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Autonomous Tracking and State Estimation With
Generalized Group Lasso

Rui Gao , Simo Särkkä , Senior Member, IEEE, Rubén Claveria-Vega, and Simon Godsill

Abstract—We address the problem of autonomous tracking
and state estimation for marine vessels, autonomous vehicles, and
other dynamic signals under a (structured) sparsity assumption.
The aim is to improve the tracking and estimation accuracy
with respect to the classical Bayesian filters and smoothers.
We formulate the estimation problem as a dynamic generalized
group Lasso problem and develop a class of smoothing-and-
splitting methods to solve it. The Levenberg–Marquardt iterated
extended Kalman smoother-based multiblock alternating direc-
tion method of multipliers (LM-IEKS-mADMMs) algorithms
are based on the alternating direction method of multipliers
(ADMMs) framework. This leads to minimization subproblems
with an inherent structure to which three new augmented recur-
sive smoothers are applied. Our methods can deal with large-scale
problems without preprocessing for dimensionality reduction.
Moreover, the methods allow one to solve nonsmooth nonconvex
optimization problems. We then prove that under mild condi-
tions, the proposed methods converge to a stationary point of the
optimization problem. By simulated and real-data experiments,
including multisensor range measurement problems, marine ves-
sel tracking, autonomous vehicle tracking, and audio signal
restoration, we show the practical effectiveness of the proposed
methods.

Index Terms—Alternating direction method of multipliers
(ADMMs), autonomous tracking, group Lasso, Kalman smoother
(KS), sparsity, state estimation.

I. INTRODUCTION

AUTONOMOUS tracking and state estimation problems
are active research topics with many real-world applica-

tions, including intelligent maritime navigation, autonomous
vehicle tracking, and audio signal estimation [1]–[5]. The
aim is to autonomously estimate and track the state (e.g.,
position, velocity, or direction) of the dynamic system using
imperfect measurements [6]. A frequently used approach for
autonomous tracking and estimation problems is based on
Bayesian filtering and smoothing. When the target dynamics
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and observation models are linear and Gaussian, the Kalman
smoother (KS) [1], [7] provides the optimal Bayesian solu-
tion, which coincides with the optimal minimum mean square
error estimator in that case. In the case of nonlinear dynamic
systems, the iterated extended KS (IEKS) [8]–[10] makes use
of local affine approximations by means of a Taylor series
for the nonlinear functions, and then iteratively carries out
KS. Sigma-point-based smoothing methods [11], [12] employ
sigma-points to approximate the probability density of the
states, which can preserve higher order accuracy than IEKS.
Random sampling-based filters, such as particle filters [1],
[13]–[15], can be used to deal with nonlinear tracking situ-
ations involving potentially arbitrary nonlinearities, noise, and
constraints. Although these trackers and estimators are capable
of utilizing the measurement information to obtain the esti-
mates, they ignore sparsity dictated by the physical attributes
of dynamic systems.

The motivation for our work comes from the following real-
world applications. One significant application is marine vessel
tracking [5], [6]. Vessels are frequently pitching and rolling
on the surface of the ocean, which can be modeled as spar-
sity in the process noise. Our methodology is also applicable
to autonomous vehicle tracking, which enables a vehicle to
autonomously avoid obstacles and maintain safe distances to
other vehicles. In the presence of many sudden stops (i.e.,
velocities are zero), the tracking accuracy can be improved
by employing sparsity [16]. Other examples of tracked targets
include robots [9] and unmanned aerial vehicles [17]. Another
practical application is audio signal restoration, where, typi-
cally, only a few time–frequency elements are expected to be
present and, thus, sparsity is an advisable assumption [18].
For example, the Gabor synthesis representation with sparsity
constraints has proven to be suitable for audio restoration [19].
Similar problems can also be found in electrocardiogram
(ECG) signal analysis [20] and automatic music transcrip-
tion [21]. Hence, computationally effective sparsity modeling
methods are in demand.

Since sparsity may improve the tracking and estima-
tion performance, there is a growing amount of literature
that proposes sparse regularizers, such as the Lasso (i.e.,
the least absolute shrinkage and selection operator or L1-
regularization) [22], [23] or total variation (TV) [24], [25]
for these applications. The existing methods for sparse
tracking and estimation can be split into two broad cate-
gories: 1) robust smoothing approaches and 2) optimization-
based approaches. The former approaches merge filtering
and smoothing with L1-regularization. For instance, the
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modified recursive filter-based compressive sensing meth-
ods were developed in [26]–[29]. An L1-Laplace robust KS
was presented in [30]. Using both sparsity and dynam-
ics information, a sparse Bayesian learning framework was
proposed in [31]. The latter approaches formulate the entire
tracking and state estimation problem as an L1-penalized
minimization problem and then apply iterative algorithms to
solve the minimization problem [16], [32]–[36]. While these
L1-penalized estimators offer several benefits, they penalize
individual elements of the state vector or process noise instead
of groups of elements in them.

Recently, there have been important advances in the struc-
tured sparsity methodology for collision avoidance [37], [38];
path-following and tracking [39], [40]; and visual track-
ing [41], [42]. In [43], a discriminative supervised hashing
method was proposed for object tracking tasks. An adap-
tive elastic echo state network was developed for multivariate
time-series prediction in [44]. The work in [45] formulated
a moving tracking problem with L2-norm constraints and
then introduced a temporal consistency dictionary learning
algorithm. However, the methods lack strong convergence
and performance guarantees, particularly when the objective
becomes nonconvex. Moreover, relatively, few methods exist
for incorporating structured sparsity into autonomous track-
ing and state estimation problems. Taking these developments
into consideration, the main goal here is to develop new
efficient methods for regularized autonomous tracking and
estimation problems, which allow for group Lasso type of
sparseness assumptions on groups of state or process noise
elements.

When we formulate a regularized autonomous tracking and
state estimation problem as a generalized L2-minimization
problem (also called the dynamic generalized group Lasso
problem), the resulting problem is difficult to solve due
to its nonsmoothness and/or nonconvexity. Splitting-based
optimization methods [46]–[48], such as multiblock alternating
direction method of multipliers (ADMMs) [47], are methods
that can tackle this kind of problem. One advantage of these
methods is that they decompose the original problem into
a sequence of easier subproblems. Although these methods
can directly work on the original optimization problem, such
direct use ignores the inherent structure induced by the implied
Markovian structure in the optimization problem. In this arti-
cle, we propose a class of efficient smoothing-and-splitting
methods that outperform the classical optimization methods
in terms of computational time due to the leveraging of the
Markovian structure.

In this article, we focus on autonomous tracking and state
estimation problems with sparsity-inducing priors. Our first con-
tribution is to provide a flexible formulation of the dynamic
generalized group Lasso problems arising in autonomous track-
ing and state estimation. Special cases of the formulation are
Lasso, isotropic TV, anisotropic TV, fused Lasso, group Lasso,
and sparse group Lasso. Meanwhile, the formulation can cope
with sparsity on the process noise or the state in dynamic
systems. Since the resulting optimization problems are nons-
mooth, possibly nonconvex, and large-dimensional, our second
contribution is to provide a class of the smoothing-and-splitting

methods to address them. We develop the new KS-mADMM,
Gauss–Newton IEKS-mADMM (GN-IEKS-mADMM), and
Levenberg–Marquardt IEKS-mADMM (LM-IEKS-mADMM)
methods, which use augmented recursive smoothers to solve
the primal subproblems in the mADMM iterations. As a third
contribution, we prove that under mild conditions, the proposed
methods converge to a stationary point. Our fourth contribution
is to apply the proposed methods to real-world applications
of marine vessel tracking, autonomous vehicle tracking, and
audio signal restoration.

The remainder of this article is structured as follows. In
Section II, we formulate the sparse autonomous tracking and
state estimation problem as a generalized L2-minimization
problem. Particularly, we present a broad class of regu-
lariser configurations parameterized by sets of matrices and
vectors. We introduce the batch tracking and estimation meth-
ods in Section III and present three augmented recursive
smoothing methods in Section IV. In Section V, we establish
the convergence. In Section VI, we report numerical results
on simulated and real-life datasets. Section VII draws the
concluding remarks.

The notation is as follows. Matrices X and vectors x are
indicated in boldface. (·)� represents the transposition and
(·)−1 represents the matrix inversion. The R-weighted norm
of x is denoted by ‖x‖R =

√
x�Rx. ‖x‖1 = ∑ |xi| denotes

the L1-norm and ‖x‖2 =
√∑

i x2
i denotes the L2-norm. Xg,t is

the (g, t):th element of matrix X, and x(k) denotes the value
of x at the k:th iteration. vec(·) represents a vectorization
operator, diag(·) represents a block-diagonal matrix opera-
tor with the elements in its argument on the diagonal, and
x1:T = vec(x1, . . . , xT). ∂φ(x) denotes a subgradient of φ. Jφ

is the Jacobian of φ(x). δ+(A) denotes the smallest eigenvalue
of A. p(x) denotes the probability density function (pdf) of x
and N (x |m, P) denotes a Gaussian pdf with mean m and
covariance P evaluated at x.

II. PROBLEM STATEMENT

Let yt ∈ R
Ny be a measurement of a dynamic system and

xt ∈ R
Nx be an unknown state (sometimes called the source

or signal). The state and measurement are related according
to a dynamic state-space model of the form

xt = at(xt−1)+ qt, yt = ht(xt)+ rt (1)

where ht : R
Nx → R

Ny and at : R
Nx → R

Nx are the
measurement and state transition functions, respectively, and
t = 1, . . . , T is the time step number. The process and
measurement noises qt ∼ N (0, Qt) and rt ∼ N (0, Rt) are
assumed to be zero-mean Gaussian with covariances Qt and
Rt, respectively. The initial condition at t = 1 is given by
x1 ∼ N (m1, P1). A particular special case of (1) is an affine
Gaussian model by

at(xt−1) = At xt−1 + bt, ht(xt) = Ht xt + et (2)

where At ∈ R
Nx×Nx and Ht ∈ R

Ny×Nx are the transition and
measurement matrices, and bt and et are bias terms.

The goal here is to obtain the “best estimate” of x1:T
from imperfect measurements y1:T . For computing x1:T with
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TABLE I
EXAMPLES OF SPARSITY-PROMOTING REGULARISERS THAT ARE

INCLUDED IN THE PRESENT FRAMEWORK

TABLE II
FLEXIBLE SPARSITY ASSUMPTIONS BY SELECTING Bt AND dt

sparsity-inducing priors, we define a set of matrices {Gg,t ∈
R

Pg×Nx | g = 1, . . . , Ng}, matrices Bt, and vectors dt, for
t = 1, . . . , T , and impose sparsity on the groups of elements
of the state or the process noise. Mathematically, the problem
of computing the state estimate x�

1:T is formulated as

x�
1:T = arg min

x1:T

1

2

T∑

t=1

‖yt − ht(xt)‖2R−1
t

+ 1

2

T∑

t=2

‖xt − at(xt−1)‖2Q−1
t
+ 1

2
‖x1 −m1‖2P−1

1

+
T∑

t=1

Ng∑

g=1

μ
∥
∥Gg,t(xt − Bt xt−1 − dt)

∥
∥

2 (3)

where μ > 0 is a penalty parameter.
A merit of our formulation is its flexibility, because the

selections of Gg,t, Bt, and dt can be adjusted to represent
different regularisers. With matrix Gg,t, the formulation (3)
accommodates a large class of sparsity-promoting regularisers
(e.g., Lasso, isotopic TV, anisotopic TV, fused Lasso, group
Lasso, and sparse group Lasso). A list of such regularisers is
reported in Table I. Meanwhile, the formulation (3) also allows
for putting sparsity assumptions on the state or the process
noise by different selections of Bt and dt (see Table II).

A simple, yet illustrative, example can be found in
autonomous vehicle tracking. When there are stop-and-go
points (e.g., vehicle stops) in the data, the zero-velocity and
zero-angle values at those time points can be grouped together
via the L2-norm and Gg,t. That means three elements can be
forced to be equal to 0 at the same time. Another application
is in audio restoration, where the matrices Gg,t are defined

so that only two elements of the state xt—corresponding to
the real and imaginary parts of a synthesis coefficient—are
extracted at a time step. Thus, these pairs, which are associ-
ated with the same time–frequency basis functions, tend to be
nonzero or 0 together.

Problem (3) is more difficult to solve than the common
L2-minimization problem (which corresponds to Gg,t = I,
where I is an identity matrix) or the squared L2-minimization
problem (the problem with ‖Gg,t(·)‖22), since the penalty term
‖Gg,t(·)‖2 is nonsmooth. Furthermore, Gg,t is possibly rank-
deficient matrix. In this article, we first derive batch tracking
and estimation methods, which are based on the batch compu-
tation of the state sequence. To speed up the batch methods,
we then propose augmented recursive smoother methods for
the primal variable update.

III. BATCH TRACKING AND ESTIMATION METHODS

In this section, we introduce the multiblock ADMM
(mADMM) framework. Based on this framework, we derive
batch algorithms for solving the regularized tracking and state
estimation problem.

A. General Multiblock ADMM Framework

The methods that we develop are based on the
mADMM [47]. The mADMM provides an algorithmic frame-
work that is applicable to problems of the form (3), and it can
be instantiated by defining the auxiliary variables and their
update steps. We introduce auxiliary variables vt and wg,t,
g = 1, . . . , Ng, t = 1, . . . , T , and then build the following
constraints:

xt − Bt xt−1 − dt = vt

w1,t = G1,t vt

...

wNg,t = GNg,t vt. (4)

Note that in (4), we could alternatively introduce auxiliary
variables wg,t = Gg,t(xt − Bt xt−1 − dt), but this replace-
ment would require Gg,t to be invertible when using the
augmented recursive smoothers later on. To avoid such restric-
tions, we employ variables vt and wg,t to build the more
general constraints in this article.

For simplicity of notation, we denote wt =[
w�1,t, . . . , w�Ng,t

]�
and Gt =

[
G�1,t, . . . , G�Ng,t

]�
, and

then solve (3), using an equivalent constrained optimization
problem

min
x1:T ,w1:T ,

v1:T

1

2

T∑

t=1

‖yt − ht(xt)‖2R−1
t
+

T∑

t=1

Ng∑

g=1

μ
∥
∥wg,t

∥
∥

2

+ 1

2

T∑

t=2

‖xt − at(xt−1)‖2Q−1
t
+ 1

2
‖x1 −m1‖2P−1

1

s.t.

[
xt − Bt xt−1 − dt

wt

]

=
[

I
Gt

]

vt, t = 1, . . . , T. (5)
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The variables x1:T , w1:T , and v1:T can be handled by defining
the augmented Lagrangian function

Lγ

(
x1:T , w1:T , v1:T ; η1:T

)
� 1

2

T∑

t=1

‖yt − ht(xt)‖2R−1
t

+ 1

2

T∑

t=2

‖xt − at(xt−1)‖2Q−1
t
+ 1

2
‖x1 −m1‖2P−1

1

+
T∑

t=1

Ng∑

g=1

μ
∥
∥wg,t

∥
∥

2 +
T∑

t=1

η�t
([

ut

wt

]

−
[

I
Gt

]

vt

)

+
T∑

t=1

γ

2

∥
∥
∥
∥

[
ut

wt

]

−
[

I
Gt

]

vt

∥
∥
∥
∥

2

2
(6)

where ut = xt−Bt xt−1−dt, ηt ∈ R
(Nx+Pg×Ng) is a Lagrangian

multiplier and γ > 0 is a penalty parameter.
The mADMM framework minimizes the function Lγ by

alternating the x1:T -minimization step, the w1:T -minimization
step, the v1:T -minimization step, and the dual variable η1:T
update step. Given (x(k)

1:T , w(k)
1:T , v(k)

1:T , η
(k)
1:T), the iteration of

mADMM has the following steps:

x(k+1)
1:T = arg min

x1:T

T∑

t=1

1

2
‖yt − ht(xt)‖2R−1

t
+ 1

2
‖x1 −m1‖2P−1

1

+ 1

2

T∑

t=2

‖xt − at(xt−1)‖2Q−1
t

+ γ

2

T∑

t=1

∥
∥
∥
∥
∥

ut − v(k)
t + η

(k)
t

γ

∥
∥
∥
∥
∥

2

2

(7a)

w(k+1)
t = arg min

wt

Ng∑

g=1

μ
∥
∥wg,t

∥
∥

2 +
γ

2

∥
∥
∥
∥
∥

wt −Gtv
(k)
t +

η(k)
t

γ

∥
∥
∥
∥
∥

2

2

(7b)

v(k+1)
t = arg min

vt

γ

2

∥
∥
∥
∥
∥

[
u(k+1)

t

w(k+1)
t

]

−
[

I
Gt

]

vt + η
(k)
t

γ

∥
∥
∥
∥
∥

2

2

(7c)

η
(k+1)
t = η

(k)
t + γ

([
u(k+1)

t

w(k+1)
t

]

−
[

I
Gt

]

v(k+1)
t

)

(7d)

where ηt = vec(ηt, η1,t
, . . . , η

Ng,t
). We solve wt, vt, and ηt

subproblems for each t, respectively. The wt-subproblem and
vt-subproblem have the solutions

w(k+1)
t = Sμ/γ

(
Gg,tv

(k)
t − η(k)

g,t
/γ

)
(8a)

v(k+1)
t = 1

γ

(
I+G�t Gt

)−1
([

I
Gt

]�(
γ

[
u(k+1)

t

w(k+1)
t

]

+ η
(k)
t

))

(8b)

where Sμ/γ (·) is the shrinkage operator [49].
Given the mADMM framework, the solutions in (8a), (8b),

and (7d) are the basic steps of our methods. In a single
iteration, the wt-update can be computed in O(Ng) opera-
tions, and each vt-update takes O(N3

x ). However, when the
x1:T -subproblem is solved by the batch estimation methods,

it typically takes O(N3
x T3) operations. Thus, the main com-

putational demand is in updating x1:T . Our main goal here
is to derive efficient methods for the x1:T -minimization step.
Before that, we first develop batch methods to solve the
x1:T -subproblem.

B. Batch Solution for Affine Systems

The first batch method we explore is for the affine Gaussian
systems. We first stack all the state variables into single
variables and then rewrite the x1:T -subproblem (7a) in the form

x� = arg min
x

1

2
‖y−H x− e‖2R−1 + 1

2
‖m− Ax− b‖2Q−1

+ γ

2

∥
∥
∥�x− d− v(k) + η(k)/γ

∥
∥
∥

2

2
(9)

where we have set

x = x1:T , � =

⎛

⎜
⎜
⎜
⎜
⎝

I 0

−B2 I
. . .

. . .
. . . 0
− BT I

⎞

⎟
⎟
⎟
⎟
⎠

. (10)

The other variables y, e, m, d, e, v, η, H, R, Q, and A are
defined analogously to [16, eq. (17)]. By setting the derivative
to 0, the solution is

x(k+1) =
(

H�R−1H+ A�Q−1A+ γ���
)−1

×
(

H�R−1(y− e)+ A�Q−1(m− b)

+ γ��
(

d+ v(k) − η(k)/γ
))

. (11)

In other words, computing the x-minimization amounts to
solving a linear system with the coefficient matrix H�R−1H+
A�Q−1A + γ���. When the matrix inverse exists, the x-
subproblem has a unique solution. In addition, with a sparsity
assumption on the states xt, � is an identity matrix, and d is
a zero vector. When the noise qt is sparse, we can set

� = A, d = m− b (12)

which corresponds to the setting of Bt and dt according to
Table II.

The disadvantage of the batch solution is that it requires
an extensive amount of computations when T is large. For
this reason, in Section IV-A, we propose to use an augmented
recursive smoother, which is mathematically equivalent to the
batch method, to improve the computational performance.

C. Gauss–Newton for Nonlinear Systems

When the system is nonlinear, we use a similar batch nota-
tion as in the affine case and, in addition, define the nonlinear
functions

a(x) = vec(x1, x2 − a2(x1), . . . , xT − aT(xT−1))

h(x) = vec(h1(x1), . . . , hT(xT)). (13)

The primal x1:T -subproblem then has the form

x(k+1) = arg min
x

θ(x) (14)
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where

θ(x) = 1

2
‖y− h(x)‖2R−1 + 1

2
‖m− a(x)‖2Q−1

+ γ

2

∥
∥
∥�x− d− v(k) + η(k)/γ

∥
∥
∥

2

2
. (15)

The function θ(x) can now be minimized by the
Gauss–Newton (GN) method [46]. In GN, we first linearize
the nonlinear functions a(x) and h(x) and then replace them
in θ(x) by the linear (or actually affine) approximations. The
GN iteration then becomes

x(k,i+1) =
(

J�θ Jθ

(
x(k,i)

))−1

×
[
J�h

(
x(k,i)

)
R−1

(
y− h

(
x(k,i)

)
+ Jh

(
x(k,i)

)
x(k,i)

)

+ J�a
(

x(k,i)
)

Q−1

×
(

m− a
(

x(k,i)
)
+ Ja

(
x(k,i)

)
x(k,i)

)

+ γ��
(

d+ v(k) − η(k)/γ
)]

(16)

where

J�θ Jθ (x) = J�h (x)R−1Jh(x)+ J�a (x)Q−1Ja(x)+ γ���.

The above computations are carried out iteratively until a
maximum number of iterations Imax is reached. We take the
solution x(k,Imax) as the next iterate x(k+1). While GN avoids
the trouble of computing the Hessians of the model func-
tions, it has problems when the Jacobians are rank-deficient.
The Levenberg–Marquardt (LM) method is introduced next to
address this problem.

D. Levenberg–Marquardt Method

The LM method [50], also called the regularized or damped
GN method, improves the performance of GN by using an
additional regularization term. With damping factors λ(i) > 0
and a sequence of positive-definite regularization matrices S(i),
function θ(x) can be approximated by

θ(x) ≈ 1

2

∥
∥
∥y− h

(
x(i)

)
+ Jh

(
x(i)

)(
x− x(i)

))∥∥
∥
∥

2

R−1

+ 1

2

∥
∥
∥m− a

(
x(i)

)
+ Ja

(
x(i)

)(
x− x(i)

)∥
∥
∥

2

Q−1

+ γ

2

∥
∥
∥�x− d− v(k) + η(k)/γ

∥
∥
∥

2

2

+ λ(i)

2

∥
∥
∥x− x(i)

∥
∥
∥

2

[S(i)]−1 . (17)

Using the minimum of this approximate cost function at each
step i as the next iterate, we obtain the following iteration:

x(k,i+1) =
(

J�θ Jθ

(
x(k,i)

)
+ λ(i)

[
S(i)

]−1
)−1

[
J�h

(
x(k,i)

)
R−1

(
y− h

(
x(k,i)

)
+ Jh

(
x(k,i)

)
x(k,i)

)

+ J�a
(

x(k,i)
)

Q−1

×
(

m− a
(

x(k,i)
)
+ Ja

(
x(k,i)

)
x(k,i)

)

+ γ��
(

d+ v(k) − η(k)/γ
)]

(18)

which is the LM method, when augmented with an adaptation
scheme for the regularization parameters λ(i) > 0. The regu-
larization parameter here helps to overcome some problematic
cases, for example, the case when J�θ Jθ (x) is rank-deficient,
by ensuring the existence of the unique minimum of the
approximate cost function.

At each mADMM iteration, the computation in the x1:T -
subproblem, such as (11), (16), and (18), has a high cost when
T is large (e.g., T = 108). As discussed above, the main com-
putational demand is indeed in the update of x1:T . Therefore,
we utilize the equivalence between batch solutions and recur-
sive smoothers, and then develop efficient augmented recursive
smoother methods for solving the x1:T -subproblem.

IV. AUGMENTED RECURSIVE SMOOTHERS

In the section, we will present the augmented KS,
GN-IEKS, and LM-IEKS methods for solving the x1:T -
subproblem.

A. Augmented Kalman Smoother for Affine Systems

Solving the x1:T -subproblem involves the minimization of
a quadratic optimization problem, which can be efficiently
solved by KS (see [51] for details). We rewrite the batch
minimization problem (9) as

x�
1:T = arg min

x1:T

1

2

T∑

t=1

‖yt −Htxt − et‖2R−1
t

+ 1

2

T∑

t=2

‖xt − Atxt−1 − bt‖2Q−1
t
+ 1

2
‖x1 −m1‖2P−1

1

+ γ

2

T∑

t=2

∥
∥
∥
∥xt − Btxt−1 − dt − vt + ηt

γ

∥
∥
∥
∥

2

2

+ γ

2

∥
∥
∥
∥x1 −m1 − v1 + η1

γ

∥
∥
∥
∥

2

2
. (19)

It is worth noting that when Bt = 0 and dt = 0, the cost func-
tion corresponds to the function minimized by KS, which leads
to a similar method as was presented in [16]. For notational
convenience, we leave out the iteration number k of mADMM
in the following.

Here, we consider the general case, where Bt and dt are
nonzero. Such a case is more complicated as we cannot have
two dynamic models in a state-space model. For building a
dynamic state-space model, we need to fuse the terms in the
pairs (1/2)‖xt−Atxt−1−bt‖2Q−1

t
and (1/2)‖xt−Btxt−1−dt−

vt + ηt/γ ‖22, along with (1/2)‖x1 −m1‖2P−1
1

and (1/2)‖x1 −
m1 − v1 + η1/γ ‖22 into single terms. We combine matrices
At and Bt to an artificial transition matrix Ãt, fuse bt and
(dt+vt−ηt/γ ) to an artificial bias b̃t, and introduce an artificial
covariance Q̃t, which yields

Ãt =
(

Q−1
t + γ I

)−1(
Q−1

t At + γ Bt

)

b̃t =
(

Q−1
t + γ I

)−1(
Q−1

t bt + γ dt + γ vt − ηt

)

Q̃−1
t = Q−1

t + γ I. (20)
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Now, the new artificial dynamic model (20) allows us to use
KS to solve the minimization problem. Problem (19) becomes

x�
1:T = arg min

x1:T

1

2

T∑

t=1

‖yt −Htxt − et‖2R−1
t

+ 1

2
‖xt − Ãtxt−1 − b̃t‖2Q̃−1

t
+ 1

2
‖x1 − m̃1‖2P̃−1

1
(21)

which corresponds to a state-space model, where additionally
the initial state has mean m̃1 = (P−1

1 + γ I)−1 (P−1
1 m1 +

γ m1+γ vt−ηt) and covariance P̃−1
1 = P−1

1 +γ I. The solution
in (21) can be then computed by running KS on the augmented
state-space model

p(xt | xt−1) = N
(

xt | Ãtxt−1 + b̃t, Q̃t

)
(22a)

p(yt | xt) = N (yt | Htxt + et, Rt). (22b)

The augmented KS requires only O(N3
x T) operations, which

are much less than the corresponding batch solution in (11).
The augmented KS method is summarized in Algorithm 1.

B. Gauss–Newton IEKS for Nonlinear Systems

The solution of (15) has similar computational scaling chal-
lenges as the affine case discussed in the previous section.
However, we can use the equivalence of IEKS and GN [8]
to construct an efficient iterative solution for the optimization
problem in the primal space. In the GN-IEKS method, we first
approximate the nonlinear model by linearisation and then use
KS on the linearized model. The x1:T -subproblem now takes
the form of (7a). In IEKS, at the i:th iteration, we form affine
approximations of at(xt−1) and ht(xt) as follows:

at(xt−1) ≈ at

(
x(i)

t−1

)
+ Jat

(
x(i)

t−1

)(
xt−1 − x(i)

t−1

)

ht(xt) ≈ ht

(
x(i)

t

)
+ Jht

(
x(i)

t

)(
xt − x(i)

t

)
. (23)

We replace the nonlinear functions in the cost function with
the above approximations, and compute the next iterate as the
solution to the minimization problem

x(i+1)
1:T = arg min

x1:T

1

2

∥
∥
∥yt − ht

(
x(i)

t

)
+ Jht

(
x(i)

t

)(
xt − x(i)

t

)∥
∥
∥

2

R−1
t

+ 1

2

T∑

t=2

∥
∥
∥xt − at

(
x(i)

t−1

)

+ Jat

(
x(i)

t−1

)(
xt−1 − x(i)

t−1

)∥
∥
∥

2

Q−1
t

+ γ

2

T∑

t=2

∥
∥
∥
∥xt − Bt xt−1 − dt − vt + ηt

γ

∥
∥
∥
∥

2

2

+ γ

2

∥
∥
∥
∥x1 −m1 − v1 + η1

γ

∥
∥
∥
∥

2

2
+ 1

2
‖x1 −m1‖2P−1

1

(24)

which is equivalent to (19) with

At = Jat

(
x(i)

t−1

)
, bt = at

(
x(i)

t−1

)
− Jat

(
x(i)

t−1

)
x(i)

t−1

Ht = Jht

(
x(i)

t

)
, et = ht

(
x(i)

t

)
− Jht

(
x(i)

t

)
x(i)

t . (25)

Algorithm 1: Augmented KS

Input: yt, Bt, dt, At, Ht, Rt, Qt, v(k), η(k), m1, P1, and
γ .

Output: x∗1:T .
1 compute Ãt, Q̃t, and b̃t by (20);
2 for t = 1, . . . , T do
3 m−t = Ãtmt−1 + b̃t;
4 P−t = Ãt Pt−1 Ã�t + Q̃t;
5 St = Ht P−t H�t + Rt;
6 Kt = P−t H�t [St]−1;
7 mt = m−t +Kt

(
yt − (Ht m−t + et)

)
;

8 Pt = P−t −Kt St [Kt]�;
9 end

10 ms
T = mT and Ps

T = PT ;
11 for t = T − 1, . . . , 1 do
12 Gt = Pt Ã�t+1 [P−t+1]−1;
13 ms

t = mt +Gt
(
ms

t+1 −m−t+1

)
;

14 Ps
t = Pt +Gt

(
Ps

t+1 − P−t+1

)
G�t ;

15 end
16 return x∗1:T = ms

1:T ;

Algorithm 2: GN-IEKS

Input: yt, Bt, dt, at, ht, Rt, Qt, v(k), η(k), m1, P1, and γ .
Output: x∗1:T .

1 set i← 0 and start from a suitable initial guess x(0)
1:T ;

2 while not converged or i < Imax do
3 linearise at and ht according to (23);
4 compute Ãt, Q̃t, b̃t by (20);
5 compute x(i+1)

1:T by (24) using the augmented KS;
6 i← i+ 1;
7 end
8 return x∗1:T = x(i)

1:T ;

The precise expressions of Bt and dt depend on our choice of
sparsity. When qt is sparse, the expressions are given by

Bt = Jat

(
x(i)

t−1

)
, dt = at

(
x(i)

t−1

)
− Jat

(
x(i)

t−1

)
x(i)

t−1 (26)

which needs the same computations as in (20). Thus, we can
solve the minimization problem in (7a) by iteratively lineariz-
ing the nonlinearities and then by applying KS. This turns out
to be mathematically equivalent to applying GN to the batch
problem as we did in Section III-C. The steps of the GN-IEKS
method are summarized in Algorithm 2.

C. Levenberg–Marquardt IEKS

There also exists a connection between the LM and a mod-
ified version of IEKS. The LM-IEKS method [10] is based on
replacing the minimization of the approximate cost function
in (24) by a regularized minimization of the form

x�
1:T = arg min

x1:T

1

2

∥
∥
∥yt − ht

(
x(i)

t

)
+ Jht

(
x(i)

t

)(
xt − x(i)

t

)∥
∥
∥

2

R−1
t



12062 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022

Algorithm 3: LM-IEKS

Input: yt, Bt, dt, at, ht, Rt, Qt, v(k), η(k), m1 and P1; St,
γ , λ, and α.

Output: x∗1:T .
1 set i← 0 and start from a suitable initial guess x(0)

1:T ;
2 while not converged or i < Imax do
3 linearise at and ht according to (23);
4 compute Ãt, Q̃t, b̃t by (20);
5 update x(i+1)

1:T by (28) based on the augmented KS;
6 if θ(x(i+1)

1:T ) < θ(x(i)
1:T) then

7 λ(i)← λ(i)/α; i← i+ 1;
8 else
9 λ(i)← λ(i) α;

10 end
11 end
12 return x∗1:T = x(i)

1:T ;

+ 1

2

T∑

t=2

∥
∥
∥xt − at

(
x(i)

t−1

)
+ Jat

(
x(i)

t−1

)(
xt−1 − x(i)

t−1

)∥
∥
∥

2

Q−1
t

+ γ

2

T∑

t=2

∥
∥
∥
∥xt − Bt xt−1 − dt − vt + ηt

γ

∥
∥
∥
∥

2

2

+ 1

2
‖x1 −m1‖2P−1

1

+ λ(i)

2

T∑

t=1

∥
∥
∥xt − x(i)

t

∥
∥
∥

2

[S(i)
t ]−1

+ γ

2

∥
∥
∥
∥x1 −m1 − v1 + η1

γ

∥
∥
∥
∥

2

2
(27)

where we have assume that S(i) = diag(S(i)
1 , . . . , S(i)

T ). Similar
to GN-IEKS, when Bt and dt are nonzero, we need to build
a new state-space model in order to have only one dynamic
model. Following [10], the regularization can be implemented
by defining an additional pseudomeasurement zt = x(i)

t with
a noise covariance 


(i)
t = S(i)

t /λ(i). Using (20) and (25), we
have the augmented state-space model

p(xt | xt−1) = N
(

xt | Ãtxt−1 + b̃t, Q̃t

)

p(yt | xt) = N (yt | Htxt + et, Rt)

p(zt | xt) = N
(

zt | xt, 

(i)
t

)
(28)

which provides the minimum of the cost function as the KS
solution. By combining this with λ(i) adaptation and iterating,
we can implement the LM algorithm for the x1:T -subproblem
using the recursive smoother (see [10]). See Algorithm 3 for
more details.

D. Discussion

All the methods discussed above, namely, augmented KS,
GN-IEKS, and LM-IEKS, provide efficient ways to solve the
x1:T -subproblem. When we leverage the Markov structure of
the x1:T -subproblem arising in the mADMM iteration, we
can significantly reduce the computation burden. In particular,

when functions at(xt−1) and ht(xt) are affine, the augmented
KS method can be used in the x1:T -subproblem [see (19)].
Both GN-IEKS and LM-IEKS are based on the use of lineari-
sation of the functions at(xt−1) and ht(xt), and they work well
for most nonlinear minimization problems. However, when
the Jacobians [e.g., Jat(x

(i)
t−1) or Jht(x

(i)
t ) in (23)] are rank-

deficient, the GN-IEKS method cannot be used. As a robust
extension of GN-IEKS, LM-IEKS significantly improves the
performance of GN-IEKS. It should be noted that when the
regularization term is not used in LM-IEKS [when λ(i) = 0],
then LM-IEKS reduces to GN-IEKS [10].

V. CONVERGENCE ANALYSIS

In this section, we prove that under mild assumptions and
a proper choice of the penalty parameter, our KS-mADMM,
GN-IEKS-mADMM, and LM-IEKS-mADMM methods con-
verge to a stationary point of the original problem. Although
the convergence of the mADMM has already been proven, the
existing results strongly depend on convexity assumptions or
Lipschitz continuity conditions (see [52]–[54]). In the analy-
sis, we require neither the convexity of the objective function
nor Lipschitz continuity conditions. Instead, we use a milder
condition on the amenability. This allows us to establish the
convergence of the three methods.

For the case when the functions at(xt−1) and ht(xt) are
affine [see (2)], we have the following lemma.

Lemma 1: Let {x(k)
1:T , w(k)

1:T , v(k)
1:T , η

(k)
1:T} be the iterates gener-

ated by (7). Then, we have
∥
∥
∥
∥

[
v(k+1)

η(k+1)

]

−
[

v�

η�

]∥
∥
∥
∥

2

�

≤
∥
∥
∥
∥

[
v(k)

η(k)

]

−
[

v�

η�

]∥
∥
∥
∥

2

�

−
∥
∥
∥
∥

[
v(k)

η(k)

]

−
[

v(k+1)

η(k+1)

]∥
∥
∥
∥

2

�

(29)

where � =
[
γ I+G�G 0

0 I/γ

]

and G =
⎡

⎢
⎣

G1
...

GT

⎤

⎥
⎦.

Proof: See Appendix A.
We will then establish the convergence rate of the proposed

method in terms of the iteration number.
Theorem 1 (Convergence of KS-mADMM): Let Qt and P1

be positive semidefinite matrices. Then, the sequence
{x(k)

1:T , w(k)
1:T , v(k)

1:T , η
(k)
1:T} generated by KS-mADMM converges

to a stationary point (x�
1:T , w�

1:T , v�
1:T , η�

1:T) with the rate
o(1/k).

Proof: The proof is based on the convexity of the func-
tion. Because of the equivalence between mADMM and
KS-mADMM, we start by establishing the convergence of
mADMM. When Qt and P1 are positive semidefinite, the func-
tion in (5) is convex. Because of [� 0][0 I]� = 0, we can
write x and w into a function �(ζ ) in the batch form [52].

For simplicity of notation, we define s = [
v η

]�. Using
Lemma 1, we obtain

�
(
ζ �

)−�
(
ζ (k)

)
+

(
ξ � − ξ (k)

)�
F
(
ξ �

)

+
∥
∥
∥s� − s(k)

∥
∥
∥

2

�
≥

∥
∥
∥s� − s(k+1)

∥
∥
∥

2

�
(30)
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where ξ and F(ξ) are defined in Appendix A [see (37)]. We
sum the inequality (30) from 0 to k and divide each term by
k + 1. Since ‖s� − s(k+1)‖2� ≥ 0, we then have

1

k + 1

k∑

i=0

�
(
ζ (k)

)
−�

(
ζ �

)+
(

1

k + 1

k∑

i=0

ξ (k) − ξ �

)�
F
(
ξ �

)

≤ 1

k + 1

∥
∥
∥s� − s(0)

∥
∥
∥

2

�
. (31)

Let ζ̄
(k) = (1/[k + 1])ζ (k) and ξ̄

(k) = (1/[k + 1])ξ (k). Because
of the convexity of �, we further write (31) as

�
(
ζ̄

(k)
)
−�

(
ζ �

)+
(
ξ̄

(k) − ξ �
)�

F
(
ξ �

)

≤ 1

k + 1

∥
∥
∥s� − s(0)

∥
∥
∥

2

�
. (32)

The convergence rate o(1/k) of mADMM is thus estab-
lished. As batch mADMM is equivalent to KS-mADMM,
then the sequence {x(k), w(k), v(k), η(k)} and the sequence
{x(k)

1:T , w(k)
1:T , v(k)

1:T , η
(k)
1:T} are identical. This concludes the

proof.
When the functions at(xt−1) and ht(xt) are nonlinear, we

have the function

s(x) � 1

2
‖y− h(x)‖2R−1 + 1

2
‖m− a(x)‖2Q−1 . (33)

Definition 1: The function s(x) is strongly amenable [55]
at x when the condition

[
R−1/2Jh;Q−1/2Ja

]�z = 0 (34)

is satisfied only when z is 0.
Let s(x) be strongly amenable. Then, s(x) will be prox-

regular [56]. We are now ready for introducing the following
lemma.

Lemma 2 (Bounded and Nonincreasing Sequence): Assume
that δ+(���) > 0 and s(x) is strongly amenable. Then, there
exists γ > 0 such that sequence Lγ (x(k), w(k), v(k); η(k)) is
bounded and nonincreasing.

Proof: See Appendix B.
Next, we present the main theoretical result.
Theorem 2 (Convergence of GN-IEKS-mADMM): Let the

assumptions in Lemma 2 be satisfied. Then there exists γ > 0
such that the sequence {x(k)

1:T , w(k)
1:T , ..v(k)

1:T , η
(k)
1:T} generated by

GN-IEKS-mADMM locally converges to a local minimum.
Proof: By Lemma 2, the sequence Lγ (x(k), w(k), v(k); η(k))

is bounded and nonincreasing. Based on our paper [16], the
x-subproblem has a local minimum x�. w and v subprob-
lems are convex [57]. We then conclude that the iterative
sequence {x(k), w(k), v(k), η(k)} locally converges to a local
minimum (x�, w�, v�, η�). According to [8], GN is equiva-
lent to IEKS. Thus, we deduce that the iterative sequence
{x(k)

1:T , w(k)
1:T , v(k)

1:T , η
(k)
1:T} is convergent to a local minimum

(x�
1:T , w�

1:T , v�
1:T , η�

1:T).
Lemma 3 (Convergence of LM): Assume that the norm

of Hessian Hθ (x) is bounded by a positive constant
κ < max{γ δ+(���), λ(i)δ+([S(i)]−1)}. Then, LM is
locally (linearly) convergent. The convergence is quadratic
when κ → 0.

Proof: See Appendix C.
Theorem 3 (Convergence of LM-IEKS-mADMM): Let the

assumptions of Lemmas 2 and 3 be satisfied. Then, there exists
λ(i), γ > 0 such that the sequence {x(k)

1:T , w(k)
1:T , v(k)

1:T , η
(k)
1:T} gen-

erated by LM-IEKS-mADMM converges to a local minimum
(x�

1:T , w�
1:T , v�

1:T , η�
1:T).

Proof: Similar to Theorem 2, we use Lemma 2 to estab-
lish that the sequence Lγ (x(k), w(k), v(k); η(k)) is bounded
and nonincreasing. Due to the convexity, the w and v
subproblems have a local minimum. By Lemma 3, the
sequence x(i) generated by LM converges to x�. Then, the
sequence {x(k), w(k), v(k), η(k)} locally converges to a mini-
mum (x�, w�, v�, η�) since the sequence {x(k), w(k), v(k), η(k)}
generated by LM is identical to {x(k)

1:T , w(k)
1:T , v(k)

1:T , η
(k)
1:T} gener-

ated by LM-IEKS [8], [10].

VI. NUMERICAL EXPERIMENTS

In this section, we experimentally evaluate the proposed
methods in a selection of different applications, includ-
ing linear target tracking problems, multisensor range mea-
surement problems, ship trajectory tracking, audio restora-
tion, and autonomous vehicle tracking. As for the conver-
gence criteria, we can easily verify that the assumptions
for convergence are satisfied for the linear/affine examples
in Sections VI-A–VI-E. In addition, the nonlinear coordi-
nated turn model in Section VI-D also satisfies assumptions
for convergence. However, for the distance measurement
in Section VI-B, it is hard to establish strong amenability
although empirically the convergence occurs.

A. Linear Target Tracking Problems

In the first experiment, we consider simulated tracking
of a moving target (such as car) with the Wiener velocity
model [6] as the dynamic model and with noisy location mea-
surements. In the simulation, the process noise qt was set to
be 0 with probability 0.8 at every step t. State xt has the loca-
tion (xt,1, xt,2) and the velocities (xt,3, xt,4). The measurement
model matrix and the measurement noise covariance are

Ht =
[

1 0 0 0
0 1 0 0

]

, Rt =
[
σ 2 0
0 σ 2

]

.

The transition matrix and the process noise covariance are

At =

⎡

⎢
⎢
⎣

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

Qt = qc

⎡

⎢
⎢
⎢
⎣

�t3
3 0 �t2

2 0

0 �t3
3 0 �t2

2
�t2

2 0 �t 0

0 �t2
2 0 �t

⎤

⎥
⎥
⎥
⎦

.

We have �t = 0.1, qc = 0.5, σ = 0.3, T = 100, m1 =[
0.1 0 0.1 0

]�, and P1 is an identity matrix. We set the
matrix Gg,t to an identity matrix and use the parameters γ = 1,
μ = 1, and Kmax = 50.
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Fig. 1. Signals, measurements, and the estimates in the linear tracking
problem. The values of xerr are 0.103 and 0.072 in KS and KS-mADMM,
respectively.

Fig. 2. Comparison of the running times in the linear car tracking example
as function of the number of time steps.

We define the estimation error as

xerr =
∑T

t=1

∥
∥
∥x(k)

t − xtrue
t

∥
∥
∥

2
∑T

t=1

∥
∥xtrue

t

∥
∥

2

where xtrue
t is the ground truth. The estimation results are plot-

ted in Fig. 1, where the circles denote the noisy measurements
and the blue dashed line denotes the true state. As we can seen,
the KS-mADMM estimate (black line) is much closer to the
ground truth than the KS estimate (red dashed line), which is
also reflected by a lower error.

Recall that the difference in batch and recursive ADMM
running time is dominated by the x1:T -subproblem. Fig. 2
demonstrates how the running time (sec) grows when T
increases. Despite being mathematically equivalent, mADMM
and KS-mADMM have very different running times. The run-
ning times of mADMM and proximal ADMM (prox-ADMM)
have a similar growth rate; whereas, KS-mADMM has a
growth rate that resembles a plain KS. Due to limited memory,
we cannot report the results of the batch estimation methods
(prox-ADMM and mADMM) when T > 104. At T = 104,
the running times of KS, KS-mADMM, prox-ADMM, and
mADMM were 0.34, 1.92, 6284, and 9646 s, respectively.
The proposed method is computationally inexpensive, which
makes it suitable for solving real-world applications, such as
the marine vessel tracking in Section VI-C.

Fig. 3. Estimated trajectory in the nonlinear system. The relative errors are
0.53 and 0.46 generated by IEKS and LM-IEKS-ADMM.

B. Multisensor Range Measurement Problems

In this experiment, we consider a multisensor range mea-
surement problem, where we have short periods of movement
with regular stops. This problem frequently appears in many
surveillance systems [3], [6]. The state xt contains the posi-
tion (xt,1, xt,2) and the velocities (xt,3, xt,4). The measurement
dynamic model for sensor n ∈ {1, 2, 3} is given by

hn
t (xt) =

√
(

xt,2 − sn
y

)2 + (
xt,1 − sn

x

)2

where (sn
x, sn

y) is the position of sensor n. The transition
function at(xt−1) is

at(xt−1) =

⎡

⎢
⎢
⎣

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ xt−1. (35)

The covariances are Rt = diag(0.22, 0.22) and Qt =
diag(0.01, 0.01, 0.1, 0.1). We set �t = 0.1, T = 60, (s1

x, s1
y) =

(0,−0.5), (s2
x, s2

y) = (0.5, 0.6), (s3
x, s3

y) = (0.5, 0.6), m1 =
[
0 0 0 0

]�, and P1 = I/10. We assume the target has many
stops, which means the velocities xt,3 and xt,4 are sparse. We
also set Gg,t =

[
0 I

]
and use the parameters γ = 1, μ = 1,

Kmax = 50, and Imax = 5. We plot the velocity variable xt,3
corresponding to the time step t in Fig. 3, which indicates that
our method (black line) can generate much more sparse results
than the IEKS estimate (red dashed line).

Fig. 4 shows the relative error xerr as a function of the
iteration number. The values of xerr generated by the regu-
larization methods are below those generated by IEKS [1].
It also shows that the GN-mADMM, GN-IEKS-mADMM,
LM-mADMM, and LM-IEKS-mADMM can find the optimal
values in around 50 iterations. IEKS is the fastest method, but
the relative error is the highest due to the lack of the sparsity
prior (i.e., μ = 0). GN-mADMM and GN-IEKS-mADMM
have the same convergence results (as they are equiva-
lent), while the latter uses less running time. Similarly,
LM-mADMM and LM-IEKS-mADMM have the same con-
vergence results, but LM-IEKS-mADMM needs less time to
obtain the result than LM-mADMM. When the number of time
steps T is moderate, all the running times are acceptable. But
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Fig. 4. Relative error xerr versus iteration number.

Fig. 5. Comparison of the running times in the range measurement example
as function of the number of time steps (from 102 to 108).

when T is extremely large, the proposed methods provide a
massive advantage.

Fig. 5 demonstrates how the running time (sec) grows
when T increases. The proposed methods are compared to
the state-of-the-art methods, including the prox-ADMM [46],
mADMM [47], and IEKS [1]. Despite being mathemat-
ically equivalent, GN-mADMM and GN-IEKS-mADMM,
LM-mADMM, and LM-IEKS-mADMM have very different
running times. GN-IEKS-mADMM and LM-IEKS-mADMM
are more efficient than the batch methods. Due to limited
memory, we cannot report the results of the batch meth-
ods when T > 104. It is reasonable to conclude that in
general, the proposed methods are competitive for extremely
large-scale tracking and estimation problems. The proposed
approaches are computationally inexpensive, which makes
them suitable for solving real-world applications, such as ship
trajectory-tracking in the next section.

C. Marine Vessel Tracking

In this experiment, we utilize the Wiener velocity model [6]
with a sparse noise assumption to track a marine vessel trajec-
tory. The latitude, longitude, speed, and course of the vessel
have been captured by automatic identification system (AIS)
equipment, collected by Danish Maritime Authority. Similar
applications can be found in [5] and [39]. The state of the ship
is measured at time intervals of 1 min. Matrices Ht, At, Qt,
and Rt are the same with the settings in Section VI-A with

Fig. 6. Position (black markers) estimated by KS-mADMM. The starting
coordinate is denoted blue marker, and the ending coordinate is a red marker.
Contains data from the Danish Maritime Authority that is used in accordance
with the conditions for the use of Danish public data.

Fig. 7. Process noise estimated by KS-mADMM (black line) and KS (red
dashed line).

�t = 1, qc = 1, σ = 0.3, T = 100, m1 =
[
0.1 0.1 0 0

]�,
and P1 = 100I. We assume the process noise qt is sparse,
set Gg,t to an identity matrix, and use the parameters γ = 1,
μ = 1, and Kmax = 100. The measurement data consist of
100 time points of the vessel locations.

Our method obtains the position (latitude and longi-
tude) estimates as shown in Fig. 6. Fig. 7 shows that our
method has sparser process noise than that estimated by the
KS [1]. We then highlight the computational advantage of
our method. The difference in running time is dominated by
the x1:T -subproblem. The running times of KS, prox-ADMM,
mADMM, and KS-mADMM were 0.34, 174, 172, and 5.63 s,
respectively. The running times of mADMM and prox-ADMM
are similar whereas KS-mADMM has a smaller running time
that resembles the plain KS.

D. Autonomous Vehicle Tracking

To further show how our methods can speed up larger scale
real-world problems, we apply GN-IEKS-mADMM to a vehi-
cle tracking problem using real-world data. Global positioning
system (GPS) data were collected in urban streets and roads
around Helsinki, Tuusula, and Vantaa, Finland [58]. The urban
environment contained many stops to traffic lights, crossings,
turns, and various other situations. We ran the experiment
using a coordinate turn model [1], where the state at time
step t had the positions (xt,1, xt,2), the velocities (xt,3, xt,4),
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Fig. 8. Path tracking (black line) generated by GN-IEKS-mADMM. The
starting position is blue point, and the ending position is red cross.

Fig. 9. Estimated velocities and angular velocities generated by IEKS (red
dashed line) and the proposed method (black line).

and the angular velocity xt,5. The number of time points
T was 6865. We use the parameters γ = 0.1, μ = 1,
Kmax = 300, Imax = 5, m1 =

[
4.5 13.5 0 0 0

]�, and
P1 = diag(50, 50, 50, 50, 0.01). We utilized the matrix

Gg,t =
⎡

⎣
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎦

to enforce the sparsity of the velocities and the angular
velocity.

The plot in Fig. 8 demonstrates the path (black line)
generated by our method. The running time of IEKS [32],
GN-mADMM, and GN-IEKS-mADMM were 22, 13 520, and
2704 s, respectively. As we expected, although IEKS is the
fastest, the L2-penalized regularization methods push more of
the velocities and the angle to 0, which is shown in Fig. 9. The
IEKS estimate has many large peaks that appear as a result
of large residuals, and GN-IEKS-mADMM has more sparse
results.

E. Audio Signal Restoration

The proposed technique can be readily applied to the
problem of noise reduction in audio signals. We adopt a Gabor
regression model [19]

y(τ ) =
M/2∑

m=0

N−1∑

n=0

cm,ngm,n(τ )+ r(τ ), τ = 0, . . . , T − 1

where signals are represented as a weighted sum of the
Gabor atoms gm,n(τ ) = wn(τ ) exp(2π i[m/M]τ). Terms
wn(τ ) correspond to a window function with bounded sup-
port centred at time instants τn (windows are placed so
that the time axis is with tiled evenly). Sparsity is pro-
moted through the L1

2 pairwise grouping pattern described
in Section II:

∑
m,n μm,n‖cm,n‖2. The real representation of

complex coefficients cm,n used in [19] is adopted. This batch
problem is restated in terms of a state-space model: signal y
is separated into P chunks yt of length L and state vectors
xt = [c2(t−1); c2t−1; c2t]� are defined, ct being the subvector
associated to each frame. Let H0 be a matrix containing the
nonzero values of the Gabor basis functions g0,0, . . . , gM/2,0
as columns. Thus, atoms in subsequent frames are time-shifted
replicas of this basic set and ‖y−Dc‖2 (D a dictionary matrix
containing all atoms) can be replaced by

∑P
t=1 ‖yt − H∗xt‖2

+∑P
t=1 ‖xt − Atxt−1‖2, with H∗ =

[
Hu H0 H�

]
and At =[

0 0 0; 0 0 0; I 0 0
]
. Terms Hu and H� are trun-

cated versions of H0 corresponding to the contribution of the
adjacent overlapping frames.

The algorithm is tested on a ∼3-s long glockenspiel
excerpt sampled at 22050 [Hz] and contaminated with arti-
ficial background noise with signal-to-noise ratio (SNR) 5dB.
Experiments are carried out in an Intel Core i7 @ 2.50 GHz,
16-GB RAM, with parameters γ = 5, μ = 2.6, and Kmax =
500, and a window length L = 512. Kalman gain matrices are
precomputed. Reflecting the power spectrum of typical audio
signals, which decays with frequency, penalization is made
frequency-dependent by setting μm,n = μ/f (m), with f (m)

a decreasing modulating function (e.g., a Butterworth filter
gain), in a similar fashion to [18]. Coefficients are initialised
at 0. The average output SNR is 12.4 with an average running
time of 64.6 s in 20 realizations. Fig. 10 shows the visual
reconstruction results.

In comparison, the Gibbs sampling schemes for mod-
els (e.g., [19]) yield noisier restorations with comparable
computing times. We analyzed the same example using the
Gibbs sampler with 500 iterations, 250 burn-in periods.
Hyperparameters and initial values are chosen to ensure a
fair comparison with the KS-mADMM method (unfavorable
initialization may induce longer convergence times). With a
runtime of ∼180 s, the Gibbs algorithm yields an output
SNR of ∼15 dB. The perceptual evaluation of audio qual-
ity (PEAQ) [59], a measure that incorporates psycho-acoustic
criteria to assess audio signals, is adopted. The objective dif-
ference grade (ODG) indicator derived from PEAQ is used
to compare the reconstructions with respect to the clean refer-
ence signal, obtaining ODG = −3.910 for clean signal against
noisy input, ODG = −3.846 for clean signal against the Gibbs
reconstruction, and ODG = −3.637 for clean signal against



GAO et al.: AUTONOMOUS TRACKING AND STATE ESTIMATION WITH GENERALIZED GROUP LASSO 12067

Fig. 10. Reconstructed glockenspiel excerpt.

KS-mADMM reconstruction (the closer to 0, the better).
Despite the lower SNR (12.4 dB), the KS-ADMM reconstruc-
tion sounds cleaner (i.e., has fewer audio artifacts) than its
Gibbs counterpart, which is consistent with the ODG values
obtained. Devising appropriate temporal evolution models for
the audio synthesis coefficients over time and investigating
self-adaptive schemes for the estimation of μ (here, tuned
empirically) are topics of future research.

VII. CONCLUSION AND DISCUSSION

In this article, we have presented efficient smoothing-and-
splitting methods for solving regularized autonomous tracking
and state estimation problems. We formulated the problem as
a generalized L2-penalized dynamic group Lasso minimization
problem. The problem can be solved using batch methods
when the number of time steps is moderate. For the case with
a large number of time steps, new KS-mADMM, GN-IEKS-
mADMM, and LM-IEKS-mADMM methods were developed.
We also proved the convergence of the proposed methods.
We applied the developed methods to simulated tracking,
real-world tracking, and audio signal restoration problems,
where methods resulted in improved localization and esti-
mation performance and significantly reduced computation
load.

A disadvantage of the smoothing-and-splitting methods is
that although the methods significantly improve the track-
ing and estimation performance, their reliability depends on
user-defined penalty parameters [e.g., the parameter γ in (6)].
See [46] and [47] for further details on choosing the appro-
priate values of the parameters. The use of adaptive penalty
parameters may improve the performance in dynamic systems,
even while stronger conditions of convergence need to be guar-
anteed [60]. It would be interesting to develop fully automated
solvers with adaptive parameters. The convergence and the
convergence rate of our methods are based on the Bayesian
smoothers and ADMM, and we have established the conver-
gence rate of the convex case. Possible future work includes
discussing the convergence rate for nonconvex variants.

Although we only consider the autonomous tracking and
state estimation problems in this article, it is possible to apply

our framework to a wide class of control problems. For exam-
ple, in linear optimal control problems, we could introduce
splitting variables to decompose the nonsmooth terms and then
use the Riccati equations to compute the subproblems arising
in the optimal control problems [61]. In cooperative control
of multiple target systems [62]–[64], we can consider a refor-
mulation of dynamic models of group targets into classes with
different characteristics. Based on the framework, we address
the subproblems in implementing optimization-based meth-
ods such as receding horizon methods [63]. The proposed
framework can be extended to other variable splitting meth-
ods [48] as well as other recursive smoothers [1]. Future
work also includes developing other variants, for example,
sigma-point-based variable splitting methods.

APPENDIX A
PROOF OF LEMMA 1

For proving Lemma 1, we define ζ = [
x w

]� and then
write variables x and w into the function �(ζ ), which is

�(ζ ) = 1

2
‖y−Hx− e‖2R−1 + 1

2
‖m−�x− b‖2Q−1

+ μ‖w‖2. (36)

Using the optimality conditions of the subproblems in (7), we
can write

�(ζ )−�
(
ζ (k+1)

)
+ (ζ − ζ (k+1))�

×
([

� 0
0 I

]�
η(k) + γ

[
� 0
0 I

]�

×
(

ζ (k+1) −
[

I
G

]

v(k) −
[

d
0

]))

≥ 0 (37a)

(
v− v(k+1)

)�
(

−
[

I
G

]�
η(k) − γ

[
I
G

]�

×
(

ζ (k+1) −
[

I
G

]

v(k+1) −
[

d
0

]))

≥ 0

(37b)
(
η − η(k+1)

)�(−
([

� 0
0 I

]

z(k+1) −
[

I
G

]

v(k+1) −
[

d
0

])

+ 1

γ
(η(k+1) − η(k))

)

≥ 0. (37c)

For simplicity of notation, we also define

ξ = [
ζ v η

]�

F(ξ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
� 0
0 I

]�
η(k+1)

−
[

I
G

]�
η(k+1)

−
[
� 0
0 I

]

ζ (k+1) +
[

I
G

]

v(k+1) +
[

d
0

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (38)

We group all the variables ζ , v, and η into a single vector ξ

and then rewrite (37) as follows:

�(ζ )−�
(
ζ (k+1)

)
+ [

ξ − ξ (k+1)
]�
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⎛

⎜
⎜
⎜
⎜
⎝

F(ξ)+ γ

⎡

⎢
⎢
⎢
⎢
⎣

[
� 0
0 I

]�

−
[

I
G

]�

0

⎤

⎥
⎥
⎥
⎥
⎦

[
I
G

](
v(k) − v(k+1)

)

+

⎡

⎢
⎢
⎣

0 0

γ

[
I
G

]�
0

0 1
γ

I

⎤

⎥
⎥
⎦

[
v(k+1) − v(k)

η(k+1) − η(k)

]
⎞

⎟
⎟
⎠ ≥ 0

�(ζ )−�(ζ (k+1))+ [
ξ − ξ (k+1)

]�
F(ξ)

+ γ
[
ξ − ξ (k+1)

]�

⎡

⎢
⎢
⎢
⎢
⎣

[
� 0
0 I

]�

−
[

I
G

]�

0

⎤

⎥
⎥
⎥
⎥
⎦

[
I
G

](
v(k) − v(k+1)

)

≥
[

v− v(k+1)

η − η(k+1)

]�
⎡

⎢
⎣

γ

[
I
G

]�
0

0 1
γ

I

⎤

⎥
⎦

[
v(k+1) − v(k)

η(k+1) − η(k)

]

.

(39)

Since the mapping F(ξ) is affine with a skew-symmetric
matrix, it is monotonic [52]. Then, we have the inequality

�
(
ζ (k+1)

)
−�

(
ζ �

)+
(
ξ (k+1) − ξ �

)�
F
(
ξ (k+1)

)

≥ �
(
ζ (k+1)

)
−�

(
ζ �

)+
(
ξ (k+1) − ξ �

)�
F
(
ξ �

) ≥ 0.

(40)

Meanwhile, using (7d), the inequality can be written as
(
η(k) − η(k+1)

)�(−
[

I
G

])(
v(k) − v(k+1)

)
≥ 0. (41)

Combining (40) and (41), we can derive (39) as
([

v(k+1)

η(k+1)

]

−
[

v�

η�

])�[
γ I+G�G 0

0 1
γ

I

]

×
([

v(k)

η(k)

]

−
[

v(k+1)

η(k+1)

])

≥ γ
[
ξ (k+1) − ξ �

]�

⎡

⎢
⎢
⎢
⎢
⎣

[
� 0
0 I

]�

−
[

I
G

]�

0

⎤

⎥
⎥
⎥
⎥
⎦

[
I
G

](
v(k) − v(k+1)

)

≥ (η(k) − η(k+1))�
(

−
[

I
G

])(
v(k) − v(k+1)

)
≥ 0. (42)

Let � =
[
γ I+G�G 0

0 (1/γ )I

]

. We then conclude that

∥
∥
∥
∥

[
v(k)

η(k)

]

−
[

v�

η�

]∥
∥
∥
∥

2

�

=
∥
∥
∥
∥

[
v(k+1)

η(k+1)

]

−
[

v�

η�

]∥
∥
∥
∥

2

�

+
∥
∥
∥
∥

[
v(k)

η(k)

]

−
[

v(k+1)

η(k+1)

]∥
∥
∥
∥

2

�

+ 2

([
v(k+1)

η(k+1)

]

−
[

v�

η�

])�
�

([
v(k)

η(k)

]

−
[

v(k+1)

η(k+1)

])

≥
∥
∥
∥
∥

[
v(k+1)

η(k+1)

]

−
[

v�

η�

]∥
∥
∥
∥

2

�

+
∥
∥
∥
∥

[
v(k)

η(k)

]

−
[

v(k+1)

η(k+1)

]∥
∥
∥
∥

2

�

. (43)

APPENDIX B
PROOF OF LEMMA 2

To simplify the notation, we replace the (k + 1): iteration
with the +:th iteration and drop the iteration counter k in this
proof. Due to the strongly amenability, s(x) is prox-regular
with a positive constant M. Now, we compute

Lγ (x, w, v; η)− Lγ

(
x(+), w(+), v; η

)

= s(x)− s
(

x(+)
)
+

〈
η,�x(+) −�x

〉

+
〈
γ
(
�x(+) − d− v

)
,�x(+) −�x

〉

+ γ

2

∥
∥
∥�x(+) −�x

∥
∥
∥

2

+ g(w)− g
(

w(+)
)
+

〈
η, w(+) − w

〉

+
〈
γ
(

w(+) −Gv
)
, w(+) − w

〉
+ γ

2

∥
∥
∥w(+) − w

∥
∥
∥

2

>
γδ+

(
���

)−M

2

∥
∥
∥x(+) − x

∥
∥
∥

2 + γ

2

∥
∥
∥w(+) − w

∥
∥
∥

2
(44)

where η = vec(η, η). We then have

Lγ

(
x(+), w(+), v(+); η(+)

)
− Lγ (x, w, v; η)

<
1

γ
‖η(+) − η‖2 + M − γ δ+

(
���

)

2

∥
∥
∥x(+) − x

∥
∥
∥

2

+γ

2

∥
∥
∥w(+) − w

∥
∥
∥

2
(45)

which will be non-negative provided when γ >

(M/[δ+(���)]) > 0 is satisfied. In particular, when
� = I, δ+(���) = 1.

In our case, Lγ (x(k), w(k), v(k); η(k)) is upper bounded
by Lγ (x(0), w(0), v(0); η(0)), and is also lower bounded by

Lγ (x(k), w(k), v(k); η(k)) ≥ s(x(k)) + ∑T
t=1

∑Ng
g=1 μ‖wg,t‖2.

Thus, we obtain the conclusion.

APPENDIX C
PROOF OF LEMMA 3

We use the smallest nonzero eigenvalue of ��� and S−1

to yield the inequality
∥
∥
∥J�θ Jθ

(
x(i)

)∥
∥
∥ ≥ max

{

γ δ+
(
���

)
, λ(i)δ+

([
S(i)

]−1
)}

(46)

where

Jθ =
[
R− 1

2 Jh(x) Q− 1
2 Ja(x) γ

1
2 � λ

1
2 S− 1

2

]�
.

We then have
∥
∥
∥x(i+1) − x�

∥
∥
∥ ≤ M

2

∥
∥
∥
∥

[
J�θ Jθ

(
x(i)

)]−1
∥
∥
∥
∥

∥
∥
∥x(i) − x�

∥
∥
∥

2

+
∥
∥
∥
∥

[
J�θ Jθ

(
x(i)

)]−1
Hθ

(
x(i)

)∥∥
∥
∥

∥
∥
∥x(i) − x�

∥
∥
∥. (47)
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When ‖Hθ (x)‖ ≤ κ and κ → 0, the conver-
gence is quadratic. The linear convergence can be estab-
lished when the inequality ‖[J�θ Jθ (x(i))]−1Hθ (x(i))‖ ≤
κ/max{γ δ+(���), λ(i)δ+([S(i)]−1)} < 1 is satisfied.
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