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Bayesian Hierarchical Stacking: Some Models
Are (Somewhere) Useful∗

Yuling Yao†, Gregor Pirš‡, Aki Vehtari§, and Andrew Gelman¶

Abstract. Stacking is a widely used model averaging technique that asymptoti-
cally yields optimal predictions among linear averages. We show that stacking is
most effective when model predictive performance is heterogeneous in inputs, and
we can further improve the stacked mixture with a hierarchical model. We gen-
eralize stacking to Bayesian hierarchical stacking. The model weights are varying
as a function of data, partially-pooled, and inferred using Bayesian inference. We
further incorporate discrete and continuous inputs, other structured priors, and
time series and longitudinal data. To verify the performance gain of the proposed
method, we derive theory bounds, and demonstrate on several applied problems.

Keywords: Bayesian hierarchical modeling, conditional prediction, covariate
shift, model averaging, stacking, prior construction.

1 Introduction

Statistical inference is conditional on the model, and a general challenge is how to make
full use of multiple candidate models. Consider data D = (yi ∈ Y , xi ∈ X )ni=1, and
K models M1, . . . ,Mk, each having its own parameter vector θk ∈ Θk, likelihood, and
prior. We fit each model and obtain posterior predictive distributions,

p(ỹ|x̃,Mk) =

∫
Θk

p(ỹ|x̃, θk,Mk)p(θk|{yi, xi}ni=1,Mk) dθk. (1)

The model fit is judged by its expected predictive utility of future (out-of-sample) data
(ỹ, x̃) ∈ Y × X , which generally have an unknown true joint density pt(ỹ, x̃). Model
selection seeks the best model with the highest utility when averaged over pt(ỹ, x̃).
Model averaging assigns models with weight w1, . . . , wK subject to a simplex constraint
w ∈ SK = {w :

∑K
k=1 wk = 1;wk ∈ [0, 1], ∀k}, and the future prediction is a linear

mixture from individual models:

p(ỹ|x̃,w,model averaging) =

K∑
k=1

wkp(ỹ|x̃,Mk), w ∈ SK . (2)
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Stacking (Wolpert, 1992), among other ensemble-learners, has been successful for various
prediction tasks. Yao et al. (2018) apply the stacking idea to combine predictions from
separate Bayesian inferences. The first step is to fit each individual model and evaluate
the pointwise leave-one-out predictive density of each data point i under each model k:

pk,−i =

∫
Θk

p(yi|θk, xi,Mk)p (θk|Mk, {(xi′ , yi′) : i
′ �= i}) dθk,

which in a Bayesian context we can approximate using posterior simulations and Pareto-
smoothed importance sampling (Vehtari et al., 2017). Reusing data eliminates the need
to model the unknown joint density pt(ỹ, x̃). The next step is to determine the vector1 of
weights w = (w1, . . . , wK) that optimize the average log score of the stacked prediction,

ŵstacking = argmax
w

n∑
i=1

log

(
K∑

k=1

wkpk,−i

)
, such that w ∈ SK . (3)

However, the linear mixture (2) restricts an identical set of weights for all input x.
We will later label this solution (3) as complete-pooling stacking. The present paper
proposes hierarchical stacking, an approach that goes further in three ways:

1. Framing the estimation of the stacking weights as a Bayesian inference problem
rather than a pure optimization problem. This in itself does not make much differ-
ence in the complete-pooling estimate (3) but is helpful in the later development.

2. Expanding to a hierarchical model in which the stacking weights can vary over
the population. If the model predictors x take on J different values in the data,
we can use Bayesian inference to estimate a J×K matrix of weights that partially
pools the data both in row and column.

3. Further expanding to allow weights to vary as a function of continuous predictors.
This idea generalizes the feature-weighted linear stacking (Sill et al., 2009) with a
more flexible form and Bayesian hierarchical shrinkage.

There are two reasons we would like to consider input-dependent model weights.
First, the scoring rule measures the expected predictive performance averaged over
x̃ and ỹ, as the objective function in (3) divided by n is a consistent estimate of

Ex̃,ỹ log
(∑K

k=1 wkp(ỹ|x̃,D,Mk)
)
. But an overall good model fit does not ensure a good

conditional prediction at a given location x̃ = x̃0, or under covariate shift when the
distribution of input x in the observations differs from the population of interest. More
importantly, different models can be good at explaining different regions in the input-
response space, which is why model averaging can be a better solution to model selection.
Even if we are only interested in the average performance, we can further improve model
averaging by learning where a model is good so as to locally inflate its weight.

In Section 2, we develop detailed implementation of hierarchical stacking. We explain
why it is legitimate to convert an optimization problem into a formal Bayesian model.
With hierarchical shrinkage, we partially pool the stacking weights across data. By

1We use the bold letter w, or w(·) to reflect that the weight is vector, or a vector of functions.
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varying priors, hierarchical stacking includes classic stacking and selection as special
cases. We generalize this approach to continuous input variables, other structured priors,
and time-series and longitudinal data. In Section 3, we turn heuristics from the previous
paragraph into a rigorous learning bound, indicating the benefit from model selection
to model averaging, and from complete-pooling model averaging to a local averaging
that allows the model weights to vary in the population. We outline related work in
Section 4. In Section 5, we evaluate the proposed method in several simulated and
real-data examples, including a U.S. presidential election forecast.

This paper makes two main contributions:

• Hierarchical stacking provides a Bayesian recipe for model averaging with input-
dependent weights and hierarchical regularization. It is beneficial for both improv-
ing the overall model fit, and the conditional local fit in small and new areas.

• Our theoretical results characterize how the model list should be locally separated
to be useful in model averaging and local model averaging.

2 Hierarchical stacking

The present paper generalizes the linear model averaging (2) to pointwise model av-
eraging. The goal is to construct an input-dependent model weight function w(x) =
(w1(x), . . . , wK(x)) : X → SK , and combine the predictive densities pointwisely by

p(ỹ|x̃,w(·), pointwise averaging) =

K∑
k=1

wk(x̃)p(ỹ|x̃,Mk), such that w(·) ∈ SX
K . (4)

If the input is discrete and has finite categories, one näıve estimation of the pointwise
optimal weight is to run complete-pooling stacking (3) separately on each category,
which we will label no-pooling stacking. The no-pooling procedure generally has a larger
variance and overfits the data.

From a Bayesian perspective, it is natural to compromise between unpooled and
completely pooled procedures by a hierarchical model. Given some hierarchical prior
pprior (·), we define the posterior distribution of the stacking weights w ∈ SX

K through
the usual likelihood-prior protocol:

log p (w(·)|D) =

n∑
i=1

log

(
K∑

k=1

wk(xi)pk,−i

)
+log pprior (w)+constant, w(·) ∈ SX

K . (5)

The final estimate of the pointwise stacking weight used in (4) is then the posterior
mean from this joint density E(w(·)|D). We call this approach hierarchical stacking.

2.1 Complete-pooling and no-pooling stacking

For notational consistency, we rewrite the input variables into two groups (x, z), where
x are variables on which the model weight w(x) depends during model averaging (4),
and z are all remaining input variables.



1046 Bayesian Hierarchical Stacking

To start, we consider x to be discrete and has J < ∞ categories, x = 1, . . . J . We will
extend to continuous and hybrid x later. The input varying stacking weight function is
parameterized by a J×K matrix {wjk} ∈ SJ

K : Each row of the matrix is an element of
the length-K simplex. The k-th model in cell j has the weight wk(xi) = wjk, ∀xi = j.
We fit each individual model Mk to all observed data D = (xi, zi, yi)

n
i=1 and obtain

pointwise leave-one-out cross-validated log predictive densities:

pk,−i :=

∫
Θk

p(yi|θk, xi, zi,Mk)p(θk|{(xl, yl, zl) : l �= i},Mk)dθk. (6)

Same as in complete-pooling stacking, here we avoid refitting each model n times,
and instead use the Pareto smoothed importance sampling (PSIS, Vehtari et al., 2017,
2019) to approximate {pk,−i}ni=1 from one-time-fit posterior draws p(θk|Mk,D). The
cost of such approximate leave-one-out cross validation is often negligible compared
with individual model fitting.

To optimize the expected predictive performance of the pointwisely combined model
averaging, we can maximize the leave-one-out predictive density

max
w(·)

n∑
i=1

log

(
K∑

k=1

wk(xi)pk,−i

)
. (7)

On one extreme, the complete-pooling stacking (3) solves optimization (7) subject
to a constant constraint wk(x) = wk(x

′), ∀k, x, x′. On the other extreme, no-pooling
stacking maximizes this objective function (7) without extra constraint other than the
row-simplex-condition, which amounts to separately solving complete-pooling stack-
ing (3) on each input cell Dj = {(xi, zi, yi) : xi = j}.

If there are a large number of repeated measurements in each cell, nj := ||{i : xi =

j}|| → ∞, then 1
nj

∑
i:xi=j log

∑K
k=1 wk(j)pk,−i becomes a reasonable estimate of the

conditional log predictive density
∫
Y pt(ỹ|x̃ = j) log

∑K
k=1 wk(j)p(ỹ|j,Mk)dỹ, with con-

vergence rate
√
nj , and therefore, no-pooling stacking becomes asymptotically optimal

among all cell-wise combination weights. For finite sample size, because the cell size is
smaller than total sample size, we would expect a larger variance in no-pooling stacking
than in complete-pooling stacking. Moreover, the cell sizes are often not balanced, which
entails a large noise of no-pooling stacking weight in small cells.

2.2 Bayesian inference for stacking weights

Vanilla (optimization-based) stacking (3) is justified by Bayesian decision theory : the

expected log predictive density of the combined model Eỹ log
(∑K

k=1 wkp(ỹ|Mk)
)

is

estimated by leave-one-out 1
n

∑n
i=1 log

(∑K
k=1 wkpk,−i

)
. The point optimum asymptot-

ically maximizes the expected utility (Le and Clarke, 2017), hence is an M∗-optimal
decision in terms of Vehtari and Ojanen (2012).
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To fold stacking into a Bayesian inference problem, we want to treat the objective
function in (7) as a log likelihood with parameter w. After integrating out individual-
model-specific parameters θk such that p(y|x,Mk) is given, the outcomes yi at

input location xi in the combined model have densities p(yi|xi, wk(xi)) =
∑K

k=1 wk(xi)×
p(yi|xi,Mk), which implies a joint log likelihood:

∑n
i=1 log

(∑K
k=1 wk(xi)p(yi|xi,Mk)

)
.

But this procedure has used data twice—in other practices, data are often used twice
to pick the prior, whereas here data are used twice to pick the likelihood.

We use a two-stage estimation procedure to avoid reusing data. Assuming a hy-
pothetically provided holdout dataset D′ of the same size and identical distribution
as observations D = {yi, xi}ni=1, we can use D′ to fit the individual model first and
compute p̃(yi|xi,Mk,D′) =

∫
p(yi|xi,Mk, θk)p(θk|Mk,D′)dθk. In the second stage we

plug in the observed yi, xi, and obtain the pointwise full likelihood p(yi|w,D′, xi) =∑K
k=1 wk(xi)p̃(yi|xi,Mk,D′).

Now in lack of holdout data D′, the leave-i-th-observation-out predictive density
pk,−i is a consistent estimate of the pointwise out-of-sample predictive density
ED′ (p̃(yi|xi,Mk,D′)). By plugging it into the two-stage log likelihood and integrating
out the unobserved holdout data D′, we get a profile likelihood

p(yi|w, xi) :=ED′ (p(yi|w, xi,D′))=
K∑

k=1

wk(xi)ED′ (p(yi|xi,Mk,D′))≈
K∑

k=1

wk(xi)pk,−i.

Summing over yi arrives at log (p(D|w)) ≈
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
. This log

likelihood coincides with the no-pooling optimization objective function (7).

Integrating out the hypothetical data D′ is related to the idea of marginal data aug-
mentation (Meng and van Dyk, 1999). Polson and Scott (2011) took a similar approach
to convert the optimization-based support vector machine into a Bayesian inference.

2.3 Hierarchical stacking: discrete inputs

The log posterior density of hierarchical stacking model (5) contains the log likelihood

defined above
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
, and a prior distribution on the weight

matrix w = {wjk} ∈ SJ
K , which we specify in the following.

We first take a softmax transformation that bijectively converts the simplex matrix
space SJ

K to unconstrained space R
J(K−1):

wjk =
exp(αjk)∑K
k=1 exp(αjk)

, 1 ≤ k ≤ K − 1, 1 ≤ j ≤ J ; αjK = 0, 1 ≤ j ≤ J. (8)

αjk ∈ R is interpreted as the log odds ratio of model k with reference to MK in cell j.

We propose a normal hierarchical prior on the unconstrained model weights (αjk)
K−1
k=1

conditional on hyperparameters μ ∈ R
K−1 and σ ∈ R

K−1
+ ,

prior : αjk | μk, σk ∼ normal(μk, σk), k = 1, . . . ,K − 1, j = 1, . . . , J. (9)
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The prior partially pools unconstrained weights toward the shared mean (μ1, . . . , μK−1).
The shrinkage effect depends on both the cell sample size nj (how strong the likelihood
is in cell j), and the model-specific σk (how much across-cell discrepancy is allowed in
model k). If μ and σ are given constants, and if the posterior distribution is summarized
by its mode, then hierarchical stacking contains two special cases:

• no-pooling stacking by a flat prior σk → ∞, k = 1, . . . ,K − 1.

• complete-pooling stacking by a concentration prior σk → 0, k = 1, . . . ,K − 1.

It is possible to derive other structured priors. For example, a sparse prior (e.g., Heiner
et al., 2019) on simplex (wj1, . . . , wjK) will enforce a cell-wise selection.

Instead of choosing fixed values, we view μ and σ as hyperparameters and aim for
a full Bayesian solution: to describe the uncertainty of all parameters by their joint
posterior distribution p(α, μ, σ|D), letting the data to tell how much regularization is
desired.

To accomplish this Bayesian inference, we assign a hyperprior to (μ, σ):

hyperprior : μk ∼ normal(μ0, τμ), σk ∼ normal+(0, τσ), k = 1, . . . ,K − 1, (10)

where normal+(0, τσ) stands for the half-normal distribution supported on [0,∞) with
scale parameter τσ.

Putting the pieces (5), (9), (10) together, up to a normalization constant that has
been omitted, we attain a joint posterior density of all free parameters α ∈ R

J×K , μ ∈
R

K−1, σ ∈ R
K−1
+ :

log p(α, μ, σ|D) =

n∑
i=1

log

(
K∑

k=1

wk(xi)pk,−i

)
+

K−1∑
k=1

J∑
j=1

log pprior (αjk|μk, σk)

K−1∑
k=1

log p
hyper
prior (μk, σk) . (11)

Unlike complete and no-pooling stacking, which are typically solved by optimization, the
maximum a posteriori (MAP) estimate of (11) is not meaningful: the mode is attained
at the complete-pooling subspace αjk = μk, σk = 0, ∀j, k, on which the joint density is
positive infinity. Instead, we sample (α, μ, σ) from this joint density (11) using Markov
chain Monte Carlo (MCMC) methods and compute the Monte Carlo mean of posterior
draws wjk, which we will call hierarchical stacking weights.

The final posterior predictive density of outcome ỹ at any input location (x̃, z̃) is

final predictions : p(ỹ|x̃, z̃,D) =

K∑
k=1

wk(x̃)

∫
Θk

p(ỹ|x̃, z̃, θk,Mk)p(θk|Mk,D)dθk. (12)

Using a point estimate wjk is not a waste of the joint simulation draws. Because equa-
tion (12) is a linear expression on wk, and because of the linearity of expectation, usingw
is as good as using all simulation draws. Nonetheless, for the purpose of post-processing,
approximate cross validation, and extra model check and comparison, we will use all
posterior simulation draws; see discussion in Section 6.3.
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2.4 Hierarchical stacking: continuous and hybrid inputs

The next step is to include more structure in the weights, which could correspond
to regression for continuous predictors, nonexchangeable models for nested or crossed
grouping factors, nonparametric prior, or combinations of these.

Additive model

Hierarchical stacking is not limited to discrete cell-divider x. When the input x is
continuous or hybrid, one extension is to model the unconstrained weights additively:

w1:K(x) = softmax(w∗
1:K(x)),

w∗
k(x) = μk +

M∑
m=1

αmkfm(x), k ≤ K − 1, w∗
K(x) = 0, (13)

where {fm : X → R} are M distinct features. Here we have already extracted the prior
mean μk, representing the “average” weight of model k in the unconstrained space. The
discrete model (9) is now equivalent to letting fm(x) = 1(x = m) for m = 1, . . . , J . We
may still use the basic prior (9) and hyperprior (10):

αmk | σk ∼ normal(0, σk), μk ∼ normal(μ0, τμ), σk ∼ normal+(0, τσ). (14)

We provide Stan (Stan Development Team, 2020) code for this additive model, and
discuss recommendations on the hyperprior and feature design in Appendix C and D
(Yao et al., 2021).

Because the main motivation of our paper is to convert the one-fit-all model-aver-
aging algorithm into open-ended Bayesian modeling, the basic shrinkage prior above
should be viewed as a starting point for model building and improvement. Without
trying to exhaust all possible variants, we list a few useful prior structures:

• Grouped hierarchical prior. The basic model (14) is limited to have a same regular-
ization σk for all αmk. When the features fm(x) are grouped (e.g., fm are dummy
variables from two discrete inputs; states are grouped in regions), we achieve group
specific shrinkage by replacing (14) by

αmk | σgk ∼ normal(0, σg[m]k), μk ∼ normal(μ0, τμ), σgk ∼ normal+(0, τσ),

where g[m] = 1, . . . G is the group index of feature m.

• Feature-model decomposition. Alternatively we can learn feature-dependent regu-
larization by

αmk | μk, σk, λm∼normal(0, σkλm), λm ∼ InvGamma(a, b), σk ∼ normal+(0, τσ).

• Prior correlation. For discrete cells, we would like to incorporate prior knowledge
of the group-correlation. For example in election forecast (Section 5.3), we have a
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rough sense of some states being demographically close, and would expect a similar
model weights therein. To this end, we calculate a prior correlation matrix ΩJ×J

from various sources of state level historical data, and replace the independent
prior (9) by a multivariate normal (MVN) distribution,

(α1k, . . . , αjk) | σ,Ω, μ ∼ MVN
(
(μk, . . . , μk), diag(σ

2
k)× Ω

)
. (15)

The prior correlation is especially useful to stabilize stacking weights in small cells.

• Crude approximation of input density. When applying the basic model (13) to
continuous inputs x = (x1, . . . , xD) ∈ R

D, instead of a direct linear regression
fd(x) = xd, we recommend a coordinate-wise ReLU-typed transformation:

{f : f2d−1(x) = (xd −med(xd))+, f2d(x) = (med(xd)− xd)+, d ≤ D}, (16)

where med(xd) is the sample median of xd. The pointwise model predictive perfor-
mance typically relies on the training density P train

X (x̃): The more training data
seen nearby, the better predictions. The feature (16) is designed to be a crude
approximation of log marginal input densities.

Gaussian process prior

An alternative way to generalize both the discrete prior in Section 2.3 and the prior
correlation (15) is Gaussian process priors. To this end we need K − 1 covariance
kernels K1, . . . ,KK−1, and place priors on the unconstrained weight αk(x), viewed
as an X → R function: αk(x) ∼ GP(μk,Kk(x)). The discrete prior is a special case
of a Gaussian process via a zero-one kernel Kk(xi, xj) = σk1(xi = xj). Due to the
previously discussed measurement error and the preference on stronger regularization
for continuous x, we recommend simple exponentiated quadratic kernels Kk(xi, xj) =

ak exp(− ((xi − xj)/ρk)
2
) with an informative hyperprior that avoids too small or too

big length-scale ρk, and too big ak. We present an example in Section 5.2.

2.5 Time series and longitudinal data

Hierarchical stacking can easily extend to time series and longitudinal data. Consider a
time series dataset where outcomes yi come sequentially in time 0 ≤ ti ≤ T . The joint
likelihood is not exchangeable, but still factorizable via p(y1:n|θ) =

∏n
i=1 p(yi|θ, y1:(i−1)).

Therefore, assuming some stationary condition, we can approximate the expected log
predictive densities of the next-unit unseen outcome by historical average of one-unit-
ahead log predictive densities, defined by

pk,−i :=

∫
Θk

p(yi|xi, y1:(i−1), x1:(i−1), θk,Mk)p(θk|y1:(n−1), x1:(n−1))dθk.

In hierarchical stacking, we only need to replace the regular leave-one-out predictive
density (6) by this redefined pk,−i, and run hierarchical stacking (11) as usual. Using
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importance sampling based approximation (Bürkner et al., 2020), we also make efficient
computation without the need to fit each model n times.

If we worry about time series being non-stationary, we can reweight the likelihood

in (11) by a non-decreasing sequence πi: n
∑n

i=1

(
πi log

(∑K
k=1 wk(xi)pk,−i

))
/
∑n

i=1 πi,

so as to emphasize more recent dates. For example, πi = 1 + γ − (1 − ti/T )
2, where a

fixed parameter γ > 0 determines how much influence early data has. By appending
x := (x, t), the stacking weight can vary across the time variable, too.

In Section 5.3, we present an election example with longitudinal polling data
(40 weeks × 50 states). For the i-th poll (already ordered by date), we encode state
index into input xi = 1, . . . , 50, all other poll-specific variables zi, data ti, and poll out-
come yi. We compute the one-week-ahead predictive density pk,−i :=∫
p(yi|xi, zi,D−i,Mk)p(θk|D−i,Mk)dθk where the dataset D−i = {(yl, xl, zl) : tl ≤

ti − 7} contains polls from all states up to one week before date ti.

3 Why model averaging works and why hierarchical
stacking can work better

The consistency of leave-one-out cross validation ensures that complete-pooling stack-
ing (3) is asymptotically no worse than model selection in predictions (Clarke, 2003;
Le and Clarke, 2017), hence justified by Bayesian decision theory. The theorems we
establish in Section 3.2 go a step further, providing lower bounds on the utility gain of
stacking and pointwise stacking. In short, model averaging is more pronounced when
the model predictive performances are locally separable, but in the same situation, we
can improve the linear mixture model by learning locally which model is better, so that
the stacking is a step toward model improvement rather than an end to itself. We il-
lustrate with a theoretical example in Appendix A and provide proofs in Appendix B
(Yao et al., 2021).

3.1 All models are wrong, but some are somewhere useful

With an M-closed view (Bernardo and Smith, 1994), one of the candidate models is
the true data generating process, whereas in the more realistic M-open scenario, none
of the candidate models is completely correct, hence models are evaluated to the extent
that they interpret the data.

The expectation of a strictly proper scoring rule, such as the expected log predictive
density (elpd), is maximized at the correct data generating process. However, the extent
to which a model is “true” is contingent on the input information we have collected.
Consider an input-outcome pair (x, y) generated by

x ∈ [0, 1], y ∈ {0, 1}, x ∼ uniform(0, 1), Pr(y = 1|x) = x.

If the input x is not observed or is omitted in the analysis, then M1 : y ∼ Bernoulli(0.5)
is the only correct model and is optimal among all probabilistic predictions of y un-
conditioning on x. But this marginally true model is strictly worse than a misspecified
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conditional prediction, M2 : Pr(y = 1|x) = √
x, since the expected log predictive den-

sities are log(0.5) = −0.69 and − 7
12 = −0.58 respectively after averaged over x and y.

The former model is true purely because it ignores some predictors.

This wronger-model-does-better example does not contradict the log score being
strictly proper, as we are changing the decision space from measures on y to conditional
measures on y|x. But this example does underline two properties of model evaluation
and averaging. First, we have little interest in a binary model check. The hypothesis
testing based model-being-true-or-false depends on what variables to condition on and
is not necessarily related to model fit or prediction accuracy. In a non-quantum scheme,
a really “everywhere true” model that has exhausted all potentially unobserved inputs
contains no aleatory uncertainty. Second, the model fits typically vary across the input
space. In the Bernoulli example, despite its larger overall error, M1 is more desired near
x ≈ .5, and is optimal at x = .5.

For theoretical interest, we define the conditional (on x̃) expected (on ỹ|x̃) log predic-
tive density in the k-th model, celpdk(x̃) :=

∫
Y pt(ỹ|x̃) log p(ỹ|x̃,Mk)dỹ. If {celpdk}Kk=1

are known, we can divide the input space X into K disjoint sets based on which model
has the locally best fit (When there is a tie, the point is assigned the smallest index,
and I stands for “input”):

Ik := {x̃ ∈ X : celpdk(x̃) > celpdk′(x̃), ∀k′ �= k}, k = 1, . . . ,K. (17)

In this Bernoulli example, I1 = [0.25, 0.67].

3.2 The gain from stacking, and what can be gained more

In this subsection, we focus on the oracle expressiveness power of model selection and
averaging, and their input-dependent version. wstacking,cp refers to the complete-pooling
stacking weight in the population:

wstacking,cp := arg max
w∈SK

elpd(w),

elpd(w) =

∫
X×Y

log

(
K∑

k=1

wkp(ỹ|Mk, x̃)

)
pt(ỹ, x̃)dỹdx̃. (18)

Apart from the heuristic that model averaging is likely to be more useful when
candidate models are more “dissimilar” or “distinct” (Breiman, 1996; Clarke, 2003),
we are not aware of rigorous theories that characterize this “diversity” regarding the
effectiveness of stacking. It seems tempting to use some divergence measure between
posterior predictions from each model as a metric of how close these models are, but
this is irrelevant to the true data generating process.

We define a more relevant metric on how individual predictive distributions can be
pointwisely separated. The description of a forecast being good is probabilistic on both
x̃ and ỹ: an overall bad forecast may be lucky at an one-time realization of outcome ỹ
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and covariate x̃. We consider the input-output product space X × Y and divide it into
K disjoints subsets (J stands for “joint”):

Jk := {(x̃, ỹ) ∈ X × Y : p(ỹ|Mk, x̃) > p(ỹ|Mk′ , x̃), ∀k′ �= k}, k = 1, . . . ,K.

In this framework, we call a family of predictive densities {p(ỹ|Mk, x̃)}Kk=1 to be locally
separable with a constant pair L > 0 and 0 ≤ ε < 1, if

K∑
k=1

∫
(x̃,ỹ)∈Jk

1
(
log p(ỹ|Mk, x̃) < log p(ỹ|Mk′ , x̃) + L, ∀k′ �= k

)
pt(ỹ, x̃)dỹdx̃ ≤ ε. (19)

Stacking is sometimes criticized for being a black box. The next two theorems link
stacking weight to a probabilistic explanation. Unlike Bayesian model averaging (Hoet-
ing et al., 1999) that computes the probability of a model being “true”, stacking is more
related to Pr(Jk): the probability of a model being the locally “best” fit, with respect
to the true joint measure pt(ỹ, x̃).

Theorem 1. When the separation condition (19) holds, the complete pooling stacking
weight is approximately the probability of the model being the locally best fit:

wstacking,cp
k ≈ wapprox

k := Pr(Jk) =

∫
Jk

pt(ỹ, x̃)dỹdx̃, (20)

in the sense that the objective function is nearly optimal:

| elpd(wapprox)− elpd(wstacking,cp) | ≤ O(ε+ exp(−L)). (21)

Further, a model is only ignored by stacking if its winning probability is low.

Theorem 2. When the separation condition (19) holds, and if the k-th model has zero

weight in stacking, wstacking,cp
k = 0, then the probability of its winning region is bounded

by:

Pr(Jk) ≤ (1 + (exp(L)− 1)(1− ε) + ε)
−1

. (22)

The right-hand side can be further upper-bounded by exp(−L) + ε.

The separation condition (19) trivially holds for ε = 1 and an arbitrary L, or for
L = 0 and an arbitrary ε, though in those cases the bounds (21) and (22) are too loose.
To be clear, we only use the closed form approximation (20) for theoretical assessment.

The next theorem bounds the utility gain from shifting model selection to stacking:

Theorem 3. Under the separation condition (19), let ρ = supk Pr(Jk), and a deter-
ministic function g(L,K, ρ, ε) = L(1−ρ)(1− ε)− logK, then the utility gain of stacking
is lower-bounded by

elpdstacking,cp − sup
k

elpdk ≥ max (g(L,K, ρ) +O(exp(−L) + ε), 0) .
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Evaluating Jk requires access to ỹ|x̃ and x̃. Though both terms are unknown, the
roles of x̃ and ỹ are not symmetric: we could bespoke the model in preparation for a
future prediction at a given x̃, but cannot be tailored for a realization of ỹ. To be more
tractable, we consider the case when the variation on x̃ predominates the uncertainty of
model comparison, such that Jk ≈ Ik × Y , where Ik is defined in (17). More precisely,
we define a strong local separation condition with a distance-probability pair (L, ε):

K∑
k=1

∫
x̃∈Ik

∫
Y
1
(
log p(ỹ|Mk, x̃) < log p(ỹ|Mk′ , x̃) + L, ∀k′ �= k

)
pt(ỹ, x̃)dỹdx̃ ≤ ε. (23)

We define ρX = supk Pr(Ik). Under condition (23), ρX and ρ will be close. If we know
the input space division {Ik}, we can select model Mk for and only for x ∈ Ik, which
we call pointwise selection. The predictive density is

p(ỹ|x̃, I, pointwise selection) =

K∑
k=1

1(x̃ ∈ Ik)p(ỹ|x̃,Mk). (24)

As per Theorem 3, for a given pair of L and ε, the smaller is ρ, the higher improve-
ment (K(1 − ε)(1 − ρ)) can stacking achieve against model selection: the situation in
which no model always predominates. Thus, the effectiveness of stacking can indicate
heterogeneity of model fitting. Next, we show that the heterogeneity of model fitting
provides an additional utility gain if we shift from stacking to pointwise selection:

Theorem 4. Under the strong separation condition (23), and if the divisions {Ik} are
known exactly, then the extra utility gain of pointwise selection has a lower bound,

elpdpointwise selection − elpdstacking,cp ≥ − log ρX +O(exp(−L) + ε).

For a given input location x0 ∈ X , the pointwise no-pooling optimum w(x0) ∈
SK in the population is same as the complete-pooling solution restricted to the slice
{x0}×Y . Hence, applying Theorem 3 to each slice will bound the advantage of pointwise
averaging (4) against pointwise selection (24).

The potential utility gain from Theorems 3 and 4 is the motivation behind the
input-varying model averaging. Despite this asymptotic expressiveness, the finite sample
estimate remains challenging. (a) We do not know Ik or Jk. We may use leave-one-out
cross validation to estimate the overall model fit elpdk, but in the pointwise version,
we want to assess conditional model performance. Further, the more data coming in,
the more input locations need to assess. (b) The asymptotic expressiveness comes with
increasing complexity. The free parameters in single model selection, complete-pooling
stacking, pointwise selection, and no-pooling stacking are a single model index, a length-
K simplex, a vector of pointwise model selection index {1, 2, . . . ,K}X , and a matrix of
pointwise weight (SK)X . To handle this complexity-expressiveness tradeoff, it is natural
to apply the hierarchical shrinkage prior.
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Figure 1: Evolution of methods. First row from left to right: the methods have a higher
degree of freedom to ensure a higher asymptotic predictive accuracy, the gain of which
is bounded by the labeled theorems. Meanwhile, complex methods come with a slower
convergence rate. The hierarchical stacking is a generalization of all remaining methods
by assigning various structured priors, and adapts to the complexity-expressiveness
tradeoff by hierarchical modeling.

3.3 Immunity to covariate shift

So far we have adopted an IID view: the training and out-of-sample data are from the
same distribution. Yet another appealing property of hierarchical stacking is its immu-
nity to covariate shift (Shimodaira, 2000), a ubiquitous problem in non-representative
sample survey, data-dependent collection, causal inference, and many other areas.

If the distribution of inputs x in the training sample, ptrainX (·), differs from these pre-
dictors’ distribution in the population of interest, ppopX (·) (ppopX is absolutely continuous
with respect to ptrainX ), and if p(z|x) and p(y|x, z) remain invariant, then we do not need
to adjust weight estimate from (11), because it has already aimed at pointwise fit.

By contrast, complete-pooling stacking targets the average risk. Under covariate
shift, the sample mean of leave-one-out score in the k-th model, 1

n

∑n
i=1 log p(ỹ|x̃,Mk),

is no longer a consistent estimate of population elpd. To adjust, we can run importance
sampling (Sugiyama and Müller, 2005; Sugiyama et al., 2007; Yao et al., 2018) and
reweight the i-th term in the objective (3) proportional to the inverse probability ratio
ppopX (xi)/p

train
X (xi). Even in the ideal situation when both ppopX and ptrainX are known, the

importance weighted sum has in general larger or even infinite variance (Vehtari et al.,
2019), thereby decreasing the effective sample size and convergence rate in complete-
pooling stacking (toward its optimum (18)). When ptrainX is unknown, the covariate
reweighting is more complex while hierarchical stacking circumvents the need of explicit
modeling of ptrainX .

When we are interested only at one fixed input location ppopX (x) = δ(x = x0),
hierarchical stacking is ready for conditional predictions, whereas no-pooling stack-
ing and reweighted-complete-pooling stacking effectively discard all xi �= x0 training
data in their objectives, especially a drawback when x0 is rarely observed in the sam-
ple.
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4 Related literature

Stacking (Wolpert, 1992; Breiman, 1996; LeBlanc and Tibshirani, 1996), or what we
call complete-pooling stacking in this paper has long been a popular method to combine
learning algorithms, and has been advocated for averaging Bayesian models (Clarke,
2003; Clyde and Iversen, 2013; Le and Clarke, 2017; Yao et al., 2018). Stacking is ap-
plied in various areas such as recommendation systems, epidemiology (Bhatt et al.,
2017), network modeling (Ghasemian et al., 2020), and post-processing in Monte Carlo
computation (Tracey and Wolpert, 2016; Yao et al., 2020). Stacking can be equipped
with any scoring rules, while the present paper focuses on the logarithm score by de-
fault. Our theory investigation in Section 3.2 is inspired by the discussion of how to
choose candidate models by Clarke (2003) and Le and Clarke (2017). In L2 loss stack-
ing, they recommended “independent” models in terms of posterior point predictions
(E(ỹ|x̃,M1), . . . ,E(ỹ|x̃,MK)) being independent. When combining Bayesian predictive
distributions, the correlations of the posterior predictive mean is not enough to sum-
marize the relation between predictive distributions (Pirš and Štrumbelj, 2019), hence
we consider the local separation condition instead.

Allowing a heterogeneous stacking model weight that changes with input x is not
a new idea. Feature-weighted linear stacking (Sill et al., 2009) constructs data-varying

model weights of the k-th model by wk(x) =
∑M

m=1 αkmfm(x), and αkm optimizes the
L2 loss of the point predictions of the weighted model. This is similar to the likelihood
term of our additive model specification in Section 2.4, except we model the uncon-
strained weights. The direct least-squares optimization solution from feature-weighted
linear stacking is what we label no-pooling stacking.

It is also not a new idea to add regularization and optimize the penalized loss func-
tion. For L2 loss stacking, Breiman (1996) advocated non-negative constraints. In the
context of combining Bayesian predictive densities, a simplex constraint is necessary.
Reid and Grudic (2009) investigated to add L1 or L2 penalty, −λ||w||1 or −λ||w||2, into
complete-pooling stacking objective (3). Yao et al. (2020) assigned a Dirichlet(λ), λ > 1
prior distribution to the complete-pooling stacking weight vector w to ensure strict
concavity of the objective function. Sill et al. (2009) mentioned the use of L2 penal-
ization in feature-weighted linear stacking, which is equivalent to setting a fixed prior
for all free parameters αkm ∼ normal(0, τ), ∀k,m, whose solution path connects be-
tween uniform weighing and no-pooling stacking by tuning τ . All of these schemes
are shown to reduce over-fitting with an appropriate amount of regularization, while
the tuning is computation intensive. In particular, each stacking run is built upon
one layer of cross validation to compute the expected pointwise score in each model
pk,−i, and this extra tuning would require to fit each model n(n − 1) times for each
tuning parameter value evaluation if both done in exact leave-one-out way. Fushiki
(2020) approximated this double cross validation for L2 loss complete-pooling stack-
ing with L2 penalty on w, beyond which there was no general efficient approxima-
tion.

Hierarchical stacking treats {μk} and {σk} as parameters and samples them from
the joint density. Such hierarchy could be approximated by using L2 penalized point
estimate with a different tuning parameter in each model, and tune all parameters
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({σk}K−1
k=1 for the basic model, or {σmk}M, K−1

m=1,k=1 for the product model). But then this

intensive tuning is the same as finding the Type-II MAP of hierarchical stacking in an

inefficient grid search (in contrast to gradient-based MCMC).

Another popular family of regularization in stacking enforces sparse weights (e.g.,

Zhang and Zhou, 2011; Şen and Erdogan, 2013; Yang and Dunson, 2014), which include

sparse and grouped sparse priors on the unconstrained weights, and sparse Dirichlet

prior on simplex weights. The goal is that only a limited number of models are ex-

pressed. From our discussion in Section 3, all models are somewhere useful, hence we

are not aimed for model sparsity—The concavity of log scoring rules implicitly resists

sparsity; The posterior mean of hierarchical stacking weights wjk is, in general, never

sparse. Nevertheless, when sparsity is of concern for memory saving or interpretability,

we can run hierarchical stacking first and then apply projection predictive variable se-

lection (Piironen and Vehtari, 2017) afterwards to the posterior draws from the stacking

model (11) and pick a sparse (or cell-wise sparse) solution.

Contrary to fitting individual models in parallel before model averaging, an alterna-

tive approach is to fit all models jointly in a bigger mixture model. Kamary et al. (2019)

proposed a Bayesian hypothesis testing by fitting an encompassing model p(y|w, θ) =∑K
k=1 wkp(y|θk,Mk). The mixture model requires to simultaneously fit model parame-

ters and model weights p(w1,...,K , θ1,...,K |y). Yao et al. (2018) illustrated that (complete-

pooling) stacking is often more stable than the full-mixture, especially with small sam-

ple size and similar models. Nevertheless, our formulation of hierarchical stacking agrees

with Kamary et al. (2019) in sampling from the posterior distribution of p(w |y) in a

Bayesian model. A jointly-inferred model p(y|x,w(x), θ) =
∑K

k=1 wk(x)p(y|x, θk,Mk) is

related to the “mixture of experts” (Jacobs et al., 1991; Waterhouse et al., 1996) and

“hierarchical mixture of experts” (Jordan and Jacobs, 1994; Svensën and Bishop, 2003),

where wk(·) and p(·|x,Mk) are parameterized by neural networks and trained jointly in

the bigger mixture model. Hierarchical stacking differs from mixture modeling in two

aspects. First, its separate inference of individual models p(θ1|y,M1), . . . , p(θK |y,Mk)

and weights reduces computational burden, making full Bayes affordable. Second, the

built-in leave-one-out likelihood helps reduce overfitting. Both the mixture modeling

and stacking approach have limitations—both can suffer from overfitting: a mixture-

of-experts has more free parameters, and hierarchical stacking may have an under-

regularized prior distribution; Both can suffer from underfitting: if the experts to mix

are hard to separate, or if hierarchical stacking has sloppy individual models; Both can

suffer from computation costs: a mixture-of-experts requires joint parameter estimation,

and our method requires full Bayesian inference. Stacking and hierarchical stacking are

more suitable when each individual model has already been developed to fit the data on

its own. Rather than to compete with a mixture-of-experts on combining weak learners,

hierarchical stacking is more recommended to combine a mixture-of-experts with other

sophisticated models. Lastly, our full-Bayesian formulation makes hierarchical stack-

ing directly applicable to complex priors and complex data structures, such as time

series or panel data, while these extensions are not straightforward in the mixture of

experts.
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5 Examples

We present three examples. The well-switching example demonstrates an automated
hierarchical stacking implementation with both continuous and categorical inputs. The
Gaussian process example highlights the benefit of hierarchical stacking when individ-
ual models are already highly expressive. The election forecast illustrates a real-world
classification task with a complex data structure. We evaluate the proposed method on
several metrics, including the mean log predictive density on holdout data, conditional
log predictive densities, and the calibration error.

5.1 Well-switching in Bangladesh

We work with a dataset used by Vehtari et al. (2017) to demonstrate cross validation.
A survey with a size of n = 3020 was conducted on residents from a small area in
Bangladesh that was affected by arsenic in drinking water. Households with elevated
arsenic levels in their wells were asked whether or not they were interested in switching
to a neighbor’s well, denoted by y. Well-switching behavior can be predicted by a set
of household-level variables x, including the detected arsenic concentration value in the
well, the distance to the closest known safe well, the education level of the head of
household, and whether any household members are in community organizations. The
first two inputs are continuous and the remaining two are categorical variables.

We fit a series of logistic regressions, starting with an additive model including all
covariates x in model 1. In model 2, we replace one input—well arsenic level—by its
logarithm. In models 3 and 4, we add cubic spline basis functions with ten knots of well
arsenic level and distance, respectively in input variables. In model 5 we replace the
categorical education variable with a continuous measure of years of schooling.

Using the additive model specification (13) and default prior (14), we model the
unconstrained weight αk(x) by a linear regression of all categorical inputs and all rec-
tified continuous inputs (16). In this example the categorical input has eight distinct
levels based on the product of education (four levels) and community participation
(binary).

For comparison, we consider three alternative approaches: (a) complete-pooling
stacking (b) no-pooling stacking: the maximum likelihood estimate of (13), and (c)
model selection that picks model with the highest leave-one-out log predictive densities.
We split data into a training set (ntrain = 2000) and an independent holdout test set.
The leftmost panel in Figure 2 displays the pointwise difference of leave-one-out log
scores for models 1 and 2 against log arsenic values in training data. Intuitively, model
1 fits poorly for data with high arsenic. In line with this evidence, hierarchical stacking
assigns model 1 an overall low weight, and especially low for the right end of the arsenic
levels. The second panel shows the pointwise posterior mean of unconstrained weight
difference between model 1 and 2, α2(x)− α1(x), against the arsenic values in training
data. The no-pooling stacking reveals a similar direction that model 1’s weight should
be lower with a higher arsenic value, but for lack of hierarchical prior regularization,
the fitted α2(x)−α1(x) is orders of magnitude larger (the third panel). As a result, the
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Figure 2: (1) Pointwise difference of leave-one-out log scores between models 1 and 2,
plotted against log arsenic. Model 1 poorly fits points with high arsenic. (2) Posterior
mean of pointwise unconstrained weight difference between models 1 and 2, α2(x)−α1(x)
in hierarchical stacking. (3) Pointwise log weight difference between models 1 and 2
in no-pooling stacking. (4) Posterior mean of w4(x), the weight assigned to model 4,
in hierarchical stacking, displayed against log arsenic and education levels. There are
few samples with high school education and above, whose effect on model weights is
pooled toward the shared mean. The blue line is the complete-pooling stacking. (5) The
unconstrained weight of model 4, α4(x), in no-pooling stacking. The “high school” effect
stands out and the resulting model weights w are nearly all zeroes and ones.

realized pointwise weights w are nearly either zero or one. The rightmost two columns
in Figure 2 display the fitted pointwise weights of model 4 against log arsenic values
and education level in test data. Because only a small proportion (7%) of respondents
had high school education and above, the no-pooling stacking weight for this category
is largely determined by small sample variation. Hierarchical stacking partially pools
this “high school” effect toward the shared posterior mean of all educational levels, and
the realized hierarchical stacking weights do not clearly depend on education levels.

We evaluate model fit on the following three metrics. To reduce randomness, we
evaluate all these metrics averaging over 50 random training-test splits.

(a) The log predictive densities averaged over test data. In the first panel of Figure 3,
we set hierarchical stacking as a baseline and all other methods attain lower pre-
dictive densities.

(b) The L1 calibration error. We set 20 equally spaced bins between 0 and 1. For each
bin and each learning algorithm, we collect test data points whose model-predicted
positive probability falling in that bin, and compute the absolute discrepancy be-
tween the realized proportion of positives in test data and the model-predicted
probabilities. The middle panel in Figure 3 displays the resulted calibration er-
ror averaged over 20 bins. The proposed hierarchical stacking has the lowest er-
ror. No-pooling stacking has the highest calibration error despite its higher over-
all log predictive densities than model selection, suggesting prediction overconfi-
dence.

(c) We compute the average log predictive densities of four methods among the nworst

most shocking test data points (the ones with lowest predictive densities condi-
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Figure 3: We evaluate hierarchical, complete-pooling and no-pooling stacking, and model
selection on three metrics: (a) average log predictive densities on test data, where we
set the hierarchical stacking as benchmark 0, (b) calibration error: discrepancy between
the predicted positive probability and realized proportion of positives in test data,
averaged over 20 equally spaced bins, and (c) average log predictive densities among
the 10 ≤ n0 ≤ 200 worst test data points. We repeat 50 random training-test splits with
training size 2000 and test size 1020.

Figure 4: Same comparisons as Figure 3, with training sample size varying from 100 to
1200.

tioning on a given method) for nworst varying from 10 to 200 and the total test
data has size 1020. As exhibited in the last panel in Figure 3, the proposed hi-
erarchical stacking consistently outperforms all other approaches for all nworst: a
robust performance in the worst-case scenario.

Figure 4 presents the same comparisons of four methods while the training sam-
ple size ntrain varies from 100 to 1200 (averaged over 50 random training-test splits).
In agreement with the heuristic in Figure 1, the most complex method—no-pooling
stacking—performs especially poorly with a small sample size. By contrast, the sim-
plest method, model selection, reaches its peak elpd quickly with a moderate sample
size but cannot keep improving as training data size grows. The proposed hierarchical
stacking performs the best in this setting under all metrics.
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Figure 5: From left to right, Column 1: posterior density at σ = 0.25. At least two modes
exist. Column 2: predictive distribution of y from two modes. Column 3: the pointwise
companion of log predictive density of the Laplace approximations at two modes, and the
hierarchical stacking weight of mode 1. Column 4: the test data mean predictive densities
of the weighted model, where individual components in the final model consist of either
the MAP, Laplace approximation, or importance sampling around the two modes, and
the weighting methods include hierarchical stacking, complete-pooling stacking, mode
heights and importance weighing.

5.2 Gaussian process regression weighted by a Gaussian process

The local model averaging (12) tangles a x-dependent weight w(x) and x-dependent
individual prediction p(y|x,Mk). If the individual model y|x,Mk is already big enough
to have exhausted “all” variability in input x, is there still a room for improvement by
modeling local model weights w(x)? The next example suggests a positive answer. It
also showcases non-parametric priors in hierarchical stacking.

Consider a regression problem with observations {yi}ni=1 at one-dimensional input
locations {xi}ni=1. To the data we fit a Gaussian process regression on the latent function
f with zero mean and squared exponential covariance, and independent noise ε:

yi = f(xi) + εi, εi ∼ normal(0, σ), f(x) ∼ GP
(
0, a2 exp

(
− (x− x′)2

ρ2

))
. (25)

We adopt training data from Neal (1998). They were generated such that the posterior
distribution of hyperparameters θ = (a, ρ, σ) contains at least two isolated modes (the
first panel in Figure 5). We consider three mode-based approximate inference of θ|y:
(a) Type-II MAP, where we pick local modes of hyperparameters that maximizes the

marginal density θ̂ = argmax p(θ|y), and further draw local variables f |θ̂, y, (b) Laplace
approximation of θ|y around the mode, and (c) importance resampling where we draw
uniform samples near the mode and keep sample with probability proportional to p (θ|y).
In the existence of two local modes θ̂1, θ̂2, we either obtain two MAPs or two nearly-
nonoverlapped draws. Yao et al. (2020) suggests using complete-pooling stacking to
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Figure 6: Compare the test log predictive densities of hierarchical stacking with (left) a
long-chain exact Bayes and (right) stacking of two Laplace approximations. A positive
value means hierarchical stacking has a better fit.

combine two predictions, which shows advantages over other ad-hoc weighting strategies
such as mode heights or importance weighting.

Visually, mode 1 has smaller length scale, more wiggling and attracted by train-
ing data. Because of a better overall fit, it receives higher complete-stacking weights.
However, the wiggling tail makes its extrapolation less robust. We now run hierarchical
stacking with x-dependent weight wk(x) for mode k = 1, 2 by placing another Gaussian
process prior on unconstrained weight logit(w1(x)) with squared exponential covariance,

w1(x) = invlogit (α(x)) , α(x) ∼ GP(0,K(x)).

Despite using the same GP prior, this is not related to the training regression model (25).
To evaluate how good the weighted ensemble is, we generate independent holdout test
data (x̃i, ỹi). Both training and test inputs, x and x̃, are distributed from normal(0, 1).
As presented in the rightmost panel in Figure 5, for all three approximate inferences,
hierarchical stacking always has a higher mean test log predictive density than complete
pooling stacking and other weighting schemes.

In this dataset, exact MCMC is able to explore both posterior modes in model (25)
after a long enough sampling. Gaussian process regression equipped with exact Bayesian
inference can be regarded as the “always true” model here. Hierarchical stacking achieves
a similar average test data fit by combining two Laplace approximations.

Furthermore, hierarchical stacking has better predictive performance under covariate
shift. To examine local model fit, we generate another independent holdout test data,
with results shown in Figure 6. This time the test inputs x̃ are from uniform(−3, 3). We
divide the test data into 10 equally spaced bins and compute the mean test data log
predictive density inside each bin. Compared with exact inference, hierarchical stacking
has comparable performance in the bulk region of x, while it yields higher predictive
densities in the tail, suggesting a more reliable extrapolation.
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5.3 U.S. presidential election forecast

We explore the use of hierarchical stacking on a practical example of forecasting polls
for the 2016 United States presidential election. Since the polling data are naturally
divided into states, it provides a suitable platform for hierarchical stacking in which
model weights vary on states.

To create a pool of candidate models, we first concisely describe the model of Heide-
manns et al. (2020), an updated dynamic election forecasting model from Linzer (2013),
and then follow up with different variations of it. Let i be the index of an individual
poll, yi the number of respondents that support the Democratic candidate, and ni the
number of respondents who support either the Democratic or the Republican candi-
date in the poll. Let s[i] and t[i] denote the state and time of poll i respectively. The
observations follow a Binomial likelihood yi ∼ Binomial(θi, ni), where θ is modeled by

θi =

{
logit−1(μb

s[i],t[i] + αi + ζstatei + ξs[i]), i is a state poll,

logit−1(
∑S

s=1 usμ
b
s,t[i] + αi + ζnationali +

∑S
s=1 usξs), i is a national poll,

(26)

where superscripts denote parameter names, and subscripts their indexes. The term
μb is the underlying support for the Democratic candidate, and αi, ζ, and ξ represent
different bias terms. αi is further decomposed into

αi = μc
p[i] + μr

r[i] + μm
m[i] + zεt[i], (27)

where μc is the house effect, μr polling population effect, μm polling mode effect, and ε
an adjustment term for non-response bias. Furthermore, an autoregressive (AR(1)) prior
is given to the μb: μb

t |μb
t−1 ∼ MVN(μb

t−1,Σ
b), where Σb is the estimated state-covariance

matrix and μb
T is the estimate from the fundamentals.

Although we believe this model reasonably fits data, there is always room for im-
provement. Our pool of candidates consists of eight models. M1: The fundamentals-
based model of Abramowitz (2008). M2: The model of Heidemanns et al. (2020).
M3: M2 without the fundamentals prior, μb

T = 0. M4: M2 with an AR(2) structure,
μb
t |μb

t−1, μ
b
t−2 ∼ MVN(0.5μb

t−1μ
b
t−2,Σ

b). M5: simplify M2 without polling population
effect, polling mode effect, and the adjustment trend for non-response bias, αi = μc

p[i].

M6: M2 where we added an extra regression term βstockstockt[i] into model (26) using
the S&P 500 index at the time of poll i. M7: M2 without the entire shared bias term,
αi = 0. M8: M2 without hierarchical structure on states.

We equip hierarchical stacking with either the basic independent prior (9) or the
state-correlated prior (15). The prior correlation Ω is estimated using a pool of state-level
macro variables (election results in the past, racial makeup, educational attainment,
etc.), and has already been used in some of the individual models to partially pool
state-level polling. We plug this pre-estimated prior correlation in the correlated stacking
prior (15) and refer to it as “hierarchical stacking with correlation” in later comparisons.

Since the data are longitudinal, we evaluate different pooling approaches using a one-
week-ahead forecast with an expanding window for each conducted poll. We extract the
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Figure 7: Left: pointwise differences in 7-day running mean log predictive densities
on one-week-ahead test data, where we set the hierarchical stacking as benchmark 0.
Right: pointwise differences in cumulative average predictive log density by date. The
advantage of hierarchical stacking is most noticeable toward the beginning, where there
are fewer polls available.

fitted one-week-ahead predictions from each individual model, and train hierarchical
stacking, complete-pooling, and no-pooling stacking, and evaluate the combined models
by computing their mean log predictive densities on the unseen data next week. To
account for the non-stationarity discussed in Section 2.5, we only use the last four
weeks prior to prediction day for training model averaging. In the end we obtain a
trajectory of this back-testing performance of hierarchical stacking, complete-pooling
stacking, no-pooling stacking, and single model selection.

The left-hand side of Figure 7 shows the seven-day running average of the one-week-
ahead back-test log predictive density from models combined with various approaches.
The right-hand side of Figure 7 shows the overall cumulative one-week-ahead back-test
log predictive density. We set the uncorrelated hierarchical stacking to be a constant zero
for reference. Hierarchical stacking performs the best, followed by stacking, no-pooling
stacking, and model selection respectively. The advantage of hierarchical stacking is
highest at the beginning and slowly decreases the closer we get to election day. As
we move closer to the election, more polls become available, so the candidate models
become better and also more similar since some models only differ in priors. As a result,
all combination methods eventually become more similar. No-pooling stacking has high
variance and hence performs the worst out of all combination methods. Hierarchical
stacking with correlated prior performs similarly to the independent approach, with a
minor advantage at the beginning of the year, where the prior correlation stabilizes the
state weights, and later we see this advantage more discernible in individual states.

To examine small area estimates, we divided states into three categories based on
how many state polls were conducted. Figure 8 shows the overall mean pointwise dif-
ferences in test log predictive densities divided by these categories, along with a fourth
panel over all states. No-pooling stacking performs the worst in all panels. An ex-
planation for that could be that we are using a four-week moving window to tackle
non-stationarity, which might not contain enough data for the no-pooling method. The
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Figure 8: Mean test log predictive densities with 50% and 95% confidence intervals,
among subsets of states with few, moderate, and many numbers of state polls, and
among all states. Correlated hierarchical stacking is set as reference 0. It is better than
independent hierarchical stacking when data are scarce. Complete-pooling stacking is
close to hierarchical stacking in small states but worse in bigger states.

variance of the no-pooling is amended by the hierarchical approach, which performs
on par with stacking with scarcer data and outperforms it otherwise. Figure 14 in Ap-
pendix E (Yao et al., 2021) shows the state-level cumulative log predictive density by
time. With a large number of state polls available, for example, close to election day
in Florida and North Carolina, no-pooling stacking performs well. In states with fewer
polls, no-pooling stacking is unstable. Hierarchical stacking alleviates this instability
while retaining enough flexibility for a good performance when large data come in.

Figure 9 illustrates how cell size affects the pooling effect. The first panel shows the
hierarchical stacking state-wise weights for the first candidate model w1j as a function
of date. For either early-date forecasts or states with few polls, hierarchical stacking
weights are more pooled toward the shared nationwide mean. The middle and right
panels compare the difference between state-wise hierarchical stacking weights and the
nationwide mean, or with no-pooling weights, against the total number of respondents
for each state and prediction date. The cells with more observed data are less pooled
and closer to their no-pooling optimums, and vice versa.

6 Discussion

6.1 Robustness in small areas

The input-varying model averaging improves both the overall averaged prediction
Eỹ,x̃(log p(ỹ|x̃)) and conditional prediction Eỹ|x̃=x0

(log p(ỹ|x̃)), whereas these two tasks
are subject to a trade-off in complete-pooling stacking. Besides, the partial pooling
prior (9) borrows information from other cells, which stabilizes model weights in small
cells where date are not enough for no-pooling stacking. For a crude mean-field approxi-
mation, the likelihood in the discretemodel (11) is approximately

∏
j,knormal(αmode

jk ,λjk),

where αmode = argmaxα
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
is the unconstrained no-pooling
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Figure 9: Hierarchical stacking weights for M1. Left: weights for M1 of the 10 states
with fewest polls and with most polls over time. Dotted line shows the complete-pooling
stacking weight and the solid black line is the nationwide mean weight. States with
fewer polls are shrunken more toward the mean. Middle: absolute differences between
state-wise hierarchical stacking weights and the nationwide mean, against number of
respondents. The blue line is the linear trend reference. States with smaller sample sizes
are more pooled to the mean. Right: absolute differences between hierarchical stacking
and no-pooling stacking weights.

stacking weight, and −λ−2
jk = ∂2

∂α2
jk
|mode

∑n
i=1 log

(∑K
k=1 wk(xi)pk,−i

)
is the diagonal

element of the Hessian. Because αjk appears in nj terms of the summation, λjk =

O(n
−1/2
j ) for a given k. Combined with the prior αjk ∼ normal(μk, σk), the conditional

posterior mean of the k-th model weight in the j-th cell is the usual precision-weighed av-
erage of the no-pooling optimum and the shared mean: αpost

jk := E(αjk|λjk, σk, μk,D) ≈
(λ−2

jk α
mode
jk + σ−2

k μk)(λ
−2
jk +σ−2

k )−1. Hence for a given model k, |αmode
jk −αpost

jk | = O(n−1
j ).

Larger pooling usually occurs in smaller cells. This pooling factor is in line with Fig-
ure 9 and general ideas in hierarchical modeling (Gelman and Pardoe, 2006). Our full-
Bayesian solution also integrates out μk and σk, which further partially pools across
models.

The possibility of partial pooling across cells encourages open-ended data gather-
ing. In the election polling example, even if a pollster is only interested in the forecast
of one state, they could gather polling data from everywhere else, fit multiple models,
evaluate models on each state, and use hierarchical stacking to construct model averag-
ing, which is especially applicable when the state of interest does not have enough
polls to conduct a meaningful model evaluation individually. In this context swing
states naturally have more state polls, so that the small-area estimation may not
be crucial, but in general, we conjecture that the hierarchical techniques can be use-
ful for model evaluation and averaging in a more general domain adaptation setting.
Without going into extra details, hierarchical models are as useful for making infer-
ences from a subset of data (small-area estimation) as to generalize data to a new
area (extrapolation). When the latter task is the focus, hierarchical stacking only
needs to redefine the leave-one-data-out predictive density (6) by leave-one-cell-out
pk,−i :=

∫
Θk

p(yi|θk, xi, zi,Mk)p (θk|Mk, {(xi′ , zi′ , yi′) : xi′ �= xi}) dθk.
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6.2 Using hierarchical stacking to understand local model fit

We use hierarchical stacking not only as a tool for optimizing predictions but also as a
way to understand problems with fitted models. The fact that hierarchical stacking is
being used is already an implicit recognition that we have different models that perform
better or worse in different subsets of data, and it can valuable to explore the conditions
under which different models are fitting poorly, reveal potential problems in the data
or data processing, and point to directions for individual-model improvement.

Vehtari et al. (2017) and Gelman et al. (2020) suggested to examine the pointwise
cross-validated log score log pk,−i as a function of xi, and see if there is a pattern or
explanation for why some observations are harder to fit than others. For example, the
first panel of Figure 2 seems to indicate that Model 1 is incapable of fitting the rightmost
10–15 non-switchers. However, log pk,−i contains a non-vanishing variance since yi is a
single realization from pt(y|xi). Despite its merit in exploratory data analysis, it is hard
to tell from the raw cross validation scores whether Model 1 is incapable of fitting high
arsenic or is merely unlucky for these few points. The hierarchical stacking weight w(x)
provides a smoothed summary of how each model fits locally in x and comes with built-
in Bayesian uncertainty estimation. For example, in Figure 5, log p1,−i − log p2,−i has a
slightly inflated right tail, but this small bump is smoothed by stacking, and the local
weight therein is close to (0.5, 0.5).

6.3 Retrieving a formal likelihood from an optimization objective

The implication of hierarchical stacking (11) being a formal Bayesian model is that
we can evaluate its posterior distribution as with a regular Bayesian model. For exam-
ple, we can run (approximate) leave-one-out cross validation of the stacking posterior

p(w |D−i) ∝ p(w |D)/p(yi|xi,w) = p(w |D)/
(∑K

k=1 wk(xi)pk,−i

)
. In practice, we only

need to fit the stacking model (11) once, collect a size-S MCMC sample of stacking pa-
rameters from the full posterior p(w |D), denoted by {(wk1(xi), . . . , wkS(xi))}i,k, com-

pute the PSIS-stabilized importance ratio of each draw ris ≈
(∑K

k=1 wks(xi)pk,−i

)−1

,

and then compute the mean leave-one-out cross validated log predictive density to eval-
uate the overall out-of-sample fit of the final stacked model:

elpdloostacking ≈
n∑

i=1

log

∑S
s=1

(
ris

∑K
k=1 wks(xi)pk,−i

)
∑S

s=1 ris
. (28)

As discussed in Section 4, the same task of out-of-sample prediction evaluation in an
optimization-based stacking requires double cross validation (refit the model n(n − 1)
times if using leave-one-out), but now becomes almost computationally free by post-
processing posterior draws of stacking.

The Bayesian justification above applies to log-score stacking. In general, we can-
not convert an arbitrary objective function into a log density—its exponential is not
necessarily integrable, and, even if it is, the resulted density does not necessarily cor-
respond to a relevant model. Take linear regression for example, the ordinary least
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square estimate argminβ
∑n

i=1(yi − xT
i β)

2 is identical to the maximum likelihood es-
timate of β from a probabilistic model yi|xi, β, σ ∼ normal(xT

i β, σ) with flat priors.
But the directly adapted “log posterior density” from the negative L2 loss, log p(β|y) =
−
∑n

i=1(yi − xT
i β)

2 + C, differs from the Bayesian inference of the latter probabilis-
tic model unless σ ≡ 1. The hierarchical stacking framework may still apply to other
scoring rules, while we leave their Bayesian calibration for future research.

6.4 Statistical workflow for black box algorithms

Unlike our previous work (Yao et al., 2018) that merely applied stacking to Bayesian
models, the present paper converts optimization-based stacking itself into a formal
Bayesian model, analogous to reformulating a least-squares estimate into a normal-
error regression. Breiman (2001) distinguished between the two cultures: the generative
modeling assumes that data come from a given stochastic model, whereas the algorith-
mic modeling treats the data mechanism unknown and advocates black box learning for
the goal of predictive accuracy. As a method that Breiman himself introduced (along
with Wolpert, 1992), stacking is arguably closer to the algorithmic end of the spectrum,
while our hierarchical Bayesian formulation pulls it toward the generative modeling end.

Such a full-Bayesian formulation is appealing for two reasons. First, the generative
modeling language facilitates flexible data inclusion during model averaging. For exam-
ple, the election forecast model contains various outcomes on state polls and national
polls from several pollsters, and pollster-, state- and national-level fundamental pre-
dictors, and prior state-level correlations. It is not clear how methods like bagging or
boosting can include all of them. Data do not have to conveniently arrive in indepen-
dent (xi, yi) pairs and compliantly await an algorithm to train upon. Second, instead
of a static algorithm, hierarchical stacking is now part of a statistical workflow (Gel-
man et al., 2020). It then enjoys all the flexibility of Bayesian model building, fitting,
and checking—we can incorporate other Bayesian shrinkage priors as add-on compo-
nents without reinventing them; we can run a posterior predictive check or approximate
leave-one-out cross validation (28) to assess the out-of-sample performance of the final
stacking model; we may even further select, stack, or hierarchically stack a sequence of
hierarchical stacking model with various priors and parametric forms. Looking ahead,
the success of this work encourages more use of generative Bayesian modeling to improve
other black box prediction algorithms.

Supplementary Material

Appendices to “Bayesian hierarchical stacking: Some models are (somewhere) useful”
(DOI: 10.1214/21-BA1287SUPP; .pdf).
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