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Perovskites are promising materials candidates for optoelectronics, but their commercialization is hindered
by toxicity and materials instability. While compositional engineering can mitigate these problems by tuning
perovskite properties, the enormous complexity of the perovskite materials space aggravates the search for an
optimal optoelectronic material. We conducted compositional space exploration through Monte Carlo (MC)
convex hull sampling, which we made tractable with machine learning (ML). The ML model learns from density
functional theory calculations of perovskite atomic structures, and can be used for quick predictions of energies,
atomic forces, and stresses. We employed it in structural relaxations combined with MC sampling to gain access
to low-energy structures and compute the convex hull for CsPb(Br1−xClx)3. The trained ML model achieves
an energy prediction accuracy of 0.1 meV per atom. The resulting convex hull exhibits two stable mixing
concentrations at 1/6 and 1/3 Cl contents. Our data-driven approach offers a pathway towards studies of more
complex perovskites and other alloy materials with quantum mechanical accuracy.

DOI: 10.1103/PhysRevMaterials.6.113801

I. INTRODUCTION

Halide perovskite (ABX3 with X = Cl, Br, I) materials
have shown remarkable promise in emergent optoelectronic
technologies. For example, perovskite solar cells (PSCs) have
already achieved a record power-conversion efficiency of
25.5%, which is comparable to that of conventional crystalline
silicon devices [1–3]. Notable advances have also been ob-
served for perovskite-based light-emitting diodes (PeLEDs),
which have achieved excellent monochromaticity, high exter-
nal quantum efficiency, and high brightness [4–7]. The factors
hindering the commercialization of halide perovskite-based
materials are their instability against environmental stresses
(such as heat, moisture, and oxygen) [8–11], and the toxicity
of Pb as the most common B-site element [12–15].

The variety of candidates for the A, B, and X-site species
makes it possible to tune the properties of perovskites
via compositional engineering [16,17]. In most of today’s
high-performance PSCs both A and X sites are mixed:
(FA1−x−yMAxCsy)Pb(I1−zBrz )3 where FA and MA stand for
the two most common organic A-site cations (H2N)2CH+
(formamidinium) and CH3NH+

3 (methylammonium), respec-
tively, and x, y, and z indicate the mixing fractions of
the elements [18–20]. This strategy is also widely utilized
in PeLEDs, where halide mixing is the primary means
of tuning the target emission wavelength [6,7,21], such as
MAPb(I1−xClx )3 for near-infrared [4,22], MAPb(I1−xBrx )3
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for red [4,23], and MAPb(Br1−xClx )3 for blue emission
[24,25].

Systematic screening of candidate materials for perovskite
optoelectronics is still at its preliminary stage [17,20,26] due
to the complexity of the multidimensional substitution space
and the lack of fundamental understanding of the mecha-
nisms that give rise to the property modifications. Atomistic
first-principles computations can improve this understanding
because they provide exact control over material nanostruc-
ture for property tuning studies, but employing them in
compositional screening is challenging. Even for a specific
composition such as CsPb(Br1−xClx )3 with a fixed x value,
the number of possible X-site (Cl and Br) configurations is
infinite. On the one hand, large model systems are required to
represent the (quasi)random Cl/Br configurations, and on the
other hand, many possible structures with different configura-
tions need to be explored. The intuitive ergodic approach to
materials screening is thus intractable.

Within the past few years, machine learning (ML) has been
applied to density functional theory (DFT) computational data
sets of halide perovskites. Various ML-based attempts to iden-
tify possible stable perovskite structures have been reported,
in which almost the entire periodic table was screened for can-
didate elements for A, B, and X sites [27–30]. Most of these
works are based on DFT calculations of the smallest model
systems. They also exclude perovskite alloys, leaving much
of the materials space unexplored. Some ML studies of ionic
mixing have emerged more recently: Park et al. predicted the
possibility of forming mixed-ion perovskites based on ML
similarity analysis performed on the DFT data set of “pure”
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FIG. 1. The workflow of the DFT-based ML framework for configurational convex hull evaluation.

perovskites [31]. In the ML study by Lu et al., a 5-atom unit
cell model was used to represent mixed halide perovskites
ABXX′X′′ [32]. Limited compositions were included due to
the perfect stoichiometry, and chemical disorder was ignored
because the periodicity of the small unit cells did not allow it.
Using the 2 × 2 × 2 supercell, Mannodi-Kanakkithodi et al.
studied the stability and properties of MAPb0.875B0.125Br3

with 55 candidate elements for B [33]. The supercell approach
enabled a fine compositional study beyond stoichiometric sys-
tems, but substitution of only one Pb ion in the model system
did not constitute realistic chemical disorder and the models
are thus still rather simple.

In this paper, we present an ML framework for study-
ing perovskite alloys based on DFT data. We demon-
strate the approach for a cesium-lead-bromide-chloride al-
loy [CsPb(Br1−xClx )3]. Mixed bromide-chloride perovskites
have recently generated interest as blue-light emitters in
LEDs and near-ultraviolet light absorbers in photovoltaic
devices [24,25]. As an inorganic binary alloy system,
CsPb(Br1−xClx )3 serves as an appropriate starting point for
future ML compositional engineering of more complex per-
ovskite alloys. The chosen 2 × 2 × 2 supercell model contains
24 halide anions so that the total number of possible con-
figurations is 224 ≈ 1.68 × 107. This design space is already
too large to traverse with DFT, even if structural symmetry
reduces the number of configurations by one or two orders
of magnitude. The traditional computational method for ex-
ploring such alloy spaces has been the cluster expansion
(CE), which has also been applied in studying the stability
of CsPb(Br1−xClx )3 [34,35]. Due to its rigid formalism, CE
sometimes fails, for example, to accurately incorporate the
effects of atomic relaxations [36]. Advanced data-driven re-
search methods such as ML have recently emerged as a more
flexible alternative to modeling alloy materials [37–39].

With the ultimate aim of discovering new materials, we
design a multistep computational framework that is illus-
trated in Fig. 1. First, we generate a perovskite alloy data set
with DFT. Different compositions, alignments, and structural
distortions are considered to explore the space of structural
variations. Based on these data, we develop and train an ML
model for quick energy predictions. To map atomic struc-
tures to DFT total energies, our model combines two key
components—the many-body tensor representation (MBTR)
[40,41] for perovskite atomic structures and kernel-ridge re-
gression (KRR) as the ML method. MBTR is a numerical
descriptor for atomistic systems that provides detailed infor-
mation of the local atomic structure and is compatible with
kernel-based ML techniques [40]. KRR maps the MBTR vec-
tor of an atomic structure to its energy value. MBTR has
been combined with KRR to successfully predict properties
of molecules and solids [42–44]. In this paper, we extend
previous research by deriving and incorporating the MBTR

gradients. By differentiating our MBTR-KRR ML model, we
can compute atomic forces and stress-tensor components and
optimize the geometries of alloy configurations. Finally, we
employ the ML geometry optimization to compute the con-
vex hull for the binary alloy system, which is required for
estimating which compositions form stable perovskites when
synthesized: atomic configurations that are on the convex hull
are stable while the rest are not. To this end, Monte Carlo
(MC) sampling is utilized to explore the low-energy structures
across all compositions.

Like our MBTR-KRR ML model, the CE model can be
fitted to DFT calculations to provide fast energy predictions
for atomic structures. However, structure enumeration in CE
assumes ideal lattice positions and structural relaxation can
only be incorporated through the training data by fitting to
energies of relaxed geometries. Conversely, our approach pro-
vides the optimized atomic structures and lattice parameters in
addition to the convex hull. Furthermore, with our approach
a single ML model is capable of simulating different lattice
types, which is not possible with the CE.

The outline for the remainder of this paper is as fol-
lows: In Sec. II, we briefly describe the methods involved in
the development of our ML framework and its application
in CsPb(Br1−xClx )3 stability computations. In Sec. III, we
present the results of our study. In Sec. IV, we discuss the
key findings, potential improvements, and future work. We
conclude with a summary in Sec. V.

II. METHODS

A combination of methods is needed for our perovskite
property-prediction ML framework. Here we describe how we
(a) generated the CsPb(Br1−xClx )3 DFT data set, (b) devel-
oped and tested our ML model that learns from the DFT data
and maps atomic structure to DFT energy, and (c) combined
MC sampling with ML structure optimization to identify the
low energy structures and compute the convex hull. The codes
for all computational steps are available through a GitLab
repository [45].

A. Data set computation

We generated a data set of atomic structures and DFT total
energies for CsPb(Br1−xClx )3. We represented mixed-halide
perovskites in a 2 × 2 × 2 supercell containing 24 halide
atoms. The data set consists of two types of structures. The
first type are single point calculations featuring small devi-
ations from the ideal atomic sites. Because our aim was to
employ our ML model in geometry optimization, we also in-
cluded structure snapshots from DFT relaxation simulations.

We started with the structures for single point calcula-
tions. We ensured the diversity of the data in terms of lattice
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FIG. 2. Distribution of enthalpy of mixing (�Hmix) values per perovskite formula unit (f.u.) in the generated data set that consists of an
equal number of structures from four different space groups (Pm3̄m, P4/mbm, I4/mcm, and Pnma). The �Hmix values range from 0 to
1625 meV/f.u.

types (phases), compositions, configurations, lattice deforma-
tion, and deviations. First, we filled the substitution range
uniformly by generating 100 structures per Cl concentra-
tion. This sums up to 10 000 structures, given the 25 Cl
concentrations and four equally represented space groups
(Pm3̄m, P4/mbm, I4/mcm, and Pnma). To account for
configurational diversity, the Cl/Br configuration was ran-
domized in each alloy structure. We determined the lattice
parameters of each alloy using Vegard’s law [46]. Next, the
atomic positions of each atomic structure were generated
as follows: we initialized the atomic coordinates of each
generated structure by linear interpolation between the re-
laxed CsPbBr3 and CsPbCl3 geometries. Then we randomly
displaced Cs and halide ions to imitate structural fluctu-
ations. Specifically, we displaced Cs positions uniformly
within ±0.02 in terms of fractional coordinates along all
three lattice vectors. The halide positions were displaced so
that the octahedral tilting amplitude follows a ∼(e−(x+1)2 +
e−(x−1)2

) distribution, which (a) is symmetric with respect
to zero tilt, (b) has its maximum at the linearly-interpolated
tilting structure, and (c) decays rapidly for larger tilting
angles. We were thus able to capture disorder by generat-
ing many different structures, even for extremely low Cl or
Br concentrations, with these random deviations. The to-
tal energies of the 10 000 structures were then computed
with DFT.

Next, we generated the relaxation data. We used the same
methodology as with the single point data to generate two
more structures per Cl concentration for the four space groups,
which sums up to 200 structures. The atomic positions in these
structures were relaxed with DFT while keeping the lattice
parameters fixed, which produced 8014 structure snapshots
where both the total energies and the atomic forces are known.
We then combined these structural snapshots with the 10 000
single-point structures to build the full data set of 18 014
structures. In the interest of open science [47], we made all
relevant calculations for this paper available on the Novel
Materials Laboratory (NOMAD) [48] and Zenodo [49].

Total DFT energies are difficult to learn directly due to
their high dependence on the electron count in a structure.
Instead, we calculated the enthalpy of mixing (�Hmix) for

every structure in the data set,

�Hmix = E (CsPb(Br1−xClx )3)

− xE (CsPbCl3) − (1 − x)E (CsPbBr3), (1)

where E (CsPb(Br1−xClx )3) is the DFT total energy per per-
ovskite formula unit of a mixed structure. E (CsPbCl3) and
E (CsPbBr3) are the DFT total energies per formula unit of
the global minimum structures that we obtain for the pure
CsPbCl3 and CsPbBr3 through DFT relaxation. Figure 2
shows the distribution of �Hmix values in the data set. We
normalized the data so that the mean of the mixing enthalpies
is 0 and the standard deviation is 1,

Elabel = �Hmix − μ(�Hmix)

σ (�Hmix)
. (2)

Supervised ML requires different data pools for fitting the
ML model and testing its performance, so we split the gener-
ated data into training and test sets. Our aim was to develop
a model that performs well in structure optimization, which
is reflected in our choice for the composition of the test set.
We formed the test set by combining structure snapshots from
100 DFT relaxations. We selected these relaxations uniformly
across the 25 concentration levels and four lattice types, en-
suring that the materials space is well covered and the test
results are not biased in terms of composition. The 10 000
single point structures and the remaining 100 DFT relaxations
formed the training set. The resulting sizes for the training and
test sets were 13 948 and 4 066 structures, respectively.

All DFT calculations were performed using the Perdew-
Burke-Ernzerhof exchange-correlation functional for solids
(PBEsol) [50] implemented in the all-electron numeric-atom-
centered orbital code FHI-aims [51–53]. We chose the PBEsol
functional because it predicts the lattice constants of halide
perovskites well at a moderate computational cost [54,55].
Further computational settings included the standard FHI-
aims tier-2 basis sets and “tight” grid settings, the zeroth-order
regular approximation that accounts for scalar relativistic
effects [56], and a �-centered 4 × 4 × 4 k-point mesh for
Brillouin-zone integration. The DFT geometry optimizations
had a convergence limit of 5 meV/Å for the maximum atomic
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FIG. 3. (a) Example structure. (b) MBTR representation of (a).

force amplitude. Optimization of lattice constants was carried
out using the analytical stress tensor [57].

B. Machine learning model

Model definition. We used supervised ML regression to
map perovskite atomic structures to the corresponding ener-
gies. The ML model features two key aspects: representing
the atomic structures in vector form with MBTR and mapping
the MBTR vectors to Elabel with KRR.

MBTR is a structural descriptor that considers structural
motifs such as elemental contents (k = 1), interatomic dis-
tances (k = 2), and bond angles (k = 3) to form a vector
representation of an atomic geometry [40,41]. A previous
study [42] concluded that the k = 1 term did not improve
the model accuracy when higher-order terms were included.
The results of the same study, as well as our own tests, also
indicate that including the k = 3 term produces a minimal
improvement in accuracy while considerably increasing the
computational cost of model predictions. In order to balance
the accuracy and computational efficiency of our ML model,
we employed only the k = 2 term in this paper.

The k = 2 term encodes each element pair (Z1, Z2) of a
structure in a sum of Gaussians

∑
l∈Z1

∑
m∈Z2

wl,m 1

σ
√

2π
exp

(
− (x − |Rl − Rm|−1)2

2σ 2

)
, (3)

where the sum proceeds through all the atom pairs of elements
Z1 and Z2 in a structure and R are the positions of these atoms.
wl,m is a weighting function

wl,m = exp(−s|Rl − Rm|), (4)

where s is a parameter that controls the magnitude of the
weighting. The weighting function is required for the sum to
converge in an infinite lattice of atoms. The parameter wcutoff

is a weight threshold for cutting off the sum, and with s it de-
termines a cutoff distance rcutoff for atom pairs that contribute
to the representation. The MBTR functions are vectorized by
evaluating them at Ngrid discrete grid points spanning from
xmin to xmax. The full vector representation M(s) of an atomic
structure s is the concatenation of the element pair contri-
butions. Figure 3(b) displays an example MBTR vector of a
perovskite alloy structure.

We correlated the MBTR vectors with Elabel using KRR.
An energy prediction for a structure s is given by

EML
label =

N∑
i

βik(s, si ), (5)

where βi are fitting coefficients, k is a kernel function, and
si are a set of N reference structures. We chose the Gaussian
kernel as it performs better than other common kernels when
combined with MBTR according to an earlier study [42]. The
Gaussian kernel function is

k(s, s′) = exp(−γ ||M(s) − M(s′)||22), (6)

where γ is a parameter that controls the width of the ker-
nel distribution. The fitting coefficients βi can be determined
through

β = (K + αI)−1Eref
label, (7)

where K is the kernel matrix Ki, j := k(si, s j ), Eref
label are the en-

ergy labels of the reference data set, and α is a regularization
parameter.

Model selection. To achieve optimal ML model perfor-
mance, we optimized its hyperparameters. The ML model has
eight hyperparameters: six for MBTR (xmin , xmax , Ngrid , s,
wcutoff , and σ ) and two for KRR (α and γ ). We set some
of the hyperparameters based on the characteristics of the
data and the implications that they have on the ML model
efficiency, as described in the Supplemental Material (SM)
[58]. The remaining hyperparameters we optimized with the
Bayesian optimization code BOSS [59] following the proce-
dure outlined in Ref. [60]. More details on the hyperparameter
optimization and the hyperparameter values can be found in
Sec. S2.A of the SM [58].

C. ML structure optimization and convex hull

To use our ML model for perovskite structure optimiza-
tions, the model needs to be capable of predicting atomic
forces and stress tensor components, i.e., the energy deriva-
tives. Instead of training the model to predict them directly,
we differentiate the energy model predictions. The force on
atom a relates to the energy gradient with respect to atomic
positions

Fa = − ∇aE . (8)

Similarly, components of the stress tensor follow from deriva-
tives with respect to strain

σμν = 1

V

∂E

∂εμν

, (9)

where V is the volume of the simulation cell and εμν a com-
ponent of the strain tensor. Inserting Eqs. (1) and (2) produces
the expressions for the forces and stresses

FML
a = −8σ (�Hmix)∇aEML

label, (10)

σ ML
μν = 8σ (�Hmix)

V

∂EML
label

∂εμν

. (11)

KRR and MBTR gradients are required for the derivatives of
EML

label. The final expressions are derived in the SM [58].
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Structure optimization with our ML model was carried
out with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) min-
imizer implemented in the ASE package [61]. At each BFGS
iteration, the forces and stresses were predicted with the ML
model and both atomic positions and lattice parameters were
updated accordingly until the maximum force component was
smaller than 5 meV/Å.

Convex hull calculations. To map out the convex hull, we
needed to find the structure with the lowest energy for each
Cl concentration. This was a demanding task due to the large
number of possible Cl/Br configurations. We made it tractable
by applying our ML model.

We searched for the minimum configurations with Monte
Carlo simulated annealing within the most stable Pnma phase.
At each Cl concentration, we initialized the MC algorithm
with a randomized Cl/Br configuration. With each subsequent
iteration, the MC algorithm generated a new configuration
by swapping a random pair of Cl and Br atoms. We then
relaxed the crystal and atomic structures using the ML model.
The energy of the relaxed structure was predicted with the
ML model and compared to the energy before the atom pair
swap. According to the Metropolis principle, if the energy
decreased, the change was accepted and in its next step the
algorithm continued from the modified Cl/Br configuration;
if the energy increased, the change was accepted with the
probability

P(accept) = exp

(
− �EML

kBT

)
, (12)

where T is the simulated temperature.
We ran the MC algorithm for 200 steps, while decreasing

T linearly from 10.0 K to 1.0 × 10−6 K. Due to the limited
attempts, randomness of the initial Cl/Br configurations, and
the choice of swapped atoms, we were not guaranteed to
find the absolute minimum configuration every time. For a
more accurate minimum search, we ran the MC sampling
multiple times by initializing the algorithm with different con-
figurations. We tested different restart counts, and found that
repeating the sampling of 200 structures five times identified
the minimum energy configuration with over 99% probability.

During the sampling, the MC algorithm might have con-
structed multiple symmetry-equivalent Cl/Br configurations.
The relaxed energies of these configurations should be the
same, but due to small uncertainties in the ML model, the pre-
dicted energies differed by up to 3 meV/f.u. We subsequently
picked the median energy as representative of such a group of
structures.

After using MC sampling to identify the minimum energy
configurations for all concentrations, we calculated single
point DFT energies for the corresponding ML optimized
structures to make sure that the ML model is predicting their
energies accurately. We then relaxed the minimum energy
structures with DFT starting from the same initial geometry
as the ML relaxation did. The energies obtained from the DFT
relaxation are free from the effects of the limited ML model
accuracy and thus constitute our most accurate estimates for
the minimum configuration energies. We used these energies
to determine the convex hull for CsPb(Br1−xClx )3.

TABLE I. Prediction errors for our fully trained ML model for
different phases. MAEE is the energy prediction error. Initial MAEF

is the force prediction error on the initial structures (relaxation step
0) in the test set. MAEF is the force prediction error over the whole
test set. MAErel is the mean absolute difference between the ML
predicted energies of ML optimized structures and DFT energies of
the DFT optimized structures.

MAEE Initial MAEF MAEF MAErel

(meV/f.u.) (meV/Å) (meV/Å) (meV/f.u.)

Pm3̄m 0.83 12.9 18.0 4.72
P4/mbm 0.50 13.7 16.5 1.98
I4/mcm 0.71 13.7 16.5 5.74
Pnma 0.70 15.3 16.7 1.32
Average 0.69 13.9 17.0 3.44

We also analyzed the relationship between the changes in
energies and atomic structures. We defined a distance metric
between two perovskite structures as the Euclidean distance
between the MBTR vectors of the structures. To make inter-
pretation easier, we used the same MBTR hyperparameters as
for the predictive model, but normalized all the MBTR vectors
to L2 norm of 1.

III. RESULTS

In this section we present results from model performance
tests and CsPb(Br1−xClx )3 convex hull computations. First,
we assess the energy and force prediction accuracy of the
ML model. Next, we analyze how the model performs in
structure optimization. Finally, we present the results of the
MC sampling and the convex hull.

A. Energy and force prediction

We trained our ML model with the optimized hyperparam-
eters and predicted the energies of the test set structures. We
then compared the predicted energies to the DFT values to
obtain an estimate for the accuracy of the model,

MAEE = 1

N

∑
j

|EML(s j ) − EDFT(s j )|, (13)

where j runs over the test set structures s j and N is the number
of structures in the test set. We repeated the training procedure
with different training set sizes ranging from 100 to ∼14 000
to generate the learning curves presented in Fig. 4(a). The
prediction errors decrease rapidly with increasing training set
size (irrespective of the space group) for about 1 000 training
structures, and then begin to converge. The overall prediction
error for the full training set is 0.69 meV/f.u. This corre-
sponds to 0.14 meV per atom. Out of the four space groups,
energies of P4/mbm structures were the easiest to learn (see
Table I).

The next step was to assess how well the ML model per-
forms in force prediction tasks. We predicted the atomic forces
for the test set structures and compared the results to the DFT

113801-5



JARNO LAAKSO et al. PHYSICAL REVIEW MATERIALS 6, 113801 (2022)

FIG. 4. (a) Energy learning curves. (b) Force learning curves. (c) ML optimized energies of the Pnma test structures compared to DFT
optimization results.

values. The error metric that we used is

MAEF = 1

N

∑
j

1

M

∑
a,i

∣∣F ML
a,i − F DFT

a,i

∣∣, (14)

where j runs over the test structures, a over the atoms in a
structure, and i over the three components of a force vector.
N corresponds to the number of test structures and M to the
number of force components in a structure. We again repeated
the test with different training set sizes to plot force learning
curves [Fig. 4(b)]. The errors behave similarly to the energy
prediction errors, decreasing quickly with the increasing train-
ing set size. The overall MAEF for the full training set is
17 meV/Å (see Table I). Pm3̄m stands out as the space group
that was the most difficult to learn.

B. Structure optimization

Our aim was to employ the ML model in structure opti-
mization for convex hull calculations. In the final accuracy
check, we analyzed the performance of the ML model on
the precomputed DFT relaxation trajectories by predicting the
ML forces of relaxation snapshots and comparing them to the
DFT forces of the same structures. We determined whether
the ML model accuracy remains high throughout the entire
relaxation trajectories by investigating how the force predic-
tion error evolves with the number of relaxation steps.

Our test set consisted of snapshots from 100 DFT struc-
ture relaxations. We grouped these structures based on their
relaxation step index, and calculated MAEF for each group
using the ML model that was fitted on the full training set.
During the data generation, the initial structures of the DFT
relaxations (relaxation step 0) were generated in the same
way as the single point structures that constitute the majority
of the training set of the ML model, and thus the prediction
accuracy on them provides an estimate of the optimal ML
model performance. The initial MAEF differentiated by space
group are shown in Table I. The mean deviation for all 100
initial structures is 13.9 meV/Å. Figure 5 shows how the
force prediction error evolves as the relaxation proceeds for
the 25 Pnma structures in the test set. The average error
increases from the initial value but remains under 20 meV/Å.
The maximum error remains under 40 meV/Å.

After analyzing the ML force predictions on DFT re-
laxations, we proceeded to test the structure optimization
performance of the fully trained ML model. We performed
ML optimizations starting from the initial structures of the
DFT relaxations and compared the predicted energies to the
DFT results. To make DFT and ML relaxations comparable
in this test, we fixed the lattice parameters and only optimized
the atomic positions. To assess the quality of the geometry
optimization, we compared the ML energy of the final ML
geometry to the DFT energy of the final DFT geometry.

All our ML structure optimizations converged. The MAE
of optimized energies is 3.44 meV/f.u. overall, but depends
significantly on the space group of the optimized structure
(see Table I). The results for the 25 Pnma test structures
are displayed in Fig. 4(c). The ML model systematically
underestimates the optimized energy, but the MAE is only
1.32 meV/f.u.

C. Convex hull

The good accuracy of the ML structure optimizations
makes them suitable for the convex hull computation for
CsPb(Br1−xClx )3. We employed MC sampling to access the
low energy structures. The ML optimizations of all sampled
structures converged. We obtained negative �Hmix values over

FIG. 5. Evolution of the force prediction error in the DFT re-
laxations of the Pnma test structures. The gray lines are individual
relaxation trajectories. The mean of all relaxations is shown with a
black line.
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FIG. 6. (a) ML energies of the MC samples. Color coding is
based on the MBTR distance between the sample and the minimum
structure of the same Cl concentration. (b) ML and DFT relaxed
energies for the minimum energy structures. The convex hull has
been constructed based on the DFT results. Stable structures are
found at 1/6 and 1/3 Cl concentrations.

a large part of the Cl concentration range with the lowest value
at 1/3 Cl concentration, as illustrated in Fig. 6. We computed
the energies of the ML-optimized minimum energy structures
at each Cl concentration with DFT, which revealed that the
ML model systematically underestimated their energies by
5.1 meV/f.u. on average. When we optimized the minimum
structures with DFT starting from the same initial structures
as the ML relaxations, the resulting energies were closer to
the ML predictions but still underestimated by 3.2 meV/f.u.

on average. We analyzed the difference between the DFT and
ML relaxed structures and observed that the root-mean-square
deviation (RMSD) of atomic positions between them was
0.03 Å on average, while the mean deviation of bond lengths
was 0.02 Å.

We constructed a convex hull based on the energies of the
DFT optimized structures. There are two structures on the
hull: one at 1/6 and the other one at 1/3 Cl concentration.

FIG. 7. Lattice vector lengths and unit cell volumes of
CsPb(Br1−xClx )3 minimum energy structures after DFT and ML
structure optimization compared to Vegards’s law (VL): (a) length of
the shorter of the two lattice vectors a and b, (b) length of the longer
of the two lattice vectors a and b, (c) length of the lattice vector c,
and (d) unit cell volume.

Both of these structures are similar, with Cl and Br atoms
ordered in layers. The preference for layered ordering is also
shown in the periodicity of the minimum energies. Every four
Cl concentration steps, the energy reaches a low point when a
layer is filled. The other layered structures at 2/3 and 5/6 Cl
content are nonetheless above the convex hull, which makes
the hull unsymmetrical.

We analyzed the change in lattice parameters due to DFT
and ML structure optimization by comparing how the relaxed
lattice parameters of the minimum energy structures compare
to Vegard’s law. The results of the analysis are presented
in Fig. 7. With both structure optimization methods, the a−
and b − directional lattice vectors tend to elongate after the
relaxation in contrast to Vegard’s law values. At the same
time, the relaxed structures are flatter in c − direction. DFT
relaxation preserved the overall volume of the perovskite
simulation cells, whereas ML relaxation overestimated the
volume systematically by 0.8% on average.

IV. DISCUSSION

Our ML model reached an energy prediction MAE of close
to 0.1 meV per atom at a computational cost six orders of
magnitude lower than DFT. This very low error value can be
partly explained by data set redundancy: the atomic structures
in our data set are very similar to each other, which makes it
possible to reach very small prediction errors. The force com-
ponent prediction MAE of the model is 17 meV/Å, which is
over three times higher than our convergence criterion for the
structure optimizations. Despite this, the ML model produced
relaxations that were very similar to DFT results in terms of
predicted energies, lattice parameters, and atomic positions in
the relaxed structures.

When we employed the ML model in structure optimiza-
tion, the accuracy depended significantly on the space group
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of the optimized structure. This is due to the fact that the
number of iterations needed for an optimization to converge is
different for all the space groups (Sec. S2.B of the SM [58]),
and fewer iterations means less error propagation. On average,
the Pnma optimizations are the shortest, which is reflected
in the ML model reaching a low MAE of 1.3 meV/f.u. The
ML structure optimizations are not only accurate but also very
quick. Relaxing an atomic structure with the ML model is over
four orders of magnitude faster than with DFT.

The convex hull that we computed for CsPb(Br1−xClx )3

exhibits two stable mixing concentrations at x = 1/6 and
x = 1/3. The stable structures are highly regular, with layered
Cl/Br configurations. In the case of this material, the same
results might have been obtained without the extensive MC
exploration of structures, by systematically examining only
the few regular configurations. In our approach, however,
we made no assumptions about the regularity of the stable
alloy configurations, and thus our approach for computing the
convex hull would also work in the general case.

The shape of the convex hull that we obtained, as well as
the observed preference for layered configuration of the Cl
and Br atoms, agree with previous computational studies of
the same material [34,35]. The main difference between our
approach and the previous studies based on CE is that our ML
relaxations provide direct access to the optimized geometries.
Additionally, the earlier studies used a smaller supercell of 20
atoms to fit their CE models.

CsPb(Br1−xClx )3 has been synthesized before in an ex-
perimental study that observed the material to be stable
throughout the Cl concentration range [62]. In contrast, our
computations predict only two stable concentration values.
We suspect that the discrepancy between the experiments and
our results is due to the fact that we modeled the system at
0 K and thus did not consider the effects of configurational
entropy related to the Cl/Br mixing. In future work we will
fabricate CsPb(Br1−xClx )3 to verify the accuracy of our ML
approach. In order to close the gap between computations
and experiments, we plan to use advanced sampling methods
and include configurational entropy in our computation of the
convex hull.

We analyzed how the lattice parameters of relaxed geome-
tries compare to the predictions from Vegard’s law. Both the
DFT and ML relaxations that we performed produce optimal
lattice parameters that deviate significantly from Vegard’s law.
We repeated the MC sampling without optimizing the lattice
parameters with the ML model (see Sec. S2.C of the SM
[58]), and the resulting convex hull was very different. We
conclude that in order to obtain the correct minimum energy
Cl/Br configurations and capture the shape of the convex hull,
optimizing the lattice parameters of each sampled structure is
very important.

While generating the training data structures for the ML
model, we introduced random variation to the octahedral tilt-
ing angles and thus to the simulation cell shape. This adds
to the diversity of the training data, which helps the ML
model retain its accuracy when the cell shape changes dur-
ing the structure optimizations. The accuracy could likely
be increased further by including snapshots from DFT cell
optimization simulations into the training set.

In this paper, we fitted the KRR model purely based on
energies. One potential way to increase the model’s force
prediction accuracy in the future would be to include atomic
forces in the fitting process. One could define a KRR loss
function that includes the forces, and refit the the model by
finding the fitting coefficients that minimize this new loss
function. The computational costs related to the model fitting
would be larger with this approach, but the force predictions
would likely be improved.

We applied the ML framework in the study of perovskites,
but the same methods could be utilized also for other mate-
rials. This paper can benefit problems where the number of
atomic systems that need to be considered is too large for DFT
computations. This is often the case in the study of alloys, for
which our approach can be applied by simply replacing the
data set that is used for fitting the ML model.

V. CONCLUSIONS

In this study, we have developed and tested an ML
framework for perovskite property prediction. We have
demonstrated that our ML model that was trained on DFT cal-
culations of CsPb(Br1−xClx )3 atomic structures is capable of
predicting energies with quantum mechanical precision. Our
tests also show that the ML model can be used for accurate
prediction of atomic forces as well as for structure optimiza-
tion. The ML predictions are over four orders of magnitude
faster than DFT.

We have employed the ML framework to study the stability
of CsPb(Br1−xClx )3. Our convex hull computations exhibit
two stable mixing concentrations at x = 1/6 and x = 1/3. We
observe that CsPb(Br1−xClx )3 prefers layered Cl/Br align-
ments. Our approach to computing the convex hull is directly
applicable to the study of different perovskite materials and
other alloys.
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