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ExtendedSketch: Fusing Network Traffic
for Super Host Identification With

a Memory Efficient Sketch
Xuyang Jing, Zheng Yan , Senior Member, IEEE, Hui Han, and Witold Pedrycz , Life Fellow, IEEE

Abstract—Super host refers to the host that has a high cardinality or exhibits a big change in a network. Facing big-volume network

traffic, sketches have been widely applied to identify super hosts in an efficient and accurate way. However, most sketches cannot

flexibly balance memory usage and accuracy in host cardinality estimation. Setting an inappropriate counter size for a sketch could

either lead to inaccurate host cardinality estimation or cause memory waste. In order to solve this issue, we propose a novel extensible

and reversible sketch, named ExtendedSketch, to achieve accurate super host identification with high memory efficiency. The core idea

of ExtendedSketch is to monitor low-cardinality hosts with small-sized counters while dynamically extending the size of counters when

monitoring high-cardinality hosts by applying an adaptive extension strategy. Such the strategy can adaptively increase counter size

according to network traffic status at runtime, which not only ensures the accuracy of high-cardinality host estimation but also avoids

unnecessary memory consumption. We perform theoretical analysis and conduct a series of experimental evaluations on

ExtendedSketch based on real world network traffic. Experimental results show that under same memory usage, compared to the

state-of-the-art, ExtendedSketch achieves 1:4�7:5 times smaller error rate in estimating host cardinality with 1:9�26:7 times better

accuracy on super host identification and 95�215 times faster speed on abnormal address reconstruction. Its advance in accuracy and

efficiency demonstrates the practical significance of ExtendedSketch for super host identification.

Index Terms—Network traffic measurement, host cardinality estimation, super host identification, sketch, memory efficiency

Ç

1 INTRODUCTION

SUPER host identification plays an important role in net-
work management, which can be applied to detect net-

work attacks (e.g., Distributed Denial of Service (DDoS)
attacks [1], network scanning [2]), track hot-spot web content
[3], monitor user activities [4]. Accurately estimating host
cardinality is the premise of super host identification. The
cardinality of a host is the number of different hosts it com-
municates with, e.g., Destination Cardinality (DC) is the
number of different destination addresses that a host com-
municates with, while Source Cardinality (SC) is the number
of different source addresses that a host is connected with. A
super host is a host that exhibits abnormal behavior in terms
of its cardinalities. For example, the host with high DC (SC)
is known as a super spreader (a super receiver) and the host
has heavy changes in cardinality between two adjacent time
intervals is called as a super changer [5].

With the continuous increase of networking speed, an
online traffic processing module with fast traffic collection
and efficient memory usage is highly expected [6], [7], [8].
For example, the switches in Software Defined Networks
(SDN) can measure flow size/cardinality by using flow
tables. Because of the number of flows mostly exceeds the
size of flow tables, traditional flow measurement methods
employed at switches are not flexible [9]. Sketches, which
use data-oriented hashing to fuse data into a compact way,
have been widely applied in many aspects of analyzing big-
volume network traffic, e.g., flow size estimation [10], [11],
host cardinality estimation [12], [13], network anomaly
detection [14], [15], persistent spread measurement [16],
[17], and flow statistics collection in SDN [18], [19]. The
characteristics of sketches with regard to fast processing of
huge network-wide traffic with expected accuracy and
memory usage can solve the challenges of identifying super
hosts in a high-speed network environment.

There are many research efforts on super host identifica-
tion. The Online Streaming Module (OSM) combines a two-
dimensional bit arrays with some hash functions to identify
high-cardinality hosts [20]. The Random Aging Streaming
Filter improves OSM by using a random aging algorithm
[21]. However, both of them fail to support memory effi-
ciency and recover abnormal addresses. TheDouble Connec-
tion Degree Sketch is proposed to estimate host cardinality
and reconstruct addresses by using Chinese Remainder The-
orem [22]. The Vector Bloom Filter employs a Bit-Extraction
hash function to store cardinality information and uses string
mergence to recover addresses [23]. A noisy group testing-
based sketch is designed to identify high-cardinality and
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reconstruct abnormal hosts [24]. However, the memory
usage and reversible calculation of them are inefficient when
there is a large amount of abnormal addresses. SpreadSketch
equips each bucket of Count-Min sketch with a multiresolu-
tion bitmap to estimation host cardinality and then perform
super spreader identification [25]. But, it has some cardinal-
ity information loss. In summary, the main problem in the
field of super host identification is inefficient memory usage
and inaccurate estimation regarding host cardinality estima-
tion caused by skewed network traffic. Accurate host cardi-
nality estimation can be achieved by using a sketch with
large size. But, it is unnecessary to use large-sized counters
to monitor the hosts with low cardinality since it causes seri-
ous memory waste. Most of existing methods are unable to
balance their accuracy and memory usage. The Compact
Spread Estimator aims to solve this problemwith the help of
bit sharing [26]. But, memory sharing among multiple hosts
incurs inaccurate cardinality estimation and makes it diffi-
cult to reconstruct original super host addresses.

Practically, we face a number of challenges to solve the
above problems. First, the distribution of host cardinality in
real network traffic is highly skewed and dynamically
changed [4], [12], [26], [27], [28], as shown in Fig. 1. The
number of small-cardinality hosts is dominant while the
number of high-cardinality hosts constitutes a small per-
centage. Most of existing methods for estimating host cardi-
nality allocate counters of the same size to monitor these
two types of hosts. However, the counters used to monitor
low-cardinality hosts should be much smaller than those
used to monitor high-cardinality hosts. It is difficult to
determine a suitable counter size since inappropriate
counter size will lead to inaccuracy in estimating high-car-
dinality hosts and cause unnecessary memory consumption
in monitoring low-cardinality hosts. Inaccurate cardinality
estimation for high-cardinality hosts will directly affect the
accuracy of super host identification. Second, host cardinal-
ity is not additive, which is different from flow size that has
an additive property. For example, the destination cardinal-
ity of a host will only increase when it sends flows to a new
host. This characteristic of host cardinality makes separate
monitoring of high- and low-cardinality more difficult than
monitoring large- and small-flow in skewed traffic (e.g.,
[11], [29]). The third issue is the sketches cannot store any
information about original host addresses due to data com-
pression [14], [30]. However, after detecting super hosts, it
is necessary to take some mitigation approaches to release
detected anomalies. Therefore, it becomes essential to inno-
vate a novel sketch that can achieve memory efficiency, host
cardinality estimation accuracy and abnormal address
reconstruction efficiency at the same time. All of the above
expectations in super host identification motivate our work.

In this paper, we propose a novel extensible and reversible
sketch to solve the above challenges about identifying super
hosts facing skewed network traffic, named ExtendedSketch.
The extensibilitymakes ExtendedSketch feasible to be applied
into analyzing skewed big-volume traffic with high memory
efficiency and super host identification accuracy. At the
beginning, ExtendedSketch allocates a number of same-sized
counters tomonitor cardinalities of all hosts. Each counter is a
bit array that used to store communication information of
each host. With traffic coming in, the counters that record
high-cardinality hostswill be rapidly filled upwhile the coun-
ters that monitor low-cardinality hosts will not change much.
ExtendedSketch will increase the size of filled counters by
using an extension strategy with the purpose of dynamically
enlarging estimation ability of counters. Such the extension
strategy can transfer the recorded cardinality information
from old counters to new counters as in a lossless manner as
possible. In this way, ExtendedSketch not only solves the
problem of unnecessary memory usage but also keeps accu-
rate cardinality estimation. In addition to extensibility, Exten-
dedSketch also owns reversibility since it can reconstruct
addresses of super hosts in an accurate and efficient way by
applying Chinese Remainder Theorem. Thanks for the four
operations (namely update, estimation, merge, and reversible
calculation) defined on the basis of ExtendedSketch, we
design an accurate and fast method for identifying super
hosts. In particular, the main contributions of this paper can
be summarized as below:

1) We propose an extensible, mergeable and reversible
sketch to estimate host cardinality and further iden-
tify super hosts, named ExtendedSketch. It can
achieve memory efficiency, fast traffic processing,
and accurate reconstruction of addresses of super
hosts at the same time. These advanced properties
owned by ExtendedSketch have seldomly been inves-
tigated simultaneously in the literature.

2) We further propose an accurate and fast super host
identification method based on ExtendedSketch.

3) We provide a detailed theoretical analysis on Exten-
dedSketch with regard to its space and time com-
plexities and estimation operation.

4) We compare ExtendedSketch with several state-of-
the-art methods with regard to accuracy, efficiency,
and reversibility based on real world network traffic.
The experimental results show that ExtendedSketch
outperforms others as a whole.

The paper is organized as follows. Section 2 gives a brief
review on related work. In Section 3, we give an overview of
ExtendedSketch. It is a novel data structure for super host
identification originally proposed in this paper: its structure
is adaptively adjusted based on the distribution of host cardi-
nality, which is totally different from any existing sketches.
The formal analysis of ExtendedSketch is provided in Sec-
tion 4, followed by performance evaluation results and addi-
tional discussion on its effectiveness in Section 5. Finally,
conclusions are drawn in the last section.

2 RELATED WORK

There are two categories of methods widely applied in
super host identification: sampling-based and sketch-based.

Fig. 1. Host cardinality distribution of three traffic datasets. Each dot
denotes the number of flows having a certain host cardinality.
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Some studies have pointed out that sampling-based meth-
ods exhibit poor accuracy and high memory consumption
or storage cost [10], [31]. Sketch-based methods have been
attracting much attention in recent years due to their special
advantages over the sampling-based methods.

Zhao et al. [20] proposed the Online Streaming Module
(OSM), which includes a two-dimensional bit arrays and
some independent hash functions, to detect super spread-
ers/receivers. Each bucket in OSM stores a connection
between a source and a destination. To improve the accu-
racy of OSM, Yoon et al. [21] designed a Random Aging
Streaming Filters (RASF) to randomly reset some buckets
when the two-dimensional bit arrays become full. However,
these methods suffer from high memory overhead and fail
to reconstruct original IP addresses.

To make the sketch reversible, Wang et al. [22] designed
the Double Connection Degree Sketch (DCDS) that includes
multiple two-dimensional bit arrays to detect super hosts.
Qin et al. [32] proposed a bi-directional traffic model for
abnormal host behavior detection based on DCDS. The orig-
inal host addresses can be reconstructed based Chinese
Remainder Theorem. However, their methods suffer from
such problems as unnecessary memory usage and exhaus-
tive combination of possible addresses, which increase com-
puting overhead and false positives. Liu et al. [23] proposed
Vector Bloom Filter (VBF) by employing Bit-Extraction hash
functions. They divided addresses into eight parts and used
a number of newly designed hash functions to store traffic
information. A super host can be reconstructed based on
the overlapping of hashed bit strings. Liu et al. [24] pro-
posed a Fast Sketch (FS) inspired by considering high-cardi-
nality host identification as a channel-coding problem. An
abnormal address can be recovered by using a decoding
algorithm to process error-correcting codes. However, the
memory and reversible calculation overhead of these meth-
ods will become high when there is a large number of
abnormal hosts. Tang et al. [25] designed SpreadSketch (SS),
which is a combination of Count-min sketch with multireso-
lution bitmap, to perform network-wide super spreader
identification. Original IP address is stored in each bucket
of SS. But, SS faces under-estimation problem.

A tabulated comparison of ExtendedSketch with the pop-
ular sketches is presented in Table 1. We can see that Exten-
dedSketch satisfies the whole requirements in terms of
memory adaptability, distributed identification, identification

efficiency and reversible calculation while other sketches only
satisfy some of the requirements. The main difference of
ExtendedSketch from existing sketches is its extensible char-
acteristic. Compared to other sketches that use a fixed-size
structure, ExtendedSketch can adaptively adjust its memory
usage according to the changes of network traffic.When there
is no any high-cardinality host, ExtendedSketch accounts for
a very small memory to monitor host cardinalities. When
high-cardinality hosts appear, ExtendedSketch only increases
the memory sizes of some counters where high-cardinality
hosts locate. Its extensibility characteristic makes Extended-
Sketch very memory efficient while achieving accurate host
cardinality estimation at the same time. Therefore, Extended-
Sketch can be applied into resource-constrained traffic mea-
surement scenarios, e.g., ExtendedSketch is feasible to be
deployed in SDN switches.

3 OVERVIEW OF EXTENDEDSKETCH

In this section, we first describe the structure of Extended-
Sketch, which is a novel memory efficient sketch that used
for super host identification. Then, we define the operations
of ExtendedSketch, namely update operation, estimation
operation, merge operation and reversible calculation oper-
ation. At last, we give the accurate and fast methods of
super host identification according to the traffic information
recorded by ExtendedSketch. In Table 2, we list main nota-
tions used in this paper for the convenience of reading.

3.1 The Structure of ExtendedSketch

The structure of ExtendedSketch is shown in Fig. 2. It con-
sists of two parts: a core part that is used to measure the host
cardinality and an extended part that is applied to increase
record capacity of core part.

The core part of ExtendedSketch hasH two-dimensional bit
arrays with the size of w� pi, i ¼ 1; 2; . . . ;H, which is
denoted as ES ¼ ðES1; . . . ; ESHÞ. In ESi, ESi½j�½l� 2 f0; 1g
represents the value recorded in bucket ðj; lÞ, where j 2
f0; 1; . . .w� 1g and l 2 f0; 1; . . . ; pi � 1g. The column of ESi

is associated with a data-oriented hash function used to get
the column index, namely hiðxÞ � xmod pi, where p1; p2; . . . ;
pH are selected as pair-wise coprime numbers around an inte-
ger P according to the Chinese Remainder Theorem [14]. Each
column has an additional information triple (cd, et, flag),
where cd is the crowding degree that represents the propor-
tion of “1” in a column, et is the extension times that records

TABLE 1
Comparison of ExtendedSketch With Other Sketches

Method MA DI IE RC

OSM[20] No NS No No
RASF[21] No NS No No
DCDS[22] No Yes No Yes
VBF[23] No Yes No Yes
FS[24] No Yes No Yes
SS[25] No Yes No Yes
ExtendedSketch Yes Yes Yes Yes

Yes: support requirement; No: cannot support requirement;
NS: not strong to support requirement;
MA: Memory Adaptability; DI: Distributed Identification;
IE: Identification Efficiency; RC: Reversible Calculation

TABLE 2
Notations

Symbol Notion

H The number of two-dimensional bit arrays;
ESi The i-th two-dimensional bit arrays
w The number of rows of ESi

pi The number of columns of ESi

hi The i-th hash function
cd The crowding degree
et The extension times
" The predefined threshold
s=d The source/destination address
DCðsÞ The destination cardinality of s
v/v’ The number of zero-bit buckets
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the times of a column has been extended, and flag is a list that
records the next location (column number) in ESiþ1 that a
given address locates (there is no flag in ESH). A flag is
selected as a set in order to reduce false negative rate caused
by hash collisions. If a flag is a numeric value, it will be
replaced by the location of another source address when hash
collision occurs [14], [33]. The row hash functions that used to
get row index of core part are the same at the beginning,
namely fðxÞ � xmodw. They will be changed after adding
extended part.

The extended part is the extension of some columns of core
part. The crowding degrees of these columns are larger than
a predefined threshold. It means that such columns will be
fully filled with a large number of different destination
addresses. Accordingly, the modules of row hash function
associated with extended columns will be enlarged based
on extension times. For example, as described by the dotted
line in Fig. 2, we extend a column when its crowding degree
is large. The associated row hash function of that column
becomes f 0ðxÞ � xmod ð2wÞ, while the row hash functions
of other columns stay the same as initial one.

In this paper, we select the key as the combination of
source address and destination address for row hashing
and the key as source address for column hashing with the
purpose of measuring destination cardinality. They could
be changed according to different measurement purposes
and tasks. For example, we can estimate source cardinality
by setting the key of row hashing to the combination of
source address and destination address and the key of col-
umn hashing to destination addresses.

3.2 Operations of ExtendedSketch

There are four operations of ExtendedSketch designed to
measure host cardinality and identify super host in the con-
text of skewed network-wide traffic.

3.2.1 Update Operation

Update operation is used to record host cardinality informa-
tion. Initially, ExtendedSketch only has core part and all its
bits are zero. The additional information triple is also initial-
ized, namely we select cd ¼ et ¼ 0 as their initialized values
and set flag as an empty list. Suppose " is a predefined
threshold, t is a variable number, s=d is a source/destination
address. Given a flow ðs; dÞ, there are two cases for column
ESi½��½hiðsÞ�ð1 	 i 	 HÞ update:

(a) cd < " and et ¼ t: we set ESi½f 0ðs; dÞ�½hiðsÞ� ¼ 1,
where f 0ðs; dÞ � ðs; dÞmod ð2t � wÞ, as shown in
Fig. 2. Then, cd is updated and hiþ1ðsÞð1 	 i 	
H � 1Þ is added to flag.

(b) cd 
 " and et ¼ t: this condition means that
ESi½��½hiðsÞ� has been filled up now and needs to be
further extended. However, the hash collisions (e.g.,
some different source addresses are hashed into a
same column) can alsomake cd become large. To solve
this problem, the column extension will carry out
under the condition that the crowding degrees of all
columns that s locates over ES ¼ ðES1; . . . ; ESHÞ are
greater than or equal to ". In column extension, we first
enlarge the length of hiðsÞ from 2t � w to 2tþ1 � w and
set et þ¼ 1. Next, we should transfer the recorded
information from the old column to the extended col-
umn, which needs to be carefully performed in order
to preserve the cardinality information.

Herein, due to the randomness of hashing operation [34],
we introduce a transfer strategy to guarantee the lossless
transmission of cardinality information based on the follow-
ing lemma.

Lemma 1. Given two arbitrary integers i and a, if imod a ¼ b,
then imod ð2aÞ ¼ b or imod ð2aÞ ¼ bþ a.

Therefore, in column extension, the buckets where ðs; dÞ
locates in old column ðESi½��½hiðsÞ�, 1 	 i 	 HÞ will be trans-
ferred to the extended column (ES0

i½��½hiðsÞ�) with the follow-
ing strategy:

� for i ¼ 1; 3; 5; . . . , set ES0
i½f 0ðs; dÞ�½hiðsÞ� ¼ ESi½f 0ðs;

dÞ�½hiðsÞ�.
� for i ¼ 2; 4; 6; . . . , set ES0

i½f 0ðs; dÞ þ 2t � w�½hiðsÞ� ¼
ESi½f 0ðs; dÞ�½hiðsÞ�.

where f 0ðs; dÞ � ðs; dÞmod ð2t � wÞ. After transferring car-
dinality information, the bucket that ðs; dÞ locates in extended
column is updated as the steps described in condition (a).

Fig. 3 explicitly shows an example of extension process.
Suppose w is 4 (row hash function is fðxÞ � xmod4 at the
beginning), the stored value is 15 and H is 2. After column
extension, the new column has 8 buckets and the row hash
function becomes f 0ðxÞ � xmod8. We then transfer informa-
tion from the old column to the extended column using the
transfer strategy, as shown the dotted arrows in Fig. 3. How-
ever, the extension strategy may cause some estimation prob-
lems. For example, storing 15 in ES0

1½��½hiðsÞ� will increase an
extra one-bit and lead to over-estimation problem. We will
eliminate the estimation problems as much as possible by
using a specialized cardinality estimationmethod. The update
operation of ExtendedSketch is described in Algorithm 1.

Fig. 2. The structure of ExtendedSketch that includes a core part and an
extended part. In the ExtendedSketch, hiðsÞ and fðs; dÞ are used to
obtain column and row index. Each column is associated with an infor-
mation triple (cd, et, flag).

Fig. 3. The column extension process of ExtendedSketch.
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Algorithm 1. Update Operation of ExtendedSketch

Input: Initialized ES ¼ ðES1; . . . ; ESHÞ;
Output: ExtendedSketch that records traffic information;
1: New arriving flow ðs; dÞ;
2: for i ¼ 1 to H do:
3: hiðsÞ � smod pi;
4: if cdhiðsÞ 
 " and extension condition is satisfied:
5: extend column hiðsÞ;
6: transfer host cardinality information;
7: update the bucket that ðs; dÞ locates;
8: update cdhiðsÞ, et and flag;
9: else:
10: ESi½ðs; dÞmod ð2t � wÞ�½hiðsÞ� ¼ 1;
11: update cdhiðsÞ and flag;
12: end for

3.2.2 Estimation Operation

For estimating the destination cardinality of a given source
address s, we first find H columns in ES that s locates,
denoted as ESiðsÞ ¼ ESi½��½hiðsÞ�ð1 	 i 	 HÞ. There are two
cases over ESiðsÞð1 	 i 	 HÞ:
a) et ¼ 0: it means that ESiðsÞð1 	 i 	 HÞ has not been

extended. In order to eliminate the over-estimated
problem caused by hash collisions, we construct an
estimation bitmap by conducting bitwise-AND oper-
ation on each buckets of ESiðsÞð1 	 i 	 HÞ, namely
ESðsÞ¼ES1ðsÞ � � � � � ESHðsÞ. The destination cardi-
nality of s can be estimated by using probabilistic
counting algorithm [35]

DCðsÞ ¼ �w lnðv=wÞ; (1)

where v is the number of zero-bit buckets in ESðsÞ.
b) et ¼ tð
 1Þ: in this case, the column ESiðsÞð1 	 i 	

HÞ has been extended t times and their length
becomes to 2t � w. Taking bitwise-AND operation
on H extended columns is not suitable since this
leads to cardinality information loss. For example, in
Fig. 3, we will loss the information of 15 when using
bitwise-AND operation if it does not come again
after column extension. Moreover, the transfer strat-
egy may bring an extra one-bit value, which
increases the cardinality estimation results calcu-
lated by the probabilistic counting algorithm, e.g.,
the column ES0

1½��½hiðsÞ� in Fig. 3. With the purpose
of solving the estimation problems caused by t times
of column extension, we first calculate DCiðsÞ from
ESiðsÞð1 	 i 	 HÞ as

DCiðsÞ ¼ �w0 lnðv0=w0Þ þ �w
Xt

u¼1

2u�1; (2)

where w0 ¼ 2t � w is the length of extended ESiðsÞ, v0
is the number of zero-bit buckets in ESiðsÞ, � ¼
ln ð2� "Þ2=4ð1� "Þ. The first item in Formula (2) real-
izes the probabilistic counting algorithm [35], while
the second item stands for compensation for estima-
tion error caused by t times of column extension. The
theoretical analysis of estimation error is provided in
Section 4. Finally, the estimated cardinality of s is the

minimum value in the set DC1ðsÞ; . . . ;DCHðsÞf g.
Algorithm 2 describes the estimation operation of
ExtendedSketch.

Algorithm 2. Estimation Operation of ExtendedSketch

Input: ES ¼ ðES1; . . . ; ESHÞ, a source address s;
Output:DCðsÞ;
1: Find the columns that s locates over ES, namely

ESiðsÞ ¼ ESi½��½hiðsÞ�ð1 	 i 	 HÞ;
2: if etESiðsÞ ¼ 0ð1 	 i 	 HÞ:
3: ESðsÞ¼ES1ðsÞ � � � � � ESHðsÞ;
4: count the number of zero-bit buckets v in ESðsÞ;
5: DC sð Þ ¼ �w ln v=wð Þ;
6: else:
7: for i ¼ 1 to H do:
8: w0 ¼ 2etESiðsÞ � w;
9: calculate the number of zero-bit buckets v0;
10: CiðsÞ ¼ �w0 lnðv0=w0Þ þ �w

PetESiðsÞ
u¼1 2u�1;

11: end for
12: DC sð Þ ¼ minfDC1 sð Þ; . . . ; DCH sð Þg;

3.2.3 Merge Operation

ExtendedSketch is applicable in distributed collection of
network traffic, which is highly needed in network-wide
traffic measurement [36]. Give a set of T ExtendedSketches
with same H and pið1 	 i 	 HÞ, namely ðES1; . . . ; EST Þ,
where EStð1 	 t 	 T Þ is t-th ExtendedSketch. A merge
operation is performed as below:

ESi½j�½l� ¼ ES1
i ½j�½l� � � � � � EST

i ½j�½l�; (3)

where ESt
i ½j�½l�ð1 	 t 	 T Þ is the value of bucket ðj; lÞ of ith

bit arrays in ESt, � is the bitwise-OR operator.
Notably, we should normalize column length over

ðES1; . . . ; EST Þ before doing merge operation. A column
with a short length should be extended to the length of a
long column. For example, if et of ES1

1 ½��½l� is 2 and et of
ES2

1 ½��½l� is 3, ES1
1 ½��½l� should be extended for one time to

reach the same length as ES2
1 ½��½l�.

3.2.4 Reversible Calculation Operation

When applying ExtendedSketch to detect super hosts, abnor-
mal addresses can be accurately and effectively recovered by
using the reversible calculation operation. Suppose there are
some super spreaders and a number of abnormal columns
are detected overES. FromES1 toESH , we use the flag indica-
tor of abnormal columns, which stores column number of
next two-dimensional bit arrays, to generate column links
that reveal all locations of source addresses in ES. Given a
super spreader s, the location link fc1; . . . ; cHgwill be success-
fully generated by matching the flag indicator, where cið1 	
i 	 HÞ is calculated by hi sð Þ � ci mod pi. Based on Chinese
Remainder Theorem, the decimal representation of s can be
uniquely determinedwith s � PH

i¼1 QiQ
0
ici mod p, where p ¼

p1p2 . . . pH and it is greater than or equal to the size of source
address space, Qi ¼ p=pi, QiQ

0
i � 1mod pi, i ¼ 1; 2; . . . ;Hð Þ

[14], [33], [37]. By using the flag-based column combination,
the computational burden of reversible calculation and the
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false positive rate caused by unexpected column combina-
tionswill be highly reduced.

3.3 Super Host Identification

A super host refers to the host that holds high cardinality
(super spreader) or has a big change in cardinality between
two temporal intervals (super changer). In ExtendedSketch,
when choosing a small initial value of w, the extension times
of the columns that a super host locates are larger than the
columns that other hosts locate. Based on this principle, we
propose an efficient super host identification method. The
process of super host identification is shown in Fig. 4. We
first use the ExtendedSketch to collect network traffic and
then apply the proposed identification method to find out
super hosts. The original IP addresses of super hosts can be
easily constructed by using reversible calculation operation
of ExtendedSketch.

3.3.1 Super Spreader Identification

To detect super spreaders,we first identify abnormal columns
whose extension times are not equal to zero (et 6¼ 0) in the set
of ðES1; . . . ; ESHÞ. After that, a number of H lists that store
the numbers of abnormal column are obtained. By using flag-
based column combination, the link information of a host can
be easily generated. The host is considered as a super
spreader if its cardinality calculated based on estimation oper-
ation of ExtendedSketch is larger than a predefined threshold.

3.3.2 Super Changer Identification

For detecting super changers, we need to identify changed
columns between ExtendedSketches of two temporal inter-
vals. Therefore, we check the abnormal columns (where
et 6¼ 0) of the two ExtendedSketches and then calculate cardi-
nality difference of the abnormal columns between the previ-
ous and current temporal intervals. The host is considered as
a super changer if its cardinality difference is larger than a
predefined threshold.

Compared with other identification methods [20], [21],
[22], [23], [25], our method has the following advantages:

(a) high efficiency: it can directly identify super hosts by
checking the abnormal columns with extension
times. The proposed method conducts identification
with no need of traversing all the columns to esti-
mate host cardinality;

(b) high accuracy: the flag-based column combination
can reduce false positive caused by hash collisions
and wrong column combination. The reason is that
the link information that shows the locations of a
super host stored in ExtendedSketch can be success-
fully generated since it will simultaneously exhibit
abnormal behavior over ðES1; . . . ; ESHÞ.

4 THEORETICAL ANALYSIS

In this section, we provide a formal analysis of Extended-
Sketch. The analysis is completed under the condition that
the number of arrays is H, the number of columns in each
array is P, the counter size in each bucket is K, the counter
size in core part of ExtendedSketch is w (much smaller that
K), the domain size of IP addresses is Ej j, the number of
super hosts is N, the average column extension times of N
super hosts in ExtendedSketch is a.

4.1 Analysis on Space and Time Complexities

Table 3 provides the comparison of ExtendedSketch with
other sketches regarding to space and time complexities.
We assume that the counters contained in bit arrays have
Oð1Þ time complexity.

Memory Usage. In core part of ExtendedSketch, there are
nearly wPH buckets. The extended part has ð2a � 1ÞwHN
buckets. Each bucket in ExtendedSketch holds one-bit
value. Thus, the memory usage of ExtendedSketch is
OðwHðP þ 2aNÞÞ. Because w is far smaller than P and a is
always a small integer, ExtendedSketch has the smallest
memory usage than other sketches, as indicated in Table 3.

Update Time. Updating a flow needs H+1 hash operations
and then accesses H buckets over ES. Thus, the total update
time complexity of ExtendedSketch is OðHÞ, which is the
same as DCDS and SS.

Identification Time. ExtendedSketch traverses all addi-
tional information triples to find out abnormal columns that
super hosts locate. Then, it accesses H columns to calculate
the cardinality of each super host. Thus, the identification
time of ExtendedSketch is OðNHÞ, which is the lowest since
N is far smallest than P .

Fig. 4. The process of super host identification.

TABLE 3
Theoretical Comparison of ExtendedSketch With Other Sketches

Method MU UT IT RCT

DCDS [22] OðKHP Þ OðHÞ OðPHÞ OðNHÞ
VBF [23] OðKP log log Ej jÞ Oðlog log Ej jÞ OðP log log Ej jÞ OðN log log Ej jÞ
FS [24] OðKHlog Ej j

P Þ OðHlog Ej j
P Þ OðP log Ej j

P Þ Oðlog Oð1Þ Ej j
P þHÞ

SS [25] OððK þ log Ej j þ log log Ej jÞHP Þ OðHÞ OðPHÞ Record IP addresses

ExtendedSketch OðwHðP þ 2aNÞÞ OðHÞ OðNHÞ OðHÞ
MU: Memory Usage; UT: Update Time; IT: Identification Time; RCT: Reversible Calculation Time.
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Reversible Calculation Time. For each super host, Extended-
Sketch reversely computes its original address based on Chi-
nese Remainder Theorem. The complexity of flag-based
reversible calculation operation depends on the number of bit
arrays H. Therefore, the reversible calculation complexity of
ExtendedSketch is OðHÞ, which is much smaller than DCDS,
VBF and FS. Although SS finds out abnormal addresses with-
out reversible calculation, recording IP addresses leads to extra
memory usage and only part of the addresses can be recorded.

4.2 Analysis of Estimation Operation of
ExtendedSketch

The estimation operation of ExtendedSketch is based on the
probabilistic counting algorithm, which is widely used in
many schemes for host cardinality estimation, e.g., [20],
[22], [23]. Therefore, the analysis processes of Formula (1)
with regard to mean and variance are similar to [22] and
[23], which we omit here. In this subsection, we focus on the
analysis of Formula (2). We first study the estimation error
caused by column extension, as discussed in Theorem 1.

Theorem 1. For a column with a number of t times column
extension, its estimation error in terms of host cardinality cal-
culation is ln ð2�"Þ2

4ð1�"Þw
Pt

u¼1 2
u�1.

Proof. Column ESiðsÞ with an initialized length w will be

extended when the number of bits in it reaches "v. At this

moment, the cardinality of s estimated from ESiðsÞ is

�w lnð1� "Þ. The extended ESiðsÞ, denoted as ESiðsÞ½1�,
has 2w buckets after the first time column extension. Since

the number of bits in ESiðsÞ½1� is the same as in ESiðsÞ, the
estimated host cardinality calculated from ESiðsÞ½1� is

�2w ln ð2�"Þ
2 . Hence, the estimation error caused by the first

time extension is w ln ð2�"Þ2
4ð1�"Þ . In a similar way, ESiðsÞ½1�will

be further extended to ESiðsÞ½2� if the number of bits in

ESiðsÞ½1� is 2"v. The estimation error between ESiðsÞ½1�
andESiðsÞ½2� is 2w ln ð2�"Þ2

4ð1�"Þ . The extension processwill con-

tinue as long as the extension condition is satisfied. Finally,

the total estimation error of ESiðsÞ caused by t times col-

umn extension is the sumof estimation error in each exten-

sion namely ln ð2�"Þ2
4ð1�"Þw

Pt
u¼1 2

u�1. tu
Therefore, as indicated in Formula (2), the estimated host

cardinality of an extended column contains the cardinality
estimated by the probabilistic counting algorithm and the
cardinality that is lost during column extension process.

Fig. 5 compares the accuracy of estimation operation of
ExtendedSketchwith andwithout error compensation, where
x-coordinate is the estimated host cardinality and y-coordi-
nate is the actual cardinality (we select the host whose cardi-
nality is in the scope of 150�3000 as examples). The diagonal
line in the Fig. 5 is used to evaluate the estimation results. The
closer a point is located to the line, the closer the estimated car-
dinality to its actual value is. As we can see from the figure,
the performance of cardinality estimation of ExtendedSketch
is greatly improved by compensating the estimation error
caused by column extension.

5 EXPERIMENTAL STUDY AND PERFORMANCE

EVALUATION

We conducted a series of experiments to evaluate the per-
formance of ExtendedSketch by comparing with other state-
of-the-art sketches based on real world traffic data. In this
section, we first discuss the experimental settings. Next,
some evaluations of super host identification are reported.
All experiments were implemented with Python program-
ming language on a MacOS with an Intel Core i5 CPU @
2.3GHZ and 8.0GB RAM. We have released the source code
of ExtendedSketch at GitHub [38].

5.1 Experimental Setting

5.1.1 Evaluation Metrics

We consider the following evaluation metrics:

� Precision Rate (PR): the ratio of true super hosts
identified over all super hosts detected;

� Recall Rate (RR): the ratio of true super hosts identi-
fied over all true super hosts;

� F1 score: 2� PR�RR=ðPRþRRÞ;
� Average Relative Error (ARE): the relative error of

host cardinality, namely 1
n

Pn
i¼1 jd̂i � dij=di, where d̂i

is the estimated cardinality, di is the true cardinality
and n is the number of hosts;

� Throughput: the number of flows processed per
second;

� Time consumption: the time spent on super host
identification and reversible calculation of super
host addresses.

5.1.2 Datasets Description

In our experiments, we used three 10-minutes traffic traces
selected from CAIDA equinix-nyc and equinix-chicago [39],
referred to CAIDA1, CAIDA2, and CAIDA3. Each trace con-
tains ten temporal intervals with one-minute-long. All
traces are converted from packet-level into flow-level by
using CICFlowMeter [40]. Table 4 shows the detailed infor-
mation of the three traffic traces. In this table, #Flows
denotes the numbers of different flows; #SIP denotes the
numbers of different source addresses; #SS is the numbers
of super spreaders; T_SS is the threshold that used to iden-
tify super spreaders. We first set the threshold in each tem-
poral interval as 0.03% of the total destination cardinality.
T_SS is the average value of these thresholds. #SC is the
number of super changers; T_SC is the threshold that used
to identify super changers. We set the threshold as 0.02% of

Fig. 5. Comparison of two estimation operations of ExtendedSketch
based on CAIDA1 dataset. (a) Estimation without error compensation;
(b) Estimation with error compensation.
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the total cardinality changes between two adjacent temporal
intervals. T_SC is the average of these values.

5.1.3 Comparative Analysis

We compared ExtendedSketch with several existing
sketches that are used to identify super host, including Ran-
dom Aging Streaming Filters (RASF) [21], Double Connec-
tion Degree Sketch (DCDS) [22], Vector Bloom Filter (VBF)
[23] and SpreadSketch (SS) [25]. All of them have a good
performance in super host identification. We set the number
of two-dimensional bit arrays as 4 in ExtendedSketch and
DCDS and as 5 in VBF. All comparison work was operated
under the same memory size by tuning the number of

columns and rows. For ExtendedSketch, we allocated 90%
of available memory usage for core part and 10% of available
memory usage for extended part.

5.2 Performance Evaluation

5.2.1 Host Cardinality Estimation

Fig. 6 shows ARE values of all sketches on three traffic traces
versus memory usage. The experimental results show that
ExtendedSketch achieves more accurate cardinality estima-
tion for super hosts than other sketches with a small mem-
ory. When allocating 0.25MB memory to all sketches, the
ARE of ExtendedSketch is about 1.4, 4.78, 4.82, and 7.22 times
lower than SS, RASF, DCDS, and VBF on CAIDA1 (similar
observations on other traffic traces). For RASF, DCDS, and
VBF, small memory limits the length of columns that source
addresses are hashed into and further negatively impacts the
maximum estimation capability of the probabilistic counting
algorithm used to estimate host cardinality. Such a situation
provides accurate estimation on low-cardinality hosts but
inaccurate to monitor high-cardinality hosts. That is to say,
these three sketches require long enough columns to com-
plete accurate estimation for both high- and low- cardinality

TABLE 4
Traffic Traces Used in Experiments (M: Million)

Trace #Flows #SIP #SS T_SS #SC T_SC

CAIDA1 16.31M 0.76M 199 379 127 193
CAIDA2 14.31M 0.73M 145 313 65 142
CAIDA3 13.62M 1.95M 42 182 12 72

Fig. 6. Experimental results of host cardinality estimation. (a) CAIDA1; (b) CAIDA2; (c) CAIDA3.

Fig. 7. Experimental results of super spreader identification. (a) CAIDA1; (b) CAIDA2; (c) CAIDA3.
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hosts. For SS, its limited length of columns causesmuch hash
collisions, so that some host cardinality information is lost.
As we can see from Fig. 6, the values of AREs of RASF,
DCDS, VBF, and SS continuously decrease as the memory
size increases. In contrast, ExtendedSketch has no strict
requirement on the length of columns since it can dynami-
cally enlarge the length according to the cardinality distri-
bution of network traffic.

In summary, through comparison, we can see that Exten-
dedSketch has the capability of high-cardinality host moni-
toring and achieves memory efficiency at the same time.

5.2.2 Super Host Identification

Figs. 7 and 8 show the results of super host identification of
all compared sketches in terms of all traffic traces versus the
memory usage. We obtain some observations from these
figures.

First, the results clearly show that ExtendedSketch per-
forms much better in super spreader and super changer
identification than other sketches when the memory is tight
(from 0.25MB to 1.25MB). For example, when allocating
0.25MB to all sketches, the F1 score of ExtendedSketch for
super spreader identification is about 2.62, 4.09, 8.79, and
16.8 times higher than DCDS, SS, VBF and RASF on
CAIDA1, respectively. Notably, similar results are achieved
regarding other traffic traces. It always obtains higher preci-
sion, recall and F1 score than all benchmark sketches at the
same time over all traffic traces. Thanks to the extension
strategy, ExtendedSketch can dynamically increase the size
of each counter according to the cardinality of each host.
This property allows us to allocate a large number of col-
umns (P) and a small number of rows (w) under a given
memory size. Therefore, the probability of hash collisions
that different source addresses are hashed into one column
is reduced. Moreover, the flag-based reversible calculation

method further decreases false positives caused by wrong
column combination. All these advantages make Extended-
Sketch outperform in super host identification.

Second, RASF, DCDS, VBF and SS have low precision in
both super spreader and super changer detection under a
small memory, which means that they report many benign
hosts as abnormal. With insufficient number of columns,
hash collisions occurred with high probability. Such a situa-
tion makes RASF, DCDS, VBF and SS return a lot of false
positives, which reduces the precision of their identification.
Moreover, wrong column combination in DCDS and unex-
pected IP merging in VBF also generate false positives. For
RASF without enough memory support, it needs to execute
an aging algorithm frequently, which decreases the accu-
racy of host cardinality estimation and further highly
degrades super host identification.

Third, although ExtendedSketch competes SS and VBF
with regard to recall in super spreader identification, the lat-
ter two have much lower precision than ExtendedSketch,
especially when memory size is limited.

In summary, from the comparison results, we can con-
clude that ExtendedSketch can accurately identify super
hosts by using a tight memory size.

Fig. 8. Experimental results of super changer identification. (a) CAIDA1; (b) CAIDA2; (c) CAIDA3.

Fig. 9. Throughput of all sketches.
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5.2.3 Effectiveness

Fig. 9 demonstrates the throughput of all compared
sketches under 1MB memory size. VBF has the highest
throughput since it updates a flow by using two module
hash calculations and one Bit-Extraction calculation, while
other sketches need multiple hash calculations to find the
column and the row that a source address locates. RASF has
the lowest throughput since it needs to traverse all buckets
to count the percentage of bits when updating each flow.
From Fig. 9, we can see that ExtendedSketch achieves better
throughput than SS and DCDS. Although ExtendedSketch
has a lower throughput than VBF, it is more efficient in
terms of memory consumption and more accurate for super
host identification than VBF and other sketches, as illus-
trated in Figs. 6, 7, and 8.

Fig. 10 shows the time consumption of super host detec-
tion and reversible calculation of super host addresses. We
fix the memory size of all sketches as 1MB and provide the
average results over all temporal intervals on all traffic
traces. Notably, we only provide reversible calculation
time of DCDS, VBF and ExtendedSketch since RASF is
irreversible and SS stores original addresses. As illustrated
in Fig. 10, both detection time and reversible calculation
time of ExtendedSketch are much lower than other
sketches. In detection stage, ExtendedSketch only checks
the additional information associated with columns and

finds out abnormal columns with large extension times to
perform further judge, while other sketches traverse each
column or bucket when conducting an estimation opera-
tion. For reversible calculation, ExtendedSketch is about
120.4 and 26833.3 (95 and 27573.8) times faster than VBF
and DCDS with regard to reconstructing addresses of
super spreaders (super changers). The reason is DCDS
generates large amount of redundant column combina-
tions, which highly slows down its reversible calculation.
VBF needs to operate several string mergences to obtain
an original address. In ExtendedSketch, the flag-based
reversible calculation method can exactly guide column
combination so as to reduce the computational burden of
reversible calculation.

In short, ExtendedSketch has low time overhead when
detecting super hosts and reconstructing original IP addresses
of super hosts.

5.2.4 Memory Efficiency

Table 5 shows the memory usage of all compared sketches
when achieving same performance on CAIDA1 (the results
are similar for other traces). The results obviously indicate
that ExtendedSketch obtains good performance on host car-
dinality measurement and super host identification with
only a small amount of memory.

Fig. 11 shows the memory usage of ExtendedSketch on
CAIDA1 (similar results on other traces). We allocate mem-
ory size as 1MB and record memory usage at end of each
time interval. Therefore, the memory usage of core part of
ExtendedSketch is 0.9MB and the memory usage of extended
part is up to 0.1MB. As indicated in the figure, Extended-
Sketch has the ability of adaptively adjusting memory usage
according to the distribution of network traffic. Such the
property makes ExtendedSketch can achieve high perfor-
mance while using memory as small as possible.

Fig. 10. Time consumption of all sketches. (a) CAIDA1; (b) CAIDA2;
(c) CAIDA3.

TABLE 5
Memory Usage of All Sketches When Achieving Same Performance on CAIDA1

Methods ARE=0.08 Pre_SS=90% Rec_SS=95% F1_SS=90% Pre_SC=90% Rec_SC=80% F1_SC=80%

RASF 3.25MB 3.75MB 2.75MB 3.25MB 3.75MB 3.00MB 3.00MB
DCDS 2.00MB 2.75MB 2.50MB 2.75MB 3.00MB 2.25MB 2.50MB
VBF 1.25MB 1.75MB 1.75MB 2.25MB 2.50MB 2.75MB 2.75MB
SS 0.75MB 1.25MB 1.25MB 1.50MB 1.75MB 2.50MB 2.25MB
ExtendedSketch 0.25MB 0.75MB 0.25MB 0.75MB 0.75MB 0.50MB 0.75MB

Pre_SS/Rec_SS/F1_SS : the precision/recall/F1 Score of super spreader identification
Pre_SC/Rec_SC/F1_SC : the precision/recall/F1 Score of super changer identification

Fig. 11. Memory usage of ExtendedSketch on CAIDA1 when allocating
1MB memory size.
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6 CONCLUSION

In this paper, we proposed ExtendedSketch, a novel extensi-
ble and reversible data structure, for host cardinality esti-
mation. It aims to achieve accurate super host identification
and memory efficiency at the same time, which has been sel-
domly investigated in the past literature. We evaluated the
performance of ExtendedSketch based on three real traffic
traces. The experimental results show that, under the same
memory allocation, ExtendedSketch highly outperforms
other sketches in terms of host cardinality estimation accu-
racy, super host identification accuracy and efficiency, and
abnormal addresses reconstruction efficiency. That is to say,
ExtendedSketch requires only a limited amount ofmemory to
achieve high performance, which save resources and compu-
tation consumption. All these advantages of ExtendedSketch
are highly expected in practical super host identification.
Regarding future work, we will integrate ExtendedSketch
into a decentralized network trust evaluation framework in
order to support trustworthy networking in 6G.
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