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On Time Headway Selection in Platoons Under
the MPF Topology in the Presence

of Communication Delays
Elham Abolfazli , Bart Besselink , Member, IEEE, and Themistoklis Charalambous , Senior Member, IEEE

Abstract— For platoons under the multiple-predecessor follow-
ing (MPF) topology, communication delays can compromise both
the internal stability and string stability. The most straight-
forward solution to guarantee stability is by increasing the
time headway. However, time headway plays a significant role
in road capacity and increasing its value is in contrast with
the idea of platooning. In this study, internal stability and
string stability of platoons suffering from communication delays
are investigated and a lower bound for the time headway is
proposed. Using this bound, platoons do not need to massively
increase the time headway in order to compensate for the effects
of communications delays. Finally, we evaluate the proposed
lower bound on the time headway and the simulation results
demonstrate its effectiveness.

Index Terms— Platooning, time headway, multiple-predecessor
following topology, communication delays.

I. INTRODUCTION

PLATOONING has been shown to increase road-network
capacity, decrease fuel consumption and greenhouse gas

emissions, and improve safety; see [2]–[5] and references
therein. For maintaining a stable vehicle platoon, it is nec-
essary to guarantee both internal stability and string stability.
Internal stability refers to the individual stability defined for
each vehicle and describes the ability to converge to given
desired trajectories, [6]. Regarding string stability, although
many definitions have been proposed in the literature, such
as [7]–[9], all entail the unique fact that disturbances must not
amplify along the platoon.

It is known that the spacing policy, which defines the
distance between two consecutive vehicles, can influence the
ability of a platoon to attenuate the effects of disturbances

Manuscript received 20 June 2020; revised 4 December 2020 and
26 February 2021; accepted 17 April 2021. Date of publication 22 June
2021; date of current version 8 July 2022. This work was supported in
part by the Academy of Finland under Grant 320043 and in part by
the European Commission through the H2020 Project Finest Twins under
Agreement 856602. The work of Themistoklis Charalambous was supported
by the Academy of Finland under Grant 317726. This article was presented
in part at the IFAC World Congress in 2020. The Associate Editor for this
article was G. Guo. (Corresponding author: Elham Abolfazli.)

Elham Abolfazli and Themistoklis Charalambous are with the Department
of Electrical Engineering and Automation, School of Electrical Engineering,
Aalto University, 02150 Espoo, Finland (e-mail: elham.abolfazli@aalto.fi;
themistoklis.charalambous@aalto.fi).

Bart Besselink is with the Bernoulli Institute for Mathematics, Computer
Science and Artificial Intelligence, University of Groningen, 9712 CP Gronin-
gen, The Netherlands (e-mail: b.besselink@rug.nl).

Digital Object Identifier 10.1109/TITS.2021.3087484

and reach string stability [10]. The main three classes for
spacing policy are: constant spacing policy (CSP), nonlinear
distance (NLD) policy and constant time headway spacing
policy (CTHP). In CSP, the desired inter-vehicle distance is
constant and independent of vehicle velocity [11]. In NLD,
the desired distance between two consecutive vehicles can be
a nonlinear function of states of the vehicles [12], [13]. For
example, in [14], a quadratic spacing policy is proposed and
in [15], [16] an improved quadratic spacing policy is intro-
duced, which can work without the restrictive assumption of
having zero initial spacing errors. For CTHP, which is the
class under consideration in this work, a linear function of
speed, with the proportional gain, named Time headway (h),
dictates the desired inter-vehicle distance [17].

A smaller time headway can increase the road throughput,
but it could be dangerous for the platoon, since it could lead to
internal and/or string instability and, hence, collisions. On the
other hand, an increase in the time headway value leads to a
larger inter-vehicle distance, which guarantees safety, but as
a consequence, the capacity of the roads is decreased and the
fuel consumption is increased; see for example, [18]. There-
fore, finding the minimum employable time headway, which
can guarantee string stability, is of paramount importance.

The communication topology of early-stage platoons con-
sisted mainly of vehicles connected to their nearest predeces-
sor and information was only obtained from radars. Such a
topology is known as predecessor following (PF). However,
in case information is sought from multiple predecessors,
it is difficult to achieve so using only onboard measurements.
Recent technological advancement facilitates a vehicle to
receive information and be connected with many vehicles
in the platoon by using vehicle-to-infrastructure (V2I) and
vehicle-to-vehicle (V2V) communications, such as dedicated
short-range communication (DSRC) and vehicular ad-hoc
networks (VANETs) [19]. Therefore, various topologies are
emerging, including predecessor leader following (PLF),
two-predecessor following (TPF), two-predecessor-leader fol-
lowing (TPLF) and multiple-predecessor following (MPF).
The influence of different information flow topologies on the
internal stability has been studied in [20]. Regarding string
stability, in [21], a vehicle platoon with CSP and in the
presence of time lags is considered, wherein each vehicle,
with a linear model, is connected to ‘r ’ vehicles ahead.
It is shown that the platoon is not string stable. Hence, the
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focus turns towards platoons under the MPF topology and
with CTHP.

The advantages of multiple connected vehicles with CTHP
have been widely studied in the literature. Studies revealed
that the cooperation of multiple connected vehicles decreases
the oscillations and collisions and improves the string stability
of the platoon. Also, it is shown that connecting multiple
vehicles results in a higher throughput [22]. In [23], a platoon
with CTHP, linear model and time lag is considered, in which
each vehicle can obtain information from multiple predecessor
vehicles and the desired inter-vehicle distance is defined to
be a function of the host vehicle’s velocity. Then, a lower
bound for the time headway is proposed for three scenarios;
when the position, velocity and acceleration information of
‘r ’ immediate preceding vehicles is used, when only the
position and velocity of the ‘r ’ immediately preceding vehicles
is used and also when the information from the immediate
and the r th predecessors are available. It has been shown
that the minimum time headway is dependent on the number
of connected vehicles and hence, it demonstrates that using
V2V communications and increasing the number of connected
vehicles, a higher road capacity can be achieved. In [24],
a new definition of desired inter-vehicle distance in a platoon
with CTHP and time lag under the MPF topology is proposed
which avoids inconsistencies in the inter-vehicle distance by
extending this definition from the PF topology. Under this
definition, a lower bound that guarantees internal stability and
string stability is provided, which implies that an increasing
number of connected cars can lead to a smaller time headway.
The proposed controller and minimum time headway are
obtained using a linear third-order model, but it is evaluated
by simulations on both linear and nonlinear vehicle models.

Despite the advantages of V2V and V2I communications,
wireless communications inevitably introduce time delays in
vehicle platoons and can be a big challenge for control design,
since both the internal and string stability are compromised in
the presence of communication delays. The effect of delays
on platoons has been extensively studied in the literature. For
example, for CSP, a platoon with PLF topology and linear
vehicle model is considered in [25] and it is shown that the
system is string unstable when each vehicle sees different
delays either in receipt of the lead vehicle information or the
preceding vehicle information. Then, a controller is proposed
which makes the platoon string stable, in the case when all
vehicles see the same delay in both lead vehicle information
and in preceding vehicle information. Also, in [26], a platoon
with CSP under PLF topology is considered and it is shown
that a tight formation and string stability is achievable if the
information of the lead vehicle is received instantaneously.
But, in the case of multiple broadcasting, if the leader states
transmit with a delay, the platoon will be string unstable.
For the nonlinear vehicle model, where parameters like the
road slope, wind speed, rolling and grade resistances are
considered, a controller for a platoon under the PLF topology
is proposed in [27], that can guarantee disturbance string
stability while having sensor and communication delays.
In [28], an H-infinity control method is developed for het-
erogeneous platoons with uncertainty in the vehicle dynamics

and uniform communication delay. The proposed controller
guarantees string stability, but it has been shown that the
communication delays have negative effects on vehicular pla-
toon performances. In [29], by using the Markovian jumping
system theory, a sampled-data control method is proposed for
platoons subject to communication delays, switching topolo-
gies and external disturbances. In [30], a distributed nonlinear
delay-dependent control method is proposed for platoons in the
presence of heterogeneous time-varying delays. Also, an upper
bound for the time delay is provided. A vehicle platoon in
the presence of multiple time-varying communication delays
is considered in [31] and a distributed adaptive collaborative
control method is proposed. In [32], the NLD policy is used
for a scenario of having a mixture of connected cruise con-
trol (CCC) vehicles and non-CCC vehicles and the effects of
information delays on the longitudinal dynamics of connected
vehicles have been investigated. Also, it is demonstrated
that on condition of having the communication delays below
a threshold, increasing the number of communication links
between vehicles can improve the stability of the system.

Dealing with time delays has been studied for the platoons
with CTHP as well. In [33], a Cooperative Adaptive Cruise
Control (CACC) system is considered and for the third-order
vehicle model, a controller is proposed which uses the position
and velocity information of the predecessor that is coming
from radar and also delayed acceleration information of the
predecessor coming from the wireless communication net-
work. The effects of sampling, zero-order hold (ZOH) and
constant time delay on string stability are investigated and the
maximum allowable time delays for different sampling times
and time headway are characterized. In [34], for one vehicle
look-ahead CACC system with the third-order linear model,
identical local controllers are proposed which guarantee strict
L2 string stability, in the presence of different types of
delays, actuation, communication and sensor delay. In [35]
and [36], platooning control has been solved by treating it as
the problem of achieving consensus in a network with time
delays. A second-order linear model is considered in [35]
and the controller is designed as a coupling protocol which
uses information coming from onboard sensors as well as the
communication network. The internal stability is proven in the
presence of time-varying delays and string stability is analyzed
for the PLF topology with constant delays. Also, in [36],
a third-order linear model is considered for a vehicular net-
work affected by time-varying delays and a control algorithm,
based on data coming from onboard sensors and the wire-
less communication network, is proposed which guarantees
asymptotic and exponential stability of the system. Moreover,
stability is analyzed in the case of switching topologies, for
example when during a time period, one of the vehicles
loses its connection with the leader. In addition to internal
stability, it is shown that in the case of fixed delays, the system
will be string stable. Due to the nonrational representation
of time delays, they are approximated with Maclaurin series
expansions in [37] and with Pade approximation in [38] and
then the string stability is analyzed for the rational transfer
function. In [39], the minimum acceptable value for the time
headway, in the presence of parasitic delays and lags in a
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platoon, wherein each vehicle has only access to the position
of its predecessor, is proposed. Although, by selecting that
small time headway, which meets the requirements for string
stability, a higher road throughput and fuel efficiency will be
achieved, the effects of connections between more than two
vehicles on the time headway are not investigated.

None of the aforementioned works considered the case
when there exist time delays in a platoon with the MPF
topology and apparently, the optimal time headway in the
presence of both time delays and V2V communications is not
analyzed. That is, on the one hand, in [39], considering time
delays, the minimum time headway is proposed, but with the
scenario of one vehicle look-ahead and on the other, in [24],
considering platoons with MPF topology, the minimum time
headway is found, but time delays are neglected. This paper
focuses on those platoons, which have more connections
among their vehicles, and proposes a minimum acceptable
time headway that guarantees string stability in the presence
of time delays. This proposed lower bound for the time
headway is consistent with the results in [24] when the
communication delays become zero. Also, because of having
a direct acceleration error feedback, the proposed lower bound
in this paper is smaller than the results in [39] when vehicles
are only connected to their predecessors. The contributions of
this paper are the following:
• The internal stability of the heterogeneous platoon under

the MPF topology, where each vehicle is allowed to be
connected to a different number of predecessors, is ana-
lyzed by means of Nyquist stability theory. In order to
have a complete internal stability analysis for all possible
values of time delays, we apply the Nyquist criterion to
both the delay-free and delayed communications cases.
The conditions that are found for the delay-free case, are
consistent with the internal stability conditions proposed in
the literature. Then, for the delayed communications case,
a sufficient condition that guarantees the asymptotically
stability of the platoon is proposed.

• For overcoming the problem of string instability in a
platoon, where every vehicle is connected to multiple
preceding vehicles via communication links suffering time
delays, a lower bound on time headway is proposed for the
case in which the communication delays are homogeneous.
Hence, the disturbances acting on the lead vehicle do not
propagate along the platoon and the knowledge of this
lower bound allows the platoon to utilize its full potential,
implying that the road capacity is maximized within the
possibilities given by the platoon control system. Also,
the proposed lower bound shows that by increasing the
number of predecessors, a smaller lower bound on the time
headway is achieved, which is in accordance to the results
in [24].
The remainder of this paper is structured as follows.

Section II presents some notation and mathematical prelim-
inaries. Also, it gives the vehicle model and then a control
law for a platoon with homogeneous time delays is proposed
and the objectives of the paper are formulated. Section III
analyzes the internal stability and string stability of the system
and proposes a lower bound for the time headway. Section IV

shows the simulation results verifying the suggested time
headway. Finally, in Section V, we draw conclusions and
discuss future directions.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and Mathematical Preliminaries

Notation: Vectors and matrices are denoted by lowercase
and uppercase letters, respectively. Integer and natural num-
bers sets are denoted by Z and N, respectively. Z0 �
{0, 1, 2, . . .}, Z

n
k � {k, k + 1, . . . , n}, and N

n � {1, 2, . . . , n}.
Real and nonnegative real numbers sets are denoted by R and
R+, respectively. m×n real matrices are denoted by R

m×n . For
any matrix A ∈ R

m×n, (m, n) ∈ N×N, we denote its transpose
by AT and its entries by ai j , i ∈ N

m , j ∈ N
n (i.e., A = [ai j ]).

The n × n identity matrix is represented by In .
We model the information flow between platooning vehicles

using a directed graph. A graph G(V, E), is a set of nodes V
connected by edges E , where V = {v1, v2, ..., vN } represents
all the following vehicles and E ⊆ V × V represents the
connections between each pair of following vehicles. The
Laplacian matrix associated with G is defined as L = [li j ],
i, j ∈ N

N , with

li j =
⎧⎨
⎩

−ai j , i �= j,�N
k=1 aik , i = j,

(1)

where ai j = 1 if (v j , vi ) ∈ E and ai j = 0, otherwise. The
connection ai j = 1 means vehicle i can receive information
from vehicle j . Also, we assume a uni-directional communi-
cation structure, i.e., vehicles are able to receive information
only from their predecessors, and hence ai j = 0 if j > i .
Moreover, the connections between the vehicles and the leader
can be modeled by

P = diag{p11, p22, . . . , pN N }, (2)

where pii = 1 when vehicle i is connected to the leader and
pii = 0, otherwise. Then, a new information topology matrix
can be defined as

Lp := L + P . (3)

It is easy to see that Lp is a lower triangular matrix.
The following lemma is useful for later developments in the

paper.
Lemma 1 [40]: Suppose A, B, C and D are matrices of

dimension n ×n, n ×m, m ×n and m ×m, respectively. Then,
if A is invertible, for the block matrix we have

det

�
A B
C D

�
= det(A) det(D − C A−1 B). (4)

B. Vehicle Model

Consider a platoon of N vehicles with the following longi-
tudinal model, as in, e.g., [8]⎧⎪⎨

⎪⎩
ṗi (t) = vi (t),

v̇i (t) = ai (t),

τi ȧi (t) + ai(t) = ui (t),

(5)
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Fig. 1. A platoon under MPF topology.

where pi(t), vi (t), ai(t) and ui (t) are the position, velocity,
acceleration and control input of the i th vehicle, respectively
and τi > 0 is the time lag in the powertrain.

It is assumed that vehicle i can use information from
multiple predecessor vehicles, as shown in Fig. 1, where
vehicle i , i ∈ Z

N
3 , is connected to three predecessor vehicles.

For this topology, the desired distance between vehicle i and
the l-th vehicle ahead of it is considered as [24]

di,i−l (t) =
i	

k=i−l+1

(hkvk(t) + dk) , (6)

where hk ≥ 0 is the time headway of vehicle k and dk > 0 is
the desired standstill gap between vehicle k and k − 1.

C. Control Structure

The following linear feedback controller is used in [24] for
vehicle i when there are no time-delays:

ui (t) = −
ri	

l=1

�
k pi



pi − pi−l +

i	
k=i−l+1

(hkvk + dk)
�

+ kv i(vi − vi−l ) + kai(ai − ai−l )

�
. (7)

Here, ri ≤ i is the number of the vehicles directly ahead of
vehicle i that send their information to it. In a heterogeneous
platoon under the MPF topology, each vehicle is allowed to be
connected to a different number of predecessors. The control
parameters (kpi , kv i , kai) are tunable gains for feeding back
distance, velocity and acceleration errors between vehicle i
and the l-th vehicle ahead of i .

D. Problem Formulation

It is assumed that the controller of vehicle i has access to
the difference between its own states and all the predeces-
sors through wireless communication, which suffers from a
homogeneous time-delay �. Then, based on the controller (7)
proposed in [24], the following control law is proposed:

u�
i (t) = −

ri	
l=1

�
k pi



pi (t − �) − pi−l (t − �)

+
i	

k=i−l+1

(hkvk(t − �) + dk)
�

+ kv i
�
vi (t − �) − vi−l (t − �)



+ kai

�
ai (t − �) − ai−l (t − �)


�
, (8)

where u�
i (t) = ui (t − �) is the actual control input acting

on vehicle i . The main goal is to coordinate the motion

of vehicles so that internal stability and the string stability
are guaranteed. The former means the closed loop system is
stable and accordingly, vehicles in the platoon can track the
desired inter-vehicle distance and keep the desired velocity.
The latter means that the disturbances do not propagate
along the platoon. Mathematically, for internal stability we
require the following conditions for 1 ≤ l ≤ r ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

limt→∞



pi(t) − pi−l (t)+
	i

k=i−l+1
(hkvk(t) + dk)

�
= 0,

limt→∞


vi (t) − vi−l (t)

�
= 0,

limt→∞



ai (t) − ai−l (t)
�

= 0.

For string stability under the MPF topology, we consider
the following definition used in [24],


ei (t)
2
2 ≤ 1

r

r	
l=1


ei−l (t)
2
2 ,

where

ei (t) = pi (t) − pi−1(t) + hvi (t) + di .

In the next section, we will analyze these two stability
objectives.

III. STABILITY ANALYSIS

In this section, we first find the closed loop dynamics,
by following the work in [24]. Then we analyze the internal
stability and the string stability.

We define the following errors⎧⎪⎨
⎪⎩

p̄i(t) = pi(t) − p0(t) +
	i

k=1
(hkvk(t) + dk),

v̄i (t) = vi (t) − v0(t),
āi (t) = ai (t) − a0(t).

(9)

It is assumed that the lead vehicle moves at a constant
speed, i.e., u0(t) = 0 and a0(t) = 0. This assumption on
the lead vehicle has been proved to be necessary in many
scenarios [41]. From (5), the dynamics of the error variables
can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
˙̄pi(t) = v̄i (t) +

	i

k=1
hkāk(t),

˙̄vi (t) = āi (t),

˙̄ai (t) = − 1

τi
āi (t) + 1

τi
ui (t).

(10)

Using (9) and after some algebraic manipulations, the con-
trol law (8) becomes

u�
i (t) = −

ri	
l=1

�
k pi



p̄i (t − �) − p̄i−l (t − �)

�

+ kv i



v̄i (t − �) − v̄i−l (t − �)

�
+ kai



āi (t − �) − āi−l(t − �)

��
.

= −k pi

�
ri p̄i(t − �) −

ri	
l=1

p̄i−l (t − �)

�
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− kv i

�
ri v̄i (t − �) −

ri	
l=1

v̄i−l (t − �)

�

− kai

�
ri āi (t − �) −

ri	
l=1

āi−l (t − �)

�
. (11)

By substituting (11) into (10) and defining augmented
errors p̄ = [ p̄1, p̄2, . . . , p̄N ]�, v̄ = [v̄1, v̄2, . . . , v̄N ]�,
ā = [ā1, ā2, . . . , āN ]�, the dynamics model of the closed loop
network can be recast as

ξ̇ (t) = Aξ(t) + A�ξ(t − �),

ξ(t) = �(t), t ∈ [−�, 0], (12)

where ξ = [ p̄�, v̄�, ā�]� is the lumped state vector,
�(·) ∈ C([−�, 0], R

ν) represents the initial state of the
system and A and A� ∈ R

ν×ν , ν = 3N , are given as

A =
⎡
⎣0 IN H

0 0 IN

0 0 −T

⎤
⎦ , (13)

A� =
⎡
⎣ 0 0 0

0 0 0
−TK pLp −TKvLp −TKaLp

⎤
⎦ . (14)

In (13) and (14),

Km = diag{km1, . . . kmN }, m ∈ {p, v, a}, (15)

collects the control parameters, whereas T captures the vehicle
time constants as

T = diag{1/τ1, . . . 1/τN }. (16)

Finally, the desired headway parameters are represented
in H as

H =

⎡
⎢⎢⎢⎣

h1 0 . . . 0
h1 h2 . . . 0
...

...
. . . 0

h1 h2 . . . hN

⎤
⎥⎥⎥⎦ . (17)

A. Internal Stability Analysis

In this section, we will find a sufficient condition under
which the vehicle platoon (12) is asymptotically stable.

Theorem 1: By selecting the control gains (kpi , kv i , kai)
such that the following conditions hold

kpi > 0, (18a)

kai > 0, (18b)

kai − τi (kv i + k pi hi ) + τi
2k pi �= 0, (18c)

kv i + k pi hi ≥ k piτ , (18d)

the closed loop system (12) is asymptotically stable for any
time delay � that satisfies the following inequality

�ri (kv i + k pihi ) < 1, i ∈ N. (19)

Outline of the Proof: Due to having time delays, we analyze
the internal stability using the Nyquist stability criterion. As a
first step, because of the structure of the MPF topology,
the characteristic equation (12) can be reduced to the level of
individual vehicles and then we apply the Nqyuist criterion to

the open loop transfer function. The proof is provided for two
cases, perfect communications and delayed communications.
See Appendix A for details.

Note that the condition is sufficient and not necessary. As a
result, there might be delays for which (19) is not satisfied,
but the system is internally stable.

In the case of � = 0, condition (19) obviously holds. Also,
the region defined by (18a), (18b) and (18d) is consistent with
the internal stability conditions proposed in [24], in which
� = 0.

Remark 1: While the conditions seem to be counter-
intuitive, the following statements can be inferred:
• When a time delay � is given, it follows from (19) that

stability cannot be guaranteed for large hi . A possible
reason is that the error in the speed difference is amplified.

• The higher the number of hops r that the information is
transferred, the smaller the delay � that the network can
tolerate.

• By substituting (18d) in (19), we obtain kpiτ�ri < 1.
Therefore, in the case of increasing r , platoon stability can
only be guaranteed for smaller values of τ�.

B. Homogeneous String Stability Analysis

For string stability analysis, we assume that the platoon is
homogeneous, which means that τi = τ > 0, ri = r , hi = h,
kpi = k p, kv i = kv and kai = ka , ∀i ∈ Z

n
0. Then from (5)

and (8) we have

τ
...
pi (t) + p̈i (t)

= −
r	

l=1

�
k p



pi (t − �) − pi−l(t − �)

+
i	

k=i−l+1

(hvk(t − �) + dk)
�

+ kv



vi (t − �)

− vi−l (t − �)
�

+ ka



ai (t − �) − ai−l(t − �)

��
, (20)

and

τ
...
pi−1(t) + p̈i−1(t)

= −
r	

l=1

�
k p



pi−1(t − �)

− pi−1−l(t − �) +
i−1	

k=i−l

(hvk(t − �) + dk)
�

+ kv



vi−1(t − �) − vi−1−l (t − �)

�
+ ka



ai−1(t − �) − ai−1−l(t − �)

��
. (21)

The time derivative of (20) is

τ
...
v i (t) + v̈i (t)

= −
r	

l=1

�
k p



vi (t − �) − vi−l (t − �)



8886 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

+
i	

k=i−l+1

hak(t − �)
�

+ kv



ai (t − �) − ai−l (t − �)

�

+ ka



ȧi(t − �) − ȧi−l (t − �)

��
. (22)

Then, by using the definition of spacing error, i.e., ei (t) =
pi (t) − pi−1(t) + hvi (t) + di , calculating (20) − (21) +
h × (22) and doing some algebraic manipulations, we obtain

τ
...
e i (t) + ëi (t) + rkaëi (t − �) + r

�
kv + k ph



ėi (t − �)

+ rk pei (t − �) =
r	

l=1

�
kaëi−l (t − �)

+ �
kv − k ph(r − l)



ėi−l (t − �) + k pei−l (t − �)

�
. (23)

Then, by taking the Laplace transform of (23), and after
algebraic manipulations, we obtain

Ei (s) =
r	

l=1

Hl(s)Ei−l (s), (24)

where Ei (s) is the Laplace transformation of ei (t) and

Hl(s)= kas2e−�s +�
kv −k ph(r − l)



se−�s +k pe−�s

τ s3+s2+rkas2e−�s +r
�
kv +k ph



se−�s +rkpe−�s

.

(25)

It can be shown that for homogeneous platoons, ei/ei−l =
vi/vi−l . In a platoon under the MPF topology, the spacing
error of the vehicles are affected by their multiple predeces-
sors. Therefore, in order to have string stability, in addition to
H1(s), all the string stability functions Hl(s) for l ≤ r must
be examined. Since (25) is identical for all vehicles, string
stability of the platoon can be guaranteed if, [24]


Hl( jω)
∞ ≤ 1

r
, ∀1 ≤ l ≤ r, (26)

where Hl( jω) can be derived from (25) by substituting
s = jω.

Now we are ready to present the second theorem on the
string stability conditions.

Theorem 2: Consider system (5) with input (8) that is
internally stable. Then, the string stability specification (26)
holds if all the following conditions are satisfied:

kv + k p(h − τ ) ≥ 0, (27a)

2τ� − �h − τh ≤ 0, (27b)

ka − τ (kv + k ph) ≤ 0, (27c)

τ − 2rka� ≥ 0, (27d)

1 + 2r



ka − τ (kv + k ph)
�

+ 2r�



k p(τ − h) − kv

�
≥ 0,

(27e)

r2k2
ph2(1 − (r − l)2) + 2r2k pkvh(1 + r − l)

−2rkp ≥ 0, 1 ≤ l ≤ r (27f)

ka > 0, (27g)

kp > 0. (27h)

For the region defined by (27), there exists a set of feedback
gains k p, kv and ka, such that string stability specification (26)
holds if

h ≥ hmin = 2(τ + �)

2rka + 1
. (28)

Outline of the Proof: First, we will find the conditions
in (27), which can guarantee the string stability. Then based on
the region defined in (27), a lower bound for the time headway
is proposed. See Appendix B for details.

Note that conditions (27a) and (27c)-(27g) are sufficient
but not necessary for string stability, while conditions (27b)
and (27h) do not affect string stability and only help to derive
the lower bound for the time headway in (28).

Contrary to the controller used in [39], we have a direct
acceleration error feedback. As a result, if ka �= 0, the lower
bound presented by Theorem 2 is smaller than the lower bound
in [39], even in the same scenario where r = 1.

Remark 2: Theorem 2 proves the conjecture made in [24].
As it is shown, the larger the delay �, the larger the minimum
time headway h. This comes into contrast with the internal
stability condition obtained in Theorem 1. Nevertheless, one
can tune the triplet of control gains (kp, kv , ka), such that both
conditions can be satisfied.

Remark 3: Considering a set of parameters {ka = 0.4,
r = 3, τ = 0.5s,� = 0.2 s, h = 0.45 s} that satisfies (27b)
and (27d), the feasible region for (k p, kv ), that satisfies
conditions in (27), is shown shaded in Fig. 2a. Also, in case
of perfect communication, i.e., � = 0, the feasible region
for (kp, kv ) that is proposed in [24] is shown in Fig. 2b.
It can be seen that, to guarantee string stability, the acceptable
region for the control parameters in the presence of time
delays has become smaller. Indeed, in the case of � = 0,
condition (27e) is equivalent to condition [24]-(34c) and also,
condition (27a) and (27c) are not needed; see Appendix B.
Therefore, the proposed region defined in (27) is consistent
with the necessary and sufficient region defined in [24] when
the communication delays become zero.

The relationship among r , � and hmin in Theorem 2 is
shown in Fig. 3. In this figure, the values of τ and ka are
considered the same as in Remark 6 and the Numerical Results
section.

IV. NUMERICAL RESULTS

In this section, numerical simulations are presented to
illustrate the results in our theorems, first for a small-scale
platoon with 5 vehicles and next for a larger-scale platoon
with 20 vehicles.

A. Small-Scale Platoons

The model used for each car is the nominal linear model (5),
and the controller used in (8). We considered two values for
the number of predecessors: r = 1 and r = 3. Vehicle i starts
at the point −id and moves to reach the desired distance as
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Fig. 2. The feasible region of (kp, kv ) that guarantees string stability.

Fig. 3. Minimum acceptable time headway (hmin) for different time delays
(�) and different number of inter-vehicle connections (r).

well as the desired velocity, which is 20 m/s, same as the
leader’s velocity.

1) External Disturbances During the Steady State: In the
first scenario, after 60 seconds, when the platoon has reached
the steady state, a sinusoidal perturbation u0(t) = A0 sin(ω0 t)

TABLE I

MODEL PARAMETERS

acts on the leader for the duration of one cycle ( 2π
ω0

s). The

numerical values for system parameters are given in Table I.
After choosing the acceleration control coefficient as

ka = 0.4, in case of r = 1, the minimum value for the
time headway will be hmin = 0.78s and in case of r = 3,
we will obtain hmin = 0.41s. Other control parameters,
(kp, kv ) are selected in a way that conditions (27) are satisfied.
Then, to verify the proposed criterion for the time headway,
we simulate the platoon in two cases, i.e., when h < hmin and
also when h > hmin.

In Fig. 4, where each vehicle is connected only to its
predecessor and hmin = 0.78 s, by choosing h < hmin, it can
be seen that the perturbations in the spacing error amplify as
in Fig. 4(a) and the string stability transfer function surpasses
1/r in Fig. 4(c) and hence, the system is not string stable.
Also, the disturbance has caused a collision in the platoon.
But, as can be observed in Fig. 5, by choosing h > hmin,
the platoon remains string stable.

Next, we simulate a vehicle platoon with the MPF topology
and r = 3. Fig. 6 demonstrates the system response after
adding the disturbance in the case of h < hmin for this type
of platoon. Using Theorem 2, the minimum time headway
is hmin = 0.41s. In Fig. 6(a), after the disturbance, large
overshoots for the spacing error between vehicles can be seen,
which is a sign of string instability. Fig. 6(b) is a more accurate
representation of the platoon, that shows the position of each
vehicle. We observe that after the disturbance, there would
be a collision between the leader and vehicle 1 and also,
the space between other vehicles decreases in an unsafe way.
Also, the magnitude-frequency diagram of Hl( jω) is shown
in Fig. 6(c), where it is shown that the magnitudes surpass
1/r and thus, (26) does not hold. According to the simulation
results, by considering h < hmin, the platoon will be string
unstable.

Fig. 7 depicts the platoon response for h > hmin. It can be
seen from Fig. 7(a) that the height of the peaks in the spacing
errors after adding the disturbance is lower than the previous
case. Besides, Fig. 7(b) shows that although the space between
the leader and vehicle 1 decreases, there are no collisions
between them. Finally, the magnitude-frequency diagram of
Hl( jω) when h > hmin is shown in Fig. 7(c). As can be seen in
the figure, |Hl( jω)| does not surpass the maximum acceptable
value for string stability, i.e., 1/r , which means (26) holds, and
hence the platoon is string stable.

2) External Disturbances During the Transient State: In
the second scenario, vehicles start from rest but at time
t = 10 s, before reaching the desired velocity, the same kind
of disturbance that we had in the first scenario, acts on the
leader. Fig. 8 shows the system response for this scenario,
while having r = 3 and h > hmin. Having both the external
disturbances and the initial movements happen at the same
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Fig. 4. Platoon response, in the presence of sinusoidal disturbance acting on the leader at t = 60 s, with h < hmin and r = 1.

Fig. 5. Platoon response, in the presence of sinusoidal disturbance acting on the leader at t = 60 s, with h > hmin and r = 1.

Fig. 6. Platoon response, in the presence of sinusoidal disturbance acting on the leader at t = 60 s, with h < hmin and r = 3.

time is like having a superimposed disturbance with a higher
magnitude. String stability, as the proof also manifests, does
not depend on the magnitude of the disturbance and it can be
seen in the figure that the platoon is string stable.

B. Large-Scale Platoons

A platoon with 20 vehicles is considered, where each vehi-
cle can be connected to 10 vehicles ahead, i.e., r = 10. In this
case, by considering the same ka and by using Theorem 2,
hmin = 0.156s, which indicates the importance of multiple
connection. Then after selecting h = 0.16s, we consider a

similar scenario as in [24], which there in no disturbance but
the speed profile of the leader is changing as

v0(m/s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

20, 0 ≤ t (s) < 60

20 − (t − 10), 60 ≤ t (s) < 70

10, 70 ≤ t (s) < 80

10 + (t − 40), 80 ≤ t (s) < 90

20, t (s) ≤ 90

(29)

Fig. 9 shows that although the vehicles are grouped closely
together, changes in the speed of the leader cannot cause a
collision and the platoon still remains string stable.
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Fig. 7. Platoon response, in the presence of sinusoidal disturbance acting on the leader at t = 60 s, with h > hmin and r = 3.

Fig. 8. Platoon response, starting from rest, in the presence of sinusoidal disturbance acting on the leader at t = 10 s, with h > hmin and r = 3.

Fig. 9. Large scale platoon response, with h > hmin and r = 10.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have investigated the internal stabil-
ity and string stability conditions for platoons under the
MPF topology, which are affected by homogeneous constant
communication delays. For this setup, first, by means of
Nyquist stability theory, we provide a sufficient condition that

guarantees internal stability. Next, based on string stability,
we have formulated a lower bound for the time headway.
The proposed lower bound demonstrates that by increasing
the number of predecessor vehicles, a smaller lower bound
on the time headway is achieved, which is in accordance to
the results in [24]. The simulation results, which considered
small- and large-scale platoons, illustrate the validity of our
theoretical results and corroborate the importance of this lower
bound.

This study reveals several open problems for the considered
setup. As part of our future directions, we consider the
following:
• Foremost, we plan to find conditions that guarantee string

stability in platoons with heterogeneous constant and
time-varying delays. This scenario serves as a general case
in which different types of sensors are combined. For
example, if radars are used for the predecessor vehicle and
communication for the remaining (r − 1) vehicles then the
lower bound on the time headway can be possibly reduced.

• As part of future work, we will investigate the effect
of packet drops on the (internal and string) stability of
platoons.

• Additionally, part of future work includes the analysis
of platoons under the MPF topology with bidirectional
connectivity. We plan to investigate the effect of receiving
information from vehicles in the back on time headway.
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APPENDIX

A. Proof of Theorem 1

By taking the Laplace transform of (12), we have

	(s) = (s I3N − A − A�e−�s)−1ξ(0). (30)

By finding det(s I3N − A − A�e−�s), the characteristic
equation of system (12) will be obtained as (31), shown at
the bottom of the page. Then, by using Lemma 1, (31) can
be written in the form of (32), as shown at the bottom of
the page. For the derivation of the second determinant in the
last equation of (32), Lemma 1 can be used again and hence
we obtain (33), as shown at the bottom of the page. For the
derivation of the final line in (33), we have considered the facts
that matrices T, K p , Kv and Ka are diagonal and matrices
Lp and H are lower triangular. After decoupling (33) to N
subsystems, we define

p�
i(s) = s3 + 1

τi
s2 + s2 1

τi
(kairi e

−�s)

+ s
1

τi
ri

�
kv i + k pihi



e−�s + 1

τi
ri k pie

−�s . (34)

As the roots of (30) are given by those of (34) (for i ∈ N
N ),

we will proceed by stability analysis on the basis of (34).
In [24], the internal stability when the time delay is zero is

analyzed using Routh–Hurwitz stability criterion. Although,
this criterion has many advantages, it cannot analyze the
systems with time delays. In this paper, we will use the
Nyquist stability criterion for determining the stability of our
system. This criterion can be applied to systems defined by
non-rational functions, such as systems with delays. Also, it is
less computational and more geometric and can work directly
with experimental frequency response, even without having
the transfer function.

The Nyquist stability criterion can be expressed as
Z = N + P , where Z is the number of roots of the
characteristic equation in right-hand side (RHS) of s-plane,

N is the number of times that the Nyquist plot encircles
−1 + j0 clockwise and P is the number of poles of the open
loop transfer function in RHS of s-plane [42].

In order to have a complete and unified internal stability
analysis for all possible values of time delays, we apply the
Nyquist criterion to both the delay-free and delayed commu-
nications cases.

1) Internal Stability in Case of Perfect Communication:
Neglecting the time delay, i.e., � = 0, (34) can be written as

p�
i(s) = s3 + 1 + kairi

τi
s2 + ri

�
kv i + k pihi



τi

s + ri k pi

τi
= 0.

(35)

Assuming kpi �= 0, it is easy to see that s = 0 cannot be a
solution to (35). Thus, (35) can be written as

1 + 1 + kairi

τi

1

s
+ ri

�
kv i + k pi hi



τi

1

s2 + ri k pi

τi

1

s3 = 0, (36)

The characteristic equation (36) can be rewritten as

1 + L(s) = 0, (37)

where

L(s) = (a + b)s2 + cs + d

s3 , (38)

with

a = 1

τi
, b = kairi

τi
, c = ri

�
kv i + k pi hi



τi

, d = ri k pi

τi
.

(39)

Then, instead of checking when the roots of (35) lie in
the left half plane, to guarantee stability of system (12) with
� = 0, we apply the Nyquist criterion to L(s), as the open
loop transfer function. By replacing s by jω, we have

L( jω) = d − (a + b)ω2 + jcω

− jω3 . (40)

det(s I3 N − A − A�e−�s) =
������

s IN −IN −H
0 s IN −IN

TK pLpe−�s TKvLpe−�s s IN + T + TKaLpe−�s

������ (31)

det(s I3 N − A − A�e−�s) = det(s IN ) det

� �
s IN −IN

TKvLpe−�s s IN + T + TKaLpe−�s

�
−

�
0

TK pLpe−�s

�
(s IN )−1 �−IN −H

��

= det(s IN ) det

� �
s IN −IN

TKvLpe−�s + 1
s TK pLpe−�s s IN + T + TKaLpe−�s + 1

s
TK pLp H e−�s

� �

(32)

det(s I3 N − A − A�e−�s) = det(s IN ) det(s IN ) det

�
s IN + T + TKaLpe−�s + 1

s
TK pLp H e−�s

+ (TKvLpe−�s + 1

s
TK pLpe−�s)(s IN )−1 IN

�
= det(s3 IN + s2(T + TKaLpe−�s) + s(TKvLp + TK pLp H )e−�s + TK pLpe−�s)

=
N�

i=1

�
s3 + s2 1

τi

�
1 + kairi e

−�s
 + s
1

τi
ri

�
kv i + k pi hi



e−�s + 1

τi
ri k pi e

−�s
�

(33)
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Fig. 10. Nyquist plot for some given parameters in case of perfect
communication with no delays.

Since (38) has poles at the origin, in order to use Nyquist
stability criterion, the phase angle of (40) should be investi-
gated as ω → 0+ and ω → 0−. We have

� L( jω) = 90◦ + tan−1
�

cω

d − (a + b)ω2

�
. (41)

For ω → 0+, if (c, d) > 0, we will have

tan−1
�

cω

d − (a + b)ω2

�
> 0. (42)

Therefore, � L( jω) > 90◦ as ω → 0+ and in the same
way, � L( jω) < −90◦ as ω → 0−. As a result, for ω → 0 the
Nyquist plot encircles the point −1+ j0 twice in the clockwise
direction. Fig. 10 demonstrates that to ensure the stability of
system (12) with � = 0, the Nyquist plot of L( jω) should
also encircle the point −1 + j0 twice in the counterclockwise
direction, which means it should cross the real axis at the
left side of the point −1 + j0 when ω �→ 0. For having this
feature, we should find when the imaginary part of L( jω) is
zero. At this point, from (40) we have

ω0
2 = d/(a + b), (43)

where ω = ω0 is the frequency when L( jω) crosses the real
line. At this point, the real part will be

Re{L( jω0)} = −c/ω0
2 = −c(a + b)/d. (44)

Thus, for stability, we need to have c(a + b)/d > 1, and
as a result, we need (a + b) > 0. By substituting from (39)
into (44), we will find that the same condition for internal
stability holds as the one given in [24] via the Routh-Hurwitz
stability criterion.

2) Internal Stability in Presence of Time Delays: If the roots
of (34) lie in the complex left-half plane, then the system is
stable. It can be easily deduced that s = 0 and s = −1/τi

cannot be the solution to (34), if

k pi �= 0, (45a)

kai − τi (kv i + k pi hi ) + τi
2k pi �= 0. (45b)

Thus, after dividing (34) by s3 + 1
τi

s2, the characteristic
equation can be rewritten as

1 + be−�s

s + a
+ ce−�s

s(s + a)
+ de−�s

s2(s + a)
= 0, (46)

where the notation (39) is used. The characteristic equa-
tion (46) can be written as

1 + G(s) = 0, (47)

where the open loop transfer function, denoted by G(s) is

G(s) = be−�s

s + a
+ ce−�s

s(s + a)
+ de−�s

s2(s + a)
, (48)

which can be compactly written as

G(s) = bs2 + cs + d

s2(s + a)
e−�s . (49)

Now, for stability analysis of (34), we apply the Nyquist
criterion on G(s). After replacing s by jω in (49), we obtain

G( jω) = d − bω2 + jcω

−ω2( jω + a)
e− jω�. (50)

From (50), the phase of G( jω) will be

� G( jω) = −180◦ − tan−1(
ω

a
) + tan−1(

cω

d − bω2 ) − ω�.

(51)

If � G( jω) > −180◦ as ω → 0+, then it can be shown that
the Nyquist plot of G( jω) does not encircle the point −1+ j0
as ω → 0. Hence, we investigate what happens as ω → 0+.
From (51), we know that � G( j0+) > −180◦ if

tan−1(
cω

d − bω2 ) − tan−1(
ω

a
) − ω� > 0. (52)

Then, if

tan−1(
cω

d − bω2 ) − tan−1(
ω

a
) > 0, (53)

there exist a time delay � such that (52) holds. If

cω

d − bω2 − ω

a
= ω(ac−d + bω2)

(d − bω2)
> 0, (54)

then, inequality (53) holds. By assuming

kpi > 0, (55a)

kv i + k pi (hi − τ ) ≥ 0, (55b)

we will have d > 0 and ac−d > 0 and then, when
ω → 0+, inequality (54) holds. Therefore, there will be no
encirclement around the point −1 + j0 for the Nyquist plot
when ω → 0. In Fig. 11, a Nyquist plot is provided for some
given parameters (same as the numerical example), depicting
that as long as (45) and (55) hold, there is no encirclement of
the point −1 + j0 as ω → 0.

Then, we should investigate if there is any encirclement as
ω �= 0. After algebraic manipulation, (50) becomes

G( jω) = −
�
cω − aω(b − d

ω2 )

+ j

�
ac + ω2(b − d

ω2 )



ω(a2 + ω2)
e− j�ω.
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Fig. 11. Nyquist plot for some given parameters in case of communication
with delays.

By substituting e− j�ω = cos(�ω) − j sin(�ω) and then
defining

Y (ω) � cω − aω(b − d

ω2 ), Z(ω) � ac + ω2(b − d

ω2 ), (56)

the imaginary part of G( jω) is as follows

Im{G( jω)} = − Z(ω) cos(�ω) − Y (ω) sin(�ω)

ω(a2 + ω2)
. (57)

Suppose that G( jω) crosses the real line when ω = ω0.
From (57), we have

tan(�ω0) = Z(ω0)

Y (ω0)
. (58)

Now, we just need to find the conditions for which
Re{G( jω0)} > −1. For the sake of simplicity, we write Y
and Z for Y (ω0) and Z(ω0), respectively. We have

Re{G( jω0)} = −Y cos(�ω0) + Z sin(�ω0)

ω0(a2 + ω0
2)

= −Y cos(�ω0)
sin(�ω0)

sin(�ω0) + Z sin(�ω0)

ω0(a2 + ω0
2)

= − (Y 2 + Z2) sin(�ω0)

(a2 + ω0
2)Zω0

. (59)

Considering kai > 0, we will have b > 0 and by using (55),
we will have Z > 0. Then, using the fact that sin(�ω) ≤ �ω
for ω ≥ 0, we can continue analyzing Re{G( jω0)} as follows

Re{G( jω0)} ≥ − �(Y 2 + Z2)

(a2 + ω0
2)Z

. (60)

Defining

m � �(Y 2 + Z2)

(a2 + ω0
2)Z

, (61)

a sufficient condition for stability is having m < 1. By substi-
tuting from (56) into (61) and simplifying, we obtain

m = �

�ω2
0(b − d

ω0
2 )2 + c2

ac + ω0
2(b − d

ω0
2 )

�
. (62)

Let X � b − d
ω0

2 . Then fom (62) we have that

�(c2 + ω2
0 X2)

ac + ω2
0 X

< 1. (63)

Since ac−d > 0, we can easily deduce that ac+ω2
0 X > 0,

and inequality (63) can be written as

�(c2 + ω0
2 X2) < ac + ω0

2 X. (64)

By multiplying both sides of (64) by �, and rearranging
we obtain

(�X)2 − (�X) + (�c)2 − a(�c)

ω0
2 < 0. (65)

Since (65) is a quadratic inequality, for having (�X) ∈ R,
we need a positive discriminant, i.e.,

1 − 4
(�c)2 − a(�c)

ω0
2 > 0, (66)

which can be rewritten as

(�c)2 − a(�c) − ω0
2

4
< 0. (67)

Obviously, if (�c) lies between the roots of (67), then (67)
holds, i.e.,

a −
�

a2 + ω0
2

2
< �c <

a +
�

a2 + ω0
2

2
. (68)

The left term of (68) is negative, � is positive and we can
easily deduce from (55) that c > 0. Then we just need to have

�c <
a +

�
a2 + ω0

2

2
. (69)

Since we do not know ω0 (which changes for different �),
we provide a conservative bound, that is, since

a +
�

a2 + ω0
2

2
> a,

then if �c < a, then inequality (69) also holds. Therefore, if

�
c

a
< 1, (70)

then, the Nyquist plot of G( jω) does not encircle the point
−1 + j0 when ω is not close to 0. Therefore, there is no
encirclement for all frequencies and the system is stable.
By substituting from (39) into (70), condition (19) is obtained.

B. Proof of Theorem 2

The proof of Theorem 2 follows mutatis mutandis that
of [39].

Inequality (26) is equivalent to

max
1≤l≤r


Hl( jω)
2∞ = max
1≤l≤r

sup
ω≥0

|Hl( jω)|2 ≤ 1

r2 . (71)

Define

|Hl( jω)|2 � Nl

Dl
, (72)

where

Nl = (k p − kaω
2)2 + �

kv − k ph(r − l)

2

ω2, (73)
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and

Dl = � − ω2 − rkaω
2 cos(�ω)

+ r(kv + k ph)ω sin(�ω) + rkp cos(�ω)

2

+ � − τω3 + rkaω
2 sin(�ω)

+ r(kv + k ph)ω cos(�ω)−rkp sin(�ω)

2

. (74)

After some simplifications, we obtain that the inequality
in (71) holds for l ∈ {1, r} if

Dl − r2 Nl = M6ω
6 + M5ω

5 + M4ω
4 + M3ω

3 + M2ω
2 ≥ 0,

(75)

where

M6 = τ 2, (76a)

M5 = −2τrka sin(�ω), (76b)

M4 = 1 + 2r



ka − τ (kv + k ph)
�

cos(�ω), (76c)

M3 = 2r



k p(τ − h) − kv

�
sin(�ω), (76d)

M2 = r2k2
ph2(1 − (r − l)2) + 2r2k pkvh(1 + r − l)

− 2rkp cos(�ω). (76e)

Considering the fact that sin(�ω) ≤ �ω for ω ≥ 0 and
cos(�ω) ≤ 1, if ka > 0, by considering

k p(τ − h) − kv ≤ 0, (77)

and

ka − τ (kv + k ph) ≤ 0, (78)

then we need to have

Dl − r2 Nl ≥ ω2(M4ω
4 + M2ω

2 + M0), (79)

where

M4 = τ 2 − 2τrka�,

M2 = 1 + 2r



ka − τ (kv + k ph)
�

+ 2r�



k p(τ − h) − kv

�
,

M0 = r2k2
ph2(1 − (r − l)2) + 2r2k pkvh(1 + r − l) − 2rkp.

Having M4, M2, M0 ≥ 0 results in string stability. Hence,
there are three cases as follows

M4 ≥ 0 ⇐⇒ ka ≤ τ

2r�
(80a)

M2 ≥ 0 ⇐⇒ kv ≤ 1 + 2rka + 2rk p(τ�−�h−τh)

2r(τ + �)
(80b)

M0 ≥ 0 ⇐⇒ kv ≥ 1

rh
− k ph

2
, if l = r. (80c)

By combining (80b) and (80c), we obtain

1

rh
− k ph

2
≤ kv ≤ 1 + 2rka + 2rk p(τ� − �h − τh)

2r(τ + �)
. (81)

The above inequality implies that

1+2rka + 2rk p(τ� − �h − τh)

2r(τ + �)
−

�
1

rh
− k ph

2

�
≥ 0. (82)

After some simplifications, we obtain

h(2rka + 1) − 2(τ + �) + rhk p(2τ� − �h − τh)

2rh(τ + �)
≥ 0.

(83)

Then, by assuming 2τ� − �h − τh ≤ 0 and considering
k p > 0, we can deduce that

h ≥ hmin = 2(τ + �)

2rka + 1
. (84)
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