below 3 dB for all source-receiver configurations, with median and 99 % values of 0.18 dB
and 0.51 dB, respectively. The low dB-MSE values indicate that the common-slope model is suitable for de-
scribing the energy decay behavior along the entire transition, despite having fewer degrees-of-freedom.

In Figure 3, we focus only on the beamformer direction fr = 0�, qr = 0� to highlight the cross-fade between
the two different decay processes. It becomes clear from the figure, how the A1,x values gradually fade out,
while the A2,x values are getting stronger during the transition into the hallway. Interestingly, the A1,x values are
slightly increasing again toward the 500 cm transition position. This observation can be attributed to stronger
reflections from the hallway wall. The N0,x values remain approximately constant throughout the transition.
Finally, the low dB-MSE values [c.f. Eq. (9)] indicate that the common-slope model is a suitable description
for the analyzed transition.

Figure 4 shows the common-slope analysis results for the transition “Office to stairwell, source in office,
no line-of-sight”. This transition required three common decay times to describe all source-receiver configu-
rations (c.f. Figure 1b), and they amount to T1 = 0.28s, T2 = 0.42s, and T3 = 1.02s, respectively. Just as in
the previously described transition, the A1,x values gradually fade out while transitioning into the second room,
whereas the A2,x and A3,x values are getting stronger. Distinct peaks at lateral directions highlight the anisotropy
of the sound energy decay. Furthermore, the low dB-MSE median and 99 % quantile values of 0.13 dB and
1.08 dB, respectively, demonstrate that only little error between true DEDFs and common-slope model can be
observed. This result indicates that the common-slope model is suitable for describing the analyzed room tran-
sition.

Figure 5 focuses on the analysis results for the beamformer direction fr = 0�, qr = 0�. It becomes more
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Figure 6. Common-slope analysis results (1 kHz octave band) of the “Office to kitchen, source in office, no
line-of-sight” transition. The plots show the a) A1,x and b) dB-MSE [c.f. Eq. (9)] values for a common-slope
analysis with the common decay time T1 = 0.43s.

Figure 7. Common-slope analysis results (1 kHz octave band, fr = 0�, qr = 0�) of the “Office to kitchen, source
in office, no line-of-sight” transition. The plots show the A1,x , N0,x , and dB-MSE [c.f. Eq. (9)] values for all
positions along the transition line. The common-slope analysis is based on the common decay time T1 = 0.43s.

evident from this figure, how the A1,x values gradually fade out during the transition into the stairwell, while the
A2,x and A3,x values are getting stronger. For positions in the stairwell, the slope of the shorter decay time T1
is sometimes masked by the slower decaying slopes with decay times T2 and T3. In these cases, the T1 slope
may be hard to detect, thus resulting in near-zero amplitude values A1,x . In Figure 5, we therefore excluded all
A1,x values below 40 dB to make the plot more understandable. The noise level N0,x is approximately constant
along the transition. Lastly, the dB-MSE values [c.f. Eq. (9)] are low for all positions, thus indicating that the
common-slope model is a suitable model for describing this transition.

Figure 6 depicts the common-slope analysis results for the transition “Office to kitchen, source in office,
no line-of-sight”. For this transition, only one common decay time could be determined with the k-means
method (c.f. Figure 1c) and it amounts to T1 = 0.43s. The acoustic properties of both rooms are very similar,
and consequently only one decay rate could be determined for all source-receiver configurations. The A1,x values
once again show considerable anisotropy, and they gradually fade out while transitioning into the room without
the sound source. Slightly increased errors can be observed for this transition, with median and 99 % quantile
values of 0.39 dB and 1.45 dB, respectively. The histogram in Figure 1c shows that the decay times Tk,x vary
between 0.3 s and 0.6 s. Such a small decay time variability could be easily accommodated for the previous
two transitions, because the multi-exponential model is very versatile and can compensate for slightly wrong
decay times by adapting the amplitudes accordingly. This has already been found by Lanczos, who states that
the decomposition of a decay function into a linear combination of exponentials is a highly ill-conditioned



problem [33]. However, with only one active decay time or slope, the margin for compensation is considerably
reduced. Consequently, slightly higher errors are observed for this transition.

dB-MSE [c.f. Eq. (9)]

Common-slope model
Traditional multi-

exponential model

mean median 99 % q. mean median 99 % q.

Meeting room to hallway

Source in meeting room, NLOS 0.15 dB 0.13 dB 0.38 dB 0.16 dB 0.14 dB 0.40 dB
Source in meeting room, CLOS 0.18 dB 0.16 dB 0.51 dB 0.19 dB 0.17 dB 0.45 dB
Source in hallway, NLOS 0.38 dB 0.31 dB 1.44 dB 0.23 dB 0.19 dB 0.88 dB
Source in hallway, CLOS 0.26 dB 0.22 dB 1.12 dB 0.27 dB 0.22 dB 1.04 dB
Office to stairwell

Source in office, NLOS 0.21 dB 0.13 dB 0.94 dB 0.18 dB 0.16 dB 0.53 dB
Source in office, CLOS 0.18 dB 0.16 dB 0.42 dB 0.21 dB 0.20 dB 0.51 dB
Source in stairwell, NLOS 0.15 dB 0.13 dB 0.51 dB 0.16 dB 0.14 dB 0.51 dB
Source in stairwell, CLOS 0.21 dB 0.17 dB 0.85 dB 0.17 dB 0.15 dB 0.51 dB
Office to kitchen

Source in office, NLOS 0.39 dB 0.36 dB 1.45 dB 0.17 dB 0.16 dB 0.41 dB
Source in office, CLOS 0.46 dB 0.40 dB 1.25 dB 0.21 dB 0.18 dB 0.61 dB
Source in kitchen, NLOS 0.18 dB 0.17 dB 0.40 dB 0.16 dB 0.14 dB 0.38 dB
Source in kitchen, CLOS 0.19 dB 0.17 dB 0.40 dB 0.17 dB 0.15 dB 0.52 dB

Table 2. Decibel-based mean squared error [dB-MSE, c.f. Eq. (9)] between directional energy decay functions
of the room transition dataset [28, 29], the common-slope model [c.f. Eqs. (4) and (5)] and the traditional
multi-exponential model [c.f. Eqs. (2) and (3)]. The table is based on the spatial and directional analysis,
where directional information is obtained via beamforming. A perfect fit would yield a dB-MSE value of 0 dB.
We refer to the different analyzed source positions as NLOS = no line-of-sight, and CLOS = clear line-of-sight.

Figure 7 shows only the analysis results for the beamformer direction fr = 0�, qr = 0�. It demonstrates
how the A1,x values are gradually getting smaller while transitioning into the kitchen. In contrast, the noise
amplitudes N0,x remain approximately constant throughout the transition. The dB-MSE [c.f. Eq. (9)] remains
low for the entire transition, thus indicating that the common-slope model can accurately fit the sound energy
decay of this scene.

Lastly, Table 2 compares the fitting performance of the common-slope model [c.f. Eqs. (4) and (5)] and
the traditional multi-exponential model [c.f. Eqs. (2) and (3)]. It features the mean, median, and 99 % quantile
dB-MSE values [c.f. Eq. (9)] of all transitions and source positions. The mean and median values of the
common-slope model lie between 0.13 dB and 0.46 dB, and the 99 % quantile values are below 1.5 dB for all
evaluated cases, thus indicating that the common-slope model is suitable for describing all evaluated transitions.
Furthermore, the fitting performance is comparable to, but sometimes less robust than the traditional multi-
exponential model, despite requiring only approximately half of its parameters.

5 CONCLUSIONS

This paper introduced the common-slope model of reverberation, which uses a common set of decay times to
model sound energy decay functions (EDFs) of multiple source-receiver configurations within the same environ-
ment. Consequently, all position- and direction-dependent EDF variations are described in terms of decay and
noise amplitudes only. In the present study, we used the common-slope model to analyze sound energy decays



in coupled rooms. We showed that the common-slope model is suitable for describing multi-exponential EDFs
with varying source-receiver configurations, while requiring considerably fewer parameters than the traditional
multi-exponential model. By using the same set of decay times to model all source-receiver configurations, the
common-slope model yields easily interpretable room acoustic analysis results. For example, we demonstrated
that the common-slope model can be used to analyze how the decay behavior gradually changes when transi-
tioning from one room to another through a connecting door. Furthermore, we showed that the common-slope
model introduces only little error between the true and modeled EDF.

The common-slope model will benefit future research efforts in room acoustic analysis and modeling. Addi-
tionally, it can be used in all acoustic applications relying on sound energy decay or late reverberation models,
such as echo cancellation, source separation, dereverberation, sound field equalization, and parametric spatial
audio rendering.
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