
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Hinkkanen, Marko; Tiitinen, Lauri; Mölsä, Eemeli; Harnefors, Lennart
On the stability of volts-per-hertz control for induction motors

Published in:
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS

DOI:
10.1109/JESTPE.2021.3060583

Published: 01/04/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Hinkkanen, M., Tiitinen, L., Mölsä, E., & Harnefors, L. (2022). On the stability of volts-per-hertz control for
induction motors. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS,
10(2), 1609-1618. https://doi.org/10.1109/JESTPE.2021.3060583

https://doi.org/10.1109/JESTPE.2021.3060583
https://doi.org/10.1109/JESTPE.2021.3060583


IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 10, NO. 2, APRIL 2022 1609

On the Stability of Volts-per-Hertz Control
for Induction Motors

Marko Hinkkanen , Senior Member, IEEE, Lauri Tiitinen , Eemeli Mölsä ,
and Lennart Harnefors , Fellow, IEEE

Abstract— This article deals with the stability analysis of volts-
per-hertz (V/Hz) control for induction motors. The dynamics of
the electrical and mechanical subsystems of the induction motor
model are nonlinearly coupled by the electromagnetic torque
and the backelectromotive force. Under open-loop V/Hz control,
the nonlinear interaction is known to give rise to small-signal
oscillations while operating at medium speeds under light loads.
In this article, it is shown that the interaction also causes a
nonoscillatory unstable mode to appear at low speeds under
heavy loads (despite the perfect flux level), manifesting itself
as a flux collapse or surge. It is also shown that the electrical
subsystem with the rotor speed input and the electromagnetic
torque output has nonpassive operating regions, which indicates
a risk of detrimental interactions with the mechanical subsystem.
Finally, a feedback design is proposed in order to enlarge
the passive and stable regions and improve the damping. The
theoretical results are validated by means of simulations and
experiments on a 45-kW induction motor drive.

Index Terms— Eigenvalues, induction machine, passivity,
scalar control, stability, volts-per-hertz (V/Hz) control.

I. INTRODUCTION

THE development of power semiconductors enabled the
first pulsewidth-modulated (PWM) variable-speed induc-

tion motor drives in the 1960s [1]. As the research on
field-oriented control then was in its infancy, the control
method of choice was open-loop volts-per-hertz (V/Hz) control
[2]–[6]. The V/Hz control today remains a popular choice
for low-cost drives due to its inherent sensorless operation,
simplicity, and ease of use: the end-user defines only a V/Hz
curve and acceleration ramps [7]. Furthermore, the V/Hz
control is common in high-speed drives due to straightforward
utilization of the full inverter voltage [8], [9]. Naturally, com-
pared to field-oriented control, the V/Hz control also has some
drawbacks: its reference-tracking response is either oscillating
or slow (depending on the selected ramps), torque-production
capability is poor at low speeds, and the stator current is
difficult to limit.
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Fig. 1. Equivalent circuit of the induction motor in stator coordinates (where
vectors are marked with the superscript s).

The dynamics of open-loop V/Hz control equal those of the
induction motor alone. The electrical subsystem (see Fig. 1
for a typical equivalent circuit model) and the mechanical
subsystem of the motor are nonlinearly coupled by the electro-
magnetic torque and the backelectromotive force. The stability
of the induction motor was studied by means of its linearized
model in the pioneering works [2]–[6]. It was found out
that the interaction between the electrical and mechanical
subsystems may lead to an unstable region (appearing typically
at medium speeds under light loads), which gives rise to
small-signal oscillations. These oscillations may also excite
torsional resonances of the drivetrain mechanics [10], [11].

The stator resistance voltage drop (RI) has to be compen-
sated for in order to maintain the desired flux level (and
torque production) at low speeds. The RI compensator can
be based on the steady-state vectorial voltage equation with
the low-pass-filtered, measured stator current [12], [13]. The
steady-state speed error due to the slip can also be compen-
sated for [13]. These two compensators alter the operating
point, but they do not yet guarantee the stability of the drive
system.

Modern versions of V/Hz control aim to stabilize the drive
by means of feedback from the stator current [14]–[18], while
the RI and slip compensators are also used in order to maintain
the desired operating point. Typically, the operating-point
component of the measured stator current is first filtered out.
The remaining current component (representing the deviation
about the operating-point value) is fed back to the stator
voltage and (optionally) to the stator frequency via feedback
gains [18]. In general, the resulting six gains are difficult to
design since the linearized motor model is of the fifth order
and depends on the operating point. Therefore, the previous
studies resorted to numerical analyses, which allowed taking
into account details but prevented finding analytical results.

In this article, we study the stability of V/Hz control by
reviewing the existing results and augmenting them with new
findings. It is shown that the interaction between the electrical
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TABLE I

DATA OF THE 45-kW FOUR-POLE INDUCTION MOTOR

and mechanical subsystems causes an unstable low-speed
region to appear under heavy loads (despite a perfect RI com-
pensator), in addition to the well-known unstable midspeed
region. This nonoscillatory unstable mode manifests itself as
a flux collapse or surge. It is also shown that the electrical
subsystem with the rotor speed input and the electromagnetic
torque output has nonpassive operating regions, indicating a
risk of detrimental interactions with the mechanical subsystem.
Finally, feedback gains are designed by means of the passivity
concept and analytical formulations. The proposed feedback
design significantly enlarges the passive and stable regions and
improves the damping. The theoretical results are validated by
means of simulations and experiments on a 45-kW induction
motor drive.

II. INDUCTION MOTOR MODEL

The stator current is represented by a real column vector
i s = [isd, isq]T, whose elements isd and isq are the direct- and
quadrature-axis components, respectively, and the superscript
T marks the transpose. Other vector quantities are represented
similarly. Furthermore, the identity matrix I = [ 1 0

0 1 ], the
orthogonal rotation matrix J = [ 0 −1

1 0 ], and the zero matrix
0 are frequently used in the following equations.1

A. Large-Signal Model

The induction motor is modeled using the standard inverse-
� model [19], whose equivalent circuit is shown in Fig. 1.
The parameters of the model are defined in Table I. With
the stator current i s and the rotor flux linkage ψR as the
state variables, the nonlinear state equations in synchronous
coordinates rotating at the angular speed ωs are

Lσ
di s

dt
= −(Rσ I + ωs LσJ)i s + (αI − ωmJ)ψR + us (1a)

dψR

dt
= RR i s − (αI + ωrJ)ψR (1b)

where us is the stator voltage, Rσ = Rs + RR is the total
resistance, α = RR/LM is the inverse rotor time constant, ωm

1The motor model could be equivalently expressed in a component form [2]
or a complex form [5]. In this article, the real vector form is used since
it is compact (as the complex form) and permits applying standard linear
algebra (as the component form) for interconnecting linearized subsystems.
The expressions resemble those of the complex form: left-multiplication by
the matrix J rotates a vector by 90◦ and coordinate transformations can be
expressed using the matrix exponential, exp(ϑJ) = cos ϑI + sin ϑJ.

Fig. 2. Block diagrams. (a) Nonlinear large-signal model. (b) Small-signal
model. In (a), the electrical subsystem (1) and the mechanical subsystem
(2) form the overall motor model (shaded region). In (b), the effect of the
control system is included in the transfer function G(s). The negative sign
convention is chosen for the electromagnetic torque δτm in order to have the
negative feedback structure.

is the electrical angular speed of the rotor, and ωr = ωs−ωm is
the slip angular frequency. For future reference, the stator flux
linkage is ψ s = Lσ i s + ψR (see Fig. 1). The electromagnetic
torque is nonlinear in the state variables

τm = iT
s JψR (1c)

where per-unit (p.u.) quantities are assumed.
The mechanical subsystem is governed by

Jm
dωm

dt
= τm − τL (2)

where Jm is the total moment of inertia and τL is the load
torque. For simplicity, the mechanical damping is omitted
in the following analysis, corresponding to the worst case
scenario. Fig. 2(a) shows the block diagram of the overall
motor model composed of the electrical subsystem (1) and
the mechanical subsystem (2).

B. Steady-State Operating Point

The stability of the nonlinear model is to be studied by
means of small-signal linearization. The first step is to solve
the steady-state operating point of (1) and (2) by substituting
d/dt = 0. The operating-point quantities are marked with the
subscript 0. From (1b), the stator current in the steady state is

i s0 = αI + ωr0J
RR

ψR0. (3)

Furthermore, since the stator flux linkage is ψ s0 = Lσ i s0 +
ψR0, the rotor flux linkage can be expressed as

ψR0 = RR

Lσ
(ωrbI + ωr0J)−1ψ s0 (4)

where ωrb = α/σ is the breakdown slip frequency and σ =
Lσ /(LM + Lσ ) is the leakage factor. Applying (1c), (3), and
(4), the steady-state torque can be expressed as

τm0 = ψ2
R0ωr0

RR
= 2τb0

ωr0/ωrb + ωrb/ωr0
(5)

where ψR0 = �ψR0� is the rotor-flux magnitude and other
vector magnitudes are marked similarly. The breakdown torque
depends on the stator-flux magnitude

τb0 = LM

LM + Lσ

ψ2
s0

2Lσ
. (6)
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Fig. 3. Stability and passivity maps in the speed–torque plane for a 45-kW
motor under open-loop V/Hz control. The large-signal stability limit (blue
dashed line) originates from the breakdown torque (6). The gray thin lines
show the steady-state torque (5) at ωs0 = {0, 0.5, 1, 1.5} p.u. The red lines
present the small-signal stability limits. The blue solid lines present the
passivity limit for G(s). Negative speeds are not shown since the graph is
symmetric with respect to the origin. It is to be noted that the small-signal
stability limit (red line) partially overlaps with the breakdown torque (blue
dashed line) and the passivity limit (blue solid line).

The breakdown torque (6) defines the large-signal stability
limit of the induction motor for a given stator flux magnitude.

Fig. 3 shows the feasible operating region originating from
the breakdown torque for a 45-kW four-pole induction motor,
whose parameters are given in Table I. The stator flux mag-
nitude is constant (ψs0 = 1 p.u.) in the base-speed region and
decreases inversely proportional to the stator frequency ωs0 in
the field-weakening region. Fig. 3 also shows the steady-state
torque characteristics (5) plotted at selected values of the stator
frequency. The rated torque of the 45-kW motor is 43% of
the breakdown torque in the base-speed region, assuming the
constant parameters given in Table I.

The slip angular frequency is obtained from (5) as a function
of the torque

ωr0 = τb0

τm0

�
1 −

�
1 − τ 2

m0

τ 2
b0

�
ωrb (7)

where |ωr0| ≤ ωrb is assumed, corresponding to the torque
loci drawn with solid lines in Fig. 3. The operating point of
the induction motor can be uniquely defined with three scalar
quantities, e.g., stator-flux magnitude ψs0, stator frequency ωs0,
and torque τm0. Using these three quantities, the slip frequency
(7), rotor flux (4), stator current (3), and other operating-point
quantities can be calculated.

III. CONTROL SYSTEM

Fig. 4 shows the V/Hz control system considered in this
article. The operating-point stator current is approximated by
means of low-pass filtering the measured current

di s0

dt
= αf(i s − i s0) (8)

where αf is the bandwidth of the filter. If the band-
width is selected low enough (clearly below the breakdown

Fig. 4. V/Hz control with current feedback and slip compensation. In this
algorithm, the subscript 0 refers to quasi-constant operating-point quantities.

slip frequency), the low-pass-filtered current i s0 repre-
sents the operating-point current. For notational simplicity,
quasi-constant quantities appearing in the V/Hz control algo-
rithm are marked with the subscript 0 even though they,
in general, change slowly with time.

The voltage reference for the PWM inverter is calculated as

us = Rs i s0 + ωsJψs0 + K (i s0 − i s) (9)

where the first term is the RI compensation, ψ s0 = [ψs0, 0]T is
the constant stator flux reference, K is a 2×2 gain matrix, and,
for simplicity, the inverter is assumed to be ideal, us = us,ref .
The first two terms in (9) define the operating point of the
motor. They could be expressed in various alternative forms
(such as a V/Hz curve). Nonetheless, comparatively accurate
RI compensation at low speeds is necessary to maintaining the
desired flux level and enabling stable operation under heavy
loads [1], [13], [18].

The stator frequency reference is

ωs = ωm0 + ωr0 + kT(i s0 − i s) (10)

where ωm0 is the rate-limited speed reference, ωr0 is the slip
frequency reference from the slip compensator, and k is a 2×1
gain matrix that provides another injection point for altering
the electrical dynamics. The slip frequency reference ωr0 in
(10) can be calculated, e.g., using the steady-state slip relation
(7) with the low-pass-filtered current i s0 [13]. Generally, the
accuracy of slip compensation depends mainly on the rotor
resistance estimate. Slip compensation has only minor effects
on the stability of the drive. It could be omitted if the rotor
speed accuracy is unimportant.

A majority of state-of-the-art V/Hz control methods can
be represented in the framework defined by (9) and (10),
at least approximately. If desired, rotor-flux reference coor-
dinates could be used instead [18]. The gain matrices affect
the stability, damping, and other dynamic properties of V/Hz
control. In the general case, the matrices K and k have six
gain elements in total. The gain design problem is complicated
due to the underlying nonlinear fifth-order system model.
An extensive numerical analysis with various gain choices is
provided in [18].

IV. LINEARIZED SMALL-SIGNAL MODEL

A. System Matrices

The local stability of any operating point can be analyzed
by means of the linearized model. The small-signal deviation
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of the stator current about the operating point is denoted by
δi s = i s − i s0, and other small-signal variables are marked
similarly. As an example, linearization of the torque expression
(1c) yields

δτm = −ψT
R0Jδi s� �� �
δτm1

+ iT
s0JδψR� �� �
δτm2

(11)

where the first term δτm1 originates from the stator current
deviation and the second term δτm2 originates from the
rotor-flux deviation.

Linearizing the whole electrical subsystem in (1) yields

d

dt

	
δi s

δψR



=

⎡
⎣− Rσ

Lσ
I − ωs0J

1

Lσ
(αI − ωm0J)

RRI −αI − ωr0J

⎤
⎦

� �� �
A

	
δi s

δψR




+
⎡
⎣ 1

Lσ
I

0

⎤
⎦

� �� �
Bs

δus +
	 −Ji s0

−JψR0



� �� �

bs

δωs +
⎡
⎣− 1

Lσ
JψR0

JψR0

⎤
⎦

� �� �
bm

× δωm (12a)

δi s = �
I 0

�� �� �
Cs

	
δi s

δψR



(12b)

δτm = �−ψT
R0J iT

s0J
�� �� �

cm

	
δi s

δψR



. (12c)

It is worth noticing that the operating-point current i s0 appear-
ing in the matrices bs and cm depends on the operating-point
slip frequency ωr0 through (3). The control law defined by (9)
and (10) is also linearized2

δus = −(K + Jψ s0kT)δi s δωs = −kTδi s. (13)

The low-pass filter in (8) could be easily included in the
linearized model. However, its effect on the stability is minor
if the bandwidth αf is set low enough compared to the motor
dynamics. Furthermore, the resulting increase in the system
order would hinder deriving analytical results. Therefore, the
dynamics of the filter (8) are omitted.

The closed-loop system matrix Ac for the electrical subsys-
tem is obtained by inserting the control law (13) into (12)

Ac = A − [Bs(K + Jψ s0kT)+ bsk
T]Cs. (14)

Furthermore, interconnecting the electrical subsystem (14)
with the mechanical subsystem (2) results in the overall system
matrix

At =
	

Ac bm

cm/Jm 0



. (15)

The eigenvalues of At define the local stability of the V/Hz-
controlled induction motor. Naturally, the model for open-loop
V/Hz control is obtained as a special case by substituting
K = 0 and k = 0 in (14).

2The control law (13) can be seen as static output feedback, which is
the simplest practical closed-loop control approach. Interestingly, general
analytical solutions for stabilizing gains of static output feedback are not
available [20], contrary to state-feedback and state-observer gains.

B. Transfer Functions

In order to have an insight into the linearized model, let
us consider its transfer-function representation [see Fig. 2(b)].
The electrical subsystem (12) with the control law (13) corre-
sponds to a single-input single-output transfer function from
the rotor speed to the electromagnetic torque

G(s) = − δτm(s)

δωm(s)
= −cm(sI4 − Ac)

−1bm = N(s)

D(s)
(16)

where I4 is the 4 × 4 identity matrix and the negative sign
convention is selected for being able to use the standard
negative feedback structure in the following analysis. The
numerator polynomial N(s) is of the third order, and the
denominator (characteristic) polynomial D(s) is monic and
of the fourth order. The closed-form expressions for these
polynomials are given in Appendix A.

The block diagram in Fig. 2(b) represents the linearized
model of the induction motor, including the mechanical sub-
system. The transfer function from the load torque to the
electromagnetic torque is

δτm(s)

δτL(s)
= G(s)

s Jm + G(s)
= 1

Jm

N(s)

Dt(s)
(17)

where the characteristic polynomial of the overall system is

Dt(s) = s D(s)+ N(s)/Jm = det(sI5 − At) (18)

where I5 is the 5 × 5 identity matrix. The last form provides
a link to the corresponding system matrix At given in (15).
Naturally, the roots of the characteristic polynomial Dt(s)
equal the eigenvalues of At . From (18), it can be realized that
the numerator N(s) affects the stability of the overall system,
in addition to the denominator D(s).3

V. OPEN-LOOP CHARACTERISTICS

In this section, the characteristics of an induction motor are
analyzed in the open loop, i.e., the feedback gains are set to
zero, K = 0 and k = 0. The perfect RI and slip compensators
are assumed, resulting in accurate operating points. Therefore,
possible unstable regions originate solely from the interaction
of the electrical and mechanical dynamics. This analysis also
applies to conventional V/Hz control [13], where the RI and
slip compensators are based on the low-pass-filtered stator
current, and no additional stabilizing feedback is used, if the
filter bandwidth αf in (8) is set low enough.

A. Electrical Subsystem

1) Poles and Zeros: First, the open-loop electrical subsys-
tem, represented by the transfer function G(s) in (16) with
zero gains, is considered. Fig. 5 shows the pole and zero loci as
the stator frequency ωs0 varies. Fig. 5(a) presents the no-load
condition (τm0 = 0), and Fig. 5(b) presents a heavy-load
condition (τm0 = 0.8τb0 or ωr0 = 0.5ωrb). The poles, zeros,

3Not surprisingly, the linearized dynamics of the induction motor closely
resemble the linearized estimation-error dynamics of a speed-adaptive flux
observer [21], [22]. In the observer, the mechanical subsystem is replaced with
a proportional–integral mechanism for speed estimation, and the electrical
subsystem can be modified using a nonzero observer gain.
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Fig. 5. Poles and zeros of the electrical subsystem G(s) in the open loop
as the stator frequency ωs0 varies. (a) No load τm0 = 0. (b) Heavy load
τm0 = 0.8τb0. The markers indicate the values at ωs0/ωrb = {0,±2,±4,±∞}.
At τm0 = 0, poles and zeros at positive and negative frequencies ωs0 overlap.
Due to symmetry, only the upper half-plane is shown.

and angular frequencies are normalized by the breakdown
slip ωrb in order to improve the generality of the graphs for
different motors [5]. As can be seen, the slip frequency ωr0

only shifts the pole loci along the imaginary axis. As expected,
the poles of the electrical subsystem are stable. However,
the zero at the real axis becomes unstable at low speeds
under the heavy load [see Fig. 5(b)], i.e., the transfer function
G(s) is (locally) nonminimum phase. Therefore, based on
(18), stability problems can be expected when the electrical
subsystem is interconnected with the mechanical subsystem.

2) Passivity: Since the rotor speed is uncontrolled in V/Hz
control, passivity (positive-realness) properties of the electrical
subsystem G(s) are of interest. If G(s) were passive, its feed-
back interconnection [see Fig. 2(b)] with any passive mechani-
cal subsystem would remain passive, indicating robustness for
unknown mechanical subsystems. A precondition for a system
to be passive is its stability, which always holds for G(s) in
open loop. The remaining passivity condition is [23]

Re{G(jω)} ≥ 0 for all ω ∈ [−∞,∞]. (19)

However, the electrical subsystem G(s) fulfills the condition
(19) only in limited operating regions. The general analytical
expression for Re{G(jω)} is complicated, but some operating
points can be analytically treated. For ωs0 = 0, it can be shown
that G(s) is passive if the slip frequency |ωr0| ≤ α, i.e., if the
angle between the current vector i s0 and the rotor flux vector
ψR0 is not more than 45◦.

To provide more comprehensive results, the passivity
of G(s) was studied numerically using the parameters of
the 45-kW motor. Fig. 3 shows the passive region in
the speed–torque plane. In accordance with the abovemen-
tioned analytical result, there is a nonpassive region at low
speeds under heavy loads, located symmetrically around the
zero-frequency steady-state torque locus. Therefore, this non-
passive low-speed region is larger in the regenerating mode

Fig. 6. Poles of the overall system in the open loop as the stator frequency
ωs0 varies. (a) No load τm0 = 0. (b) Heavy load τm0 = 0.8τb0. The inertia is
Jm = Jr . The unstable poles are shown in magenta.

than in the motoring mode. The passive region appears in
between very low and medium speeds (for the given motor,
in the speed range from 0 to 0.2 p.u. under light loads).

In terms of frequencies normalized by the breakdown slip
ωrb, the shape and size of the passive regions of other motors
are similar to those of the 45-kW motor. The breakdown slip
of smaller motors can be much larger, which increases the
absolute width (in electrical rad/s) of both the nonpassive
low-speed region and the passive region.

B. Overall System

The stability of the overall system is studied by means of
the eigenvalues of At in (15) or, equivalently, the poles of
the overall system [see (18)]. Fig. 6 shows the poles as the
stator frequency ωs0 varies. The operating-point flux is ψs0 =
1 p.u., and the total inertia equals the rotor inertia, i.e., Jm =
Jr. If the total inertia Jm approached infinity, the complex
conjugate poles in Fig. 6 would approach the poles of the
electrical subsystem shown in Fig. 5, and the real pole would
approach the origin.

Fig. 6(a) reveals that there are unstable poles at medium
speeds (around ωs0 ≈ 5ωrb ≈ 0.2 p.u.) in the no-load condi-
tion. If the total inertia were increased such that Jm > 2.1Jr,
this unstable mid-speed region would disappear, but the damp-
ing would still be poor. Increasing the mechanical damping
would also shrink the unstable region. Fig. 6(b) shows that
there are unstable real poles at low speeds in the heavy-load
condition. If the torque were further increased, this unstable
low-speed region would expand. Increasing the total inertia Jm

does not remove this nonoscillatory unstable mode but makes
it slower, i.e., the unstable poles move closer to the origin.

Fig. 3 shows the resulting stable and unstable regions in
the speed–torque plane. The unstable midspeed region appears
under light loads, originates from the complex-conjugate
unstable poles [see Fig. 6(a)], gives rise to the current and
torque oscillations, and becomes smaller with the increas-
ing total inertia Jm. The unstable low-speed region appears



1614 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 10, NO. 2, APRIL 2022

Fig. 7. Poles of the overall system with the proposed feedback gains (ku =
0.6 and kω = 4) as the stator frequency ωs0 varies. (a) No load τm0 = 0.
(b) Heavy load τm0 = 0.8τb0. The gray loci correspond to ku = 0.6 and
kω = 0. The inertia is Jm = Jr .

under heavy loads, originates from the unstable real pole [see
Fig. 6(b)], and causes the flux level to collapse or surge. Its
stability limit essentially equals the passivity limit of G(s),
i.e., it does not depend on the total inertia. It can also be
seen that the maximum stable torque at very low speeds is
significantly less than the breakdown torque, corresponding to
the maximum slip of |ωr0| = α at ωs0 = 0.

VI. PASSIVITY-BASED FEEDBACK DESIGN

In this section, the feedback gains are designed for the
control law given in (9) and (10) by means of the passivity
concept and analytical formulations. This approach comple-
ments existing numerical design methods, such as [18].

A. Voltage Injection

The case without frequency injection, i.e., k = 0, is first
considered. The stabilizing feedback signal is injected into the
stator voltage according to (9) via the gain matrix

K = −RsI + ku Lσ (αI + ωm0J) (20)

where ku is a positive design parameter and the operating-point
speed ωm0 corresponds to the (rate-limited) speed refer-
ence in the actual control algorithm. As shown in Appen-
dix B, the gain matrix (20) passivates the transfer function
from the speed deviation δωm to the current-induced term
δτm1 of the electromagnetic torque deviation [see (11)] and
guarantees the internal stability of G(s). The complete pas-
sivity of G(s) in every operating point is not guaranteed since
the rotor-flux deviation also affects the passivity. Nonetheless,
complete passivation does not seem possible by means of
simple V/Hz control due to the underlying nonminimum phase
system [24].

Fig. 7 shows the poles of the overall system with the gain
(20) where ku = 0.6. Fig. 7(a) shows that the system is
stabilized in the no-load condition, while Fig. 7(b) shows

Fig. 8. Stability and passivity maps with the feedback gain (20). The red
solid line shows the stability limit, the blue solid line shows the passivity limit,
and the shaded area indicates the passive (stable) region, all for ku = 0.6. The
stability limit practically overlaps with the corresponding passivity limit. Due
to the passivity, the stable region is independent of the total inertia. This
map is obtained with kω = 0 in (21), but it remains essentially the same
with kω = 4. Furthermore, the red dashed line shows the stability limit for
ku = 0.2, almost overlapping with the breakdown torque (blue dashed line).

that there still is an unstable region at low speeds in the
heavy-load condition. Fig. 8 shows the resulting stable and
unstable regions in the speed–torque plane for ku = 0.2 and
ku = 0.6. The stable region covers almost the whole feasible
operating region, while narrow unstable regions appear in the
vicinity of the breakdown torque and at very low speeds in
the regenerating mode. The passive region of G(s) matches
with the stable region of the overall system, which indicates
robustness against the total inertia (and passive mechanical
subsystems in general). Decreasing ku expands the stable
region but decreases the damping. Choosing ku = 0 makes
the system marginally stable.

The sensitivity to parameters Lσ and α appearing in (20)
is not critical, and their rough estimates can be used.4

A significantly overestimated value for Lσ or a too large value
for ku shrinks the stable operating region. The effect of the
parameter α on the stability is minimal, and it could be even set
to zero in practice. However, for operating at very low speeds
under heavy loads, an accurate estimate of the stator resistance
Rs is required, not only for the gain (20) but especially for
the RI compensation term in (9) in order to maintain the flux
level. A similar sensitivity to Rs at low speeds is a well-known
problem in observer-based sensorless control as well.

B. Frequency Injection

The damping can be further improved if the synchronous
frequency used in the coordinate transformations is deviated
about the operating-point value. The gain matrix in (10) is
selected as (see Appendix B)

k = kωRRJψR0

ψ2
R0

(21)

4The gain matrix (20) can be rewritten as K = k1I + k 	
2ωm0J, where k 	

2 =
ku Lσ and k1 = k 	

2α − Rs are constants. It is worth noticing that Lσ appears
only as a scaling factor and that k1 ≈ −Rs.
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Fig. 9. Photograph of the motor test bench. The 45-kW induction motor is
on the left-hand side, and the 37-kW load machine is on the right-hand side.

Fig. 10. Simulation of the open-loop V/Hz control (K = 0 and k = 0) with
perfect RI compensation. The rated load torque is applied at t = 1 s, and the
frequency reference ωs0 is slowly varied (0.1 p.u. → − 0.1 p.u. → 0.1 p.u.).

where kω is a positive design parameter and the operating-point
rotor flux ψR0 = ψ s0 − Lσ i s0 is obtained from the sta-
tor flux reference and the low-pass-filtered current. In the
linearized model, the gain matrix (21) leads to δωs =
−(kωRR/ψ

2
R0)δτm1, i.e., the frequency deviation δωs is pro-

portional to the current-induced torque deviation δτm1. This
frequency injection effectively increases the apparent rotor
resistance in some elements of the closed-loop system matrix.

Fig. 7 shows the poles of the overall system with ku = 0.6
and kω = 4. The frequency injection improves damping, while
it does not essentially affect the stability limits, i.e., Fig. 8 is
approximately valid for ku = 0.6 and kω = 4 as well. Conse-
quently, the stable operating region is relatively insensitive to
the parameters in (21). If a significantly overestimated value
for RR or a very large value for kω is set, the stable region starts
to shrink. It is also to be noted that a slightly simpler variant of
(21)—based on the stator-flux reference ψ s0 instead of ψR0—
could be used. It would provide similar characteristics, but the
passive region would be smaller.

VII. RESULTS

The stability of the 45-kW induction motor (see Table I)
under V/Hz control is studied by means of simulations and
experiments. Fig. 9 shows a photograph of the motor test
bench used in the experiments. The total inertia is Jm =
1.66Jr. The V/Hz control algorithm, as illustrated in Fig. 4 and
given in detail in Appendix C, was implemented on a dSPACE
MicroLabBox prototyping system. The switching frequency
of the PWM inverter is 2 kHz, and the sampling frequency

Fig. 11. Acceleration, constant-speed operation, and deceleration at no load.
(a) Simulation. (b) Experiment. The gains are initially zero (K = 0 and
k = 0). At t = 4 s, the proposed feedback design is enabled (ku = 0.6 and
kω = 4).

is 4 kHz. Inverter nonlinearities were not compensated for. For
monitoring purposes, the rotor speed was measured, and the
electromagnetic torque was estimated using the current-model
flux estimator that takes the magnetic saturation into account.

First, the existence of the unstable low-speed region is
demonstrated by means of a simulation example, where
open-loop V/Hz control with feedforward RI compensation
is used. Fig. 10 shows the simulation result, where the rated
load torque is applied, and the frequency reference is slowly
reversed. The operating-point current i s0, needed for the RI
compensation term in (9), is calculated from the known load
torque using (3), (4), and (7). In this example sequence, the
RI compensation term remains constant since the load torque
is constant (and the accelerating torque is negligible).5 As

5The feedforward RI compensator applied in the simulation of Fig. 10 is not
of practical interest since the required torque (or slip) is generally unknown.
However, here, it allows demonstrating the stability problem in the open loop
with the correct flux level.
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Fig. 12. Stepwise load changes with the proposed feedback design enabled
(ku = 0.6 and kω = 4). (a) Simulation. (b) Experiment.

expected based on the analysis, the drive becomes unstable
in the vicinity of zero frequency, resulting in a flux surge
after t = 10 s and collapse after t = 28 s. The size of
the unstable low-speed region can be reduced using the stator
current feedback (such as the proposed feedback design), but
it seems impossible to completely stabilize the drive at low
speeds under heavy loads by means of simple V/Hz control.
Inclusion of the magnetic saturation in the simulation model
would diminish the flux surge seen in Fig. 10 around t = 10 s,
but the flux collapse around t = 28 s would be similar in the
saturated motor.

Next, the practical version of V/Hz control, where RI com-
pensation is based on the low-pass-filtered measured current,
is considered. In the following examples, the bandwidth of
the low-pass filter is αf = 0.1ωrb. Fig. 11 shows acceleration,
operation at the 0.2-p.u. speed (in the unstable mid-speed
region), and deceleration in the no-load condition, while the
load torque is zero. Fig. 11(a) and (b) shows the simulation

and experimental results, respectively. Initially, zero feedback
gains are used, and the motor drive becomes increasingly
unstable after t = 2 s. Then, the proposed feedback design is
enabled at t = 4 s, which stabilizes the system. In the experi-
mental results, the magnitude of the oscillations increases even
faster than in the simulation results. This difference is not
surprising since the simulation model assumes a rigid mechan-
ical system and an ideal inverter, while these components are
nonideal in the actual drive system.

Fig. 12 shows a rated load torque step and its removal,
while the speed reference is kept at 0.2 p.u., and the proposed
feedback design is enabled. Fig. 12(a) and (b) shows the
simulation and experimental results, respectively. It can be
seen that the slip compensator corrects the speed error and that
the transient response is well damped. The noise in the wave-
forms originates from the PWM inverter of the load machine.
It is also worth mentioning that the proposed feedback
design is independent of the slip compensator: the stabilizing
feedback could be used even if the slip compensator were
disabled.

VIII. CONCLUSION

In addition to the well-known unstable midspeed region, the
open-loop V/Hz control of the induction motor has an unstable
low-speed region, where the flux level tends to collapse or
surge under heavy loads, even if the RI compensation is
perfect. This phenomenon complicates producing large starting
torques or reversing the rotor speed under heavy loads. Similar
unstable regions are typical to many sensorless field-oriented
control methods. The passivity of the electrical subsystem
(with the rotor speed input and the electromagnetic output) can
be related to the robustness of V/Hz control against unknown
mechanical subsystems. Using the proposed feedback design,
the passive and stable regions of V/Hz control can be signifi-
cantly enlarged, and the damping can be improved. However,
a narrow unstable region still remains at very low speeds under
heavy regenerative loads.

APPENDIX A
ANALYTICAL EXPRESSION FOR G(s)

Assuming a skew-symmetric gain matrix K = k1I + k2J
and a gain matrix k of the form given in (21), the numerator
of the transfer function G(s) in (16) is

N(s) = ψ2
R0ωrb

RR

�
s3 +

	
(1 + a + aσ)ωrb − ω2

r0

ωrb



s2

+ �
aσ(2 + a)ω2

rb + ω̄s0 ¯̄ωs0 − 2aω2
r0

�
s

+ a2σ 2ω3
rb + �

¯̄ω2
s0 − a2ω2

r0

�
ωrb − ω̄2

s0ω
2
r0

ωrb

�
(22)

where a = (1 − σ)(Rs + k1)/RR, ω̄s0 = ωs0 + k2/Lσ , and
¯̄ωs0 = ωs0 + σk2/Lσ . The denominator is

D(s) = �
s2 + (1 + a)ωrbs + aσω2

rb − ω̄s0ωr0
�2

+ [(ω̄s0 + ωr0)s + �
¯̄ωs0 + aωr0

�
ωrb]2 + Dω(s) (23)
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where the last term

Dω(s) = kωRRωrb

Lσ

�	
s + α

ωrb
+ (1 + a − σ)


�
s2 + ω2

s0

�
+

	
αa + Lσ

RR
(ω̄s0 − ¯̄ωs0)ωm0



s

−
	

aωm0 − Lσ
RR
(ω̄s0 − ¯̄ωs0)α



ωs0

�
(24)

appears only if kω is nonzero. In this case, the system G(s)
is not skew-symmetric anymore.

In the open loop (K = 0 and k = 0), the denominator (23)
reduces to D(s) = det(sI4 − A) = |(s − s1)(s − s2)|2, whose
roots, normalized by the breakdown slip, are

s1,2

ωrb
= j

ωr0

ωrb
− 1

2

�
1 + a − j

ωm0

ωrb

±
�
(1+a)2−4aσ − ω2

m0

ω2
rb

− j2(a−1)
ωm0

ωrb

�
.

(25)

It can be seen that the normalized slip angular frequency
ωr0/ωrb simply shifts the poles along the imaginary axis. The
shape of the root loci as a function of ωm0/ωrb depends only
on the two parameters: σ and a [5].

APPENDIX B
PASSIVITY-BASED GAIN DESIGN

According to (11), the torque deviation consists of two
terms: δτm1 originates from the stator current deviation
and δτm2 originates from the rotor-flux deviation. Corre-
spondingly, the electrical subsystem can be split into two
parallel-connected systems, G(s) = G1(s)+ G2(s), where

G1(s) = −δτm1(s)

δωm(s)
= −cm1(sI4 − Ac)

−1bm = N1(s)

D(s)
(26)

with cm1 = [−ψT
R0J, 0, 0] and

N1(s) = ψ2
R0

Lσ

�
s3 + (1 + a)ωrbs2

+ �
aσω2

rb + ωs0ωr0 + ω̄s0ωm0
�
s

+ωs0( ¯̄ωs0 + aωr0)ωrb
�
. (27)

Unlike G(s), the transfer function G1(s) can be com-
pletely passivated. According to the Kalman–Yakubovich–
Popov lemma [23], G1(s) is passive if there is a symmetric
positive definite matrix P and a symmetric positive semidefi-
nite matrix Q such that

Pbm = cT
m1 P Ac + AT

c P = − Q. (28)

The matrix

P = 1

ku

	
(1 + ku)Lσ I I

I (1/Lσ )I



(29)

is positive definite for positive ku and satisfies the first condi-
tion in (28). The matrix K in (20) and the vector k in (21)

satisfy the second condition in (28), resulting in

Q = 2

⎡
⎣ RR + (1 + ku)αLσ 0

0 (1 + kω)RR + (1 + ku)αLσ
0

0 0

⎤
⎦

(30)

that is positive semidefinite for positive ku and kω. Therefore,
G1(s) is stable and passive at every operating point. Further-
more, the internal stability of G(s) is also guaranteed since
it has the same characteristic polynomial D(s). The resulting
gain K is similar to a passivity-based observer gain [22].

APPENDIX C
DISCRETE-TIME ALGORITHM

A discrete-time implementation of V/Hz control shown
in Fig. 4 is described in detail. For the purposes of slip
compensation and frequency injection, the operating-point
rotor flux is first computed, ψR0(k) = ψ s0 − Lσ i s0(k), where
ψ s0 = [ψs0, 0]T is the constant flux reference, i s0(k) is the low-
pass-filtered current signal, and k is the discrete-time index.
Based on the first form in (5), the operating-point slip is
computed using

ωr0(k) = RRψs0isq0(k)

ψ2
R0(k)

(31)

which is slightly simpler to implement than (7). The measured
stator current is transformed to synchronous coordinates

i s(k) = exp[−ϑs(k)J]i s
s(k). (32)

The current deviation δi s(k) = i s(k) − i s0(k) is computed as
an auxiliary signal. With (21), the frequency reference (10)
can be expressed as

ωs(k) = ωm0(k)+ ωr0(k)+ kωRRδτ (k)

ψ2
R0(k)

(33a)

δτ (k) = ψT
R0(k)Jδi s(k) (33b)

where δτ (k) is the current-induced torque deviation signal and
ωm0(k) is the rate-limited speed reference signal (see Fig. 4).
If the slip compensation is not needed, it can be disabled by
setting ωr0(k) = 0 in (33a).

According to (9), the voltage reference is

us,ref(k) = Rs i s0(k)+ ωs(k)Jψ s0 − K (k)δi s(k) (34)

which is transformed to stator coordinates

us
s,ref(k) = exp[ϑs(k)J]us,ref(k). (35)

Finally, the controller state variables are updated for the next
sampling instant: the new angle is

ϑs(k + 1) = ϑs(k)+ Tsωs(k) (36)

and the new low-pass-filtered current is

i s0(k + 1) = i s0(k)+ Tsαfδi s(k) (37)

where Ts is the sampling period.
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