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Engineering Nearly Linear-time Algorithms for Small Vertex
Connectivity

MAX FRANCK and SORRACHAI YINGCHAREONTHAWORNCHAI, Department of

Computer Science, Aalto University, Finland

Vertex connectivity is a well-studied concept in graph theory with numerous applications. A graph is k-

connected if it remains connected after removing any k − 1 vertices. The vertex connectivity of a graph

is the maximum k such that the graph is k-connected. There is a long history of algorithmic development

for efficiently computing vertex connectivity. Recently, two near linear-time algorithms for small k were

introduced by Forster et al. [SODA 2020]. Prior to that, the best-known algorithm was one by Henzinger et al.

[FOCS 1996] with quadratic running time when k is small.

In this article, we study the practical performance of the algorithms by Forster et al. In addition, we in-

troduce a new heuristic on a key subroutine called local cut detection, which we call degree counting. We

prove that the new heuristic improves space-efficiency (which can be good for caching purposes) and allows

the subroutine to terminate earlier. According to experimental results on random graphs with planted ver-

tex cuts, random hyperbolic graphs, and real-world graphs with vertex connectivity between 4 and 8, the

degree counting heuristic offers a factor of 2–4 speedup over the original non-degree counting version for

small graphs and almost 20 times for some graphs with millions of edges. It also outperforms the previous

state-of-the-art algorithm by Henzinger et al., even on relatively small graphs.
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1 INTRODUCTION

Given an undirected graph, the vertex connectivity problem is to compute the minimum size of
a vertex set S such that after removing S , the remaining graph is disconnected or a singleton.
Such a vertex-set is called a minimum vertex cut. Vertex connectivity is a well-studied concept
in graph theory with applications in many fields. For example, for network reliability [15, 23], a
minimum vertex-cut has the highest chance to disconnect the network, assuming each node fails
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independently with the same probability; in sociology, vertex connectivity of a social network
measures social cohesion [33].

There is a long history of algorithmic development for efficiently computing vertex connec-
tivity (see Reference [27] for more elaborated discussion of algorithmic development). Let n and
m be the number of vertices and edges, respectively, in the input graph. The time complexity
for computing vertex connectivity has been O (n2) since 1970 [19] when κ = O (1), where κ is
the vertex connectivity of the graph. This bound was not improved on until very recently, when
[11] introduced randomized (Monte Carlo)1 algorithms to compute vertex connectivity in time
O (m+nκ3 log2 n) (for undirected graphs). The algorithm follows the framework by Reference [27].
This makes progress toward the conjecture (whenκ is a constant) by Aho, Hopcroft and Ullman [1]
(Problem 5.30) that there exists a linear time algorithm for computing vertex connectivity. Before
that, the state-of-the-art algorithm was due to Reference [17], which runs in time O (n2κ logn).

In this article, we study the practical performance of the near-linear time algorithms by Ref-
erence [11] for small vertex connectivity. We briefly describe their framework and point out the
potential improvement of the framework. Reference [27] provides a fast reduction from vertex
connectivity to a subroutine called local vertex-cut detection. Roughly speaking, the framework
deals with two extreme cases: detecting balanced cuts and unbalanced cuts. The balanced cuts can
be detected using (multiple calls to) a standard st-max flow algorithm; the unbalanced cuts can
be detected using (multiple calls to) local vertex-cut detection. Reference [11] follows the same
framework and observe that local vertex-cut detection can be further reduced to another subrou-
tine called local edge-cut detection as well as provide fast edge cut detection algorithms that finally
prove the near-linear time vertex connectivity algorithm for any constant κ. The full algorithm
is discussed in Section 5. From our internal testing, we observe that, overall the framework, the
performance bottleneck is on the local edge detection algorithm.

Therefore, our focus is on speeding up the local edge-cut detection algorithm. To define the
problem precisely, we first set up notations. Let G = (V ,E) be a directed graph. Let E (S,T ) be the
set of edges from vertex-set S to vertex-setT . For any vertex-set S , let volout (S ) :=

∑
v ∈S degout (v )

denote the volume of S , which is the total number of edges originating in S . Undirected edges are
treated as one directed edge in each direction. We now define the interface of the local edge-cut
detection algorithm.

Definition 1.1. An algorithm A is LocalEC if it takes as input a vertex x of a graph G = (V ,E),
and two parameters ν ,k such that νk = O ( |E |), and output in the following manner:

• either output a vertex-set S such that x ∈ S and |E (S,V \ S ) | < k or,
• the symbol ⊥ certifying that there is no non-empty vertex-set S such that

x ∈ S, volout (S ) ≤ ν , and |E (S,V \ S ) | < k . (1)

The algorithm is allowed to have bounded one-sided error in the following sense. If there is a
non-empty vertex-set S satisfying Equation (1), then ⊥ is returned with probability at most 1/2.

Reference [11] introduced two LocalEC algorithms with the running time O (νk2). The algo-
rithms are very simple: they use repeated DFS (depth-first search) with different conditions for
early termination. We note that this running time is enough to get a near-linear time algorithm
for small connectivity using the framework by Reference [27].

Our Results and Contribution. We introduce a heuristic called degree counting that is appli-
cable to both variants of LocalEC in Reference [11], which we call Local1+ and Local2+. We prove
that the degree counting heuristic version is more space-efficient in terms of edge-query complex-
ity and vertex-query complexity. Edge-query complexity is defined as the number of distinct edges

1With at most 1
nc error rate for any constant c .

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.4. Publication date: December 2022.



Engineering Nearly Linear-time Algorithms for Small Vertex Connectivity 4.4:3

Table 1. Comparisons among Various Implementation of LocalEC Algorithms

LocalEC Variants Time Edge-query Vertex-query Reference

Local1 O (νk2) O (νk2) O (νk2) [11]

Local1+ O (νk2) O (νk2) O (νk ) This article

Local2 O (νk2) O (νk ) O (νk ) [11]

Local2+ O (νk2) O (νk ) O (ν ) This article

Local1+ denotes Local1 with the degree counting heuristic. Similarly, Local2+ denotes

Local2 with the degree counting heuristic.

that the algorithm accesses, and vertex-query complexity is defined as the number of distinct ver-
tices that the algorithm accesses. The results are shown in Table 1. These complexity measures
can be relevant in practice. For example, an algorithm with low query complexity may be able to
store the accessed data in a smaller cache than an algorithm with high query complexity.

We conducted experiments on three types of undirected graphs: (1) graphs with planted cuts
where we have control over size and volume of the cuts, (2) random hyperbolic graphs, and (3) real-
world networks. We also conducted experiments in directed graphs with planted cuts. We denote
LOCAL1, LOCAL1+, and LOCAL2+ to be the same local-search-based vertex connectivity algo-
rithm [11] (see Section 5 for details) except that the unbalanced part is implemented with different
LocalEC algorithms using Local1, Local1+, Local2+, respectively (Section 4). We use Local1 as a
baseline for LocalEC algorithms. We denote HRG to be the preflow-push-relabel-based algorithm
by Reference [17]. We implement HRG as a baseline, because when k is small (say k = O (1)) HRG
is the fastest known alternative to References [11, 27]. The implementation details can be found in
Appendix B. By running a sparsification algorithm [26], we can assume that the input undirected
graph size depends on n and k . The following summarize the key findings of our empirical studies.

(1) Comparisons to HRG (Section 7). We compare four vertex connectivity algorithms,
namely, HRG, LOCAL1, LOCAL1+, LOCAL2+. For graphs with planted vertex cuts (Sec-
tions 7.1 and 7.2), LOCAL1, LOCAL1+, and LOCAL2+ scale with much better than HRG with
larger graphs for a fixed κG . They start to outperform HRG on graphs as small as n ≤ 500
(when κ ≤ 8). For random hyperbolic graphs (Section 7.3), HRG performs much better than
on the planted cut instances, but is still outperformed by a significant margin. In real-world
graphs (Section 7.4), LOCAL1+ and LOCAL2+ are the fastest among the four algorithms with
LOCAL2+ being slightly faster than LOCAL1+. We also observe that the performance of all
four algorithms is very similar on part of the real-world dataset and graphs with planted
cuts with the same size and vertex connectivity.

(2) Internal Comparisons (Section 8). We compare three LocalEC algorithms (Local1,
Local1+, Local2+). According to the experiments (Figure 9), for any ν parameter, Local1+
and Local2+ visit significantly fewer edges than Local1. Also, Local2+ visits slightly fewer
edges than Local1+ overall. When plugging into full vertex connectivity algorithms, the
degree counting heuristics (LOCAL1+ and LOCAL2+) improve the performance over non-
degree counting counter part (LOCAL1) by a factor ranging between 2 to almost 20, with
greater factors for larger graphs. For some input graphs, depth first search in all three Lo-
calEC algorithms explores significantly more edges per vertex explored than in other graphs,
which makes the advantage of Local1+ and Local2+ smaller. Finally, according to CPU sam-
pling (Table 4), the local search is the main bottleneck for the performance of LOCAL1 at
roughly at least 90% for large instances. On the other hand, for the degree counting versions
(LOCAL1+ and LOCAL2+), the CPU usage of local search part is improved to be almost the
same as the other main component (i.e., finding a balanced cut using the Ford-Fulkerson’s
max-flow algorithm).
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4.4:4 M. Franck and S. Yingchareonthawornchai

Organization. We discuss related work in Section 2, and preliminaries in Section 3. Then, we
review two variants of LocalEC algorithms (Local1, Local2) [11], and describe new degree counting
heuristic versions (Local1+, Local2+) in Section 4. We review the full vertex connectivity algorithm
based on LocalEC in Section 5. Then, we describe setups and datasets for the experiments in Sec-
tion 6. We discuss experimental results in Section 7 and internal comparisons in Section 8. Finally,
we conclude in Section 9.

2 RELATED WORK

Vertex Connectivity Algorithms. We consider a decision version where the problem is to decide
ifG has a vertex cut of size at most k−1 (the general optimisation version to find the minimum cut
can be solved withO (logκ) calls to the decision version). We highlight only recent state-of-the-art
algorithms. For more elaborated discussion, see Reference [27]. When k = O (1), the fastest known
algorithm is by the authors of Reference [11], with running time O (m + nk3 log2 n) for undirected
andO (mk2 log2 n) for directed graphs. The algorithm is based on local search approach. For larger
k , the fastest known algorithm are based on preflow-push-relabel by Reference [17] with the run-
ning timeO (n2k logn) for undirected graphs andO (mn logn) for directed graphs, and based on al-
gebraic techniques by the authors of Reference [22] with the running timeO (nω log2 n+kωn logn)
for undirected graphs (the same bound is also known in directed graphs by the algorithm in Ref-
erence [7]) where ω denotes the matrix multiplication exponent, currently ω ≤ 2.37286 [2]. When
k is small (say k = O (1)) and the graph is sparse, the preflow-push-relabel-based algorithm in
Reference [17] is the theoretically fastest alternative to References [11, 27] among combinatorial
algorithms. Therefore, we implement the preflow-push-relabel-based algorithm [17] as a baseline
for performance comparisons. We note both all aforementioned algorithms are randomized. Deter-
ministic algorithms are much slower than the randomized ones. The fastest known deterministic
algorithms are by Reference [12] for large k and by Reference [13] for k = O (1). Very recently,

there is a reduction from undirected vertex connectivity to max-flows with O (logO (1) (n)) factor

overhead in running time [21]. Also, there is a recent algorithm that runs in Õ (kn2)-time2 in di-
rected graphs [6], which improves on Reference [17] when the graph is sufficiently dense, and has
the same complexity when the graph is sparse (up to polylog factors).

Deciding (k, s, t )-vertex Connectivity. We mention another related problem, which is to de-
cide if the there is a vertex cut separating s and t of size at most k−1. By a standard reduction [9], it
can be solved by st-maximum flow. st-maximum flow can be solved in timeO (mk ) by augmenting
paths algorithm by Ford-Fulkerson algorithm [10]. For larger k , a simple blocking flow algorithm

by Reference [8] runs in time O (m
√
n). The current state-of-the art algorithms are O (m4/3+o (1) )-

time algorithm by Reference [24], and Õ (m+n1.5)-time algorithm by the authors of Reference [31].
Note that when k is small (e.g., k = O (1)), then Ford-Fulkerson algorithm [10] is the fastest, and
we thus implement Ford-Fulkerson algorithm as a subroutine to find vertex cut for the balanced
case. The algorithms also work for directed graphs with the same running time.

Local Search. There are quite a few local search algorithm with different running times. The
first LocalEC algorithm by the authors of Reference [4] is a deterministic algorithm with a running
time ofO (νkk ). Reference [11] introduced a randomised local search algorithm with improved time
O (νk2). Reference [11] also provide a reduction to the local vertex cut detection problem, which
we called LocalVC (similar to Definition 1.1, but uses vertex cut instead of edge cut). Therefore,
there is a LocalVC algorithm with running time O (νk2). This improved the previous bound for
LocalVC with running time O (ν1.5k ) by the authors of Reference [27] when k is small. For our

2Õ (f (n)) = O (poly(log n)f (n)).
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purpose, when k is small (say k = O (1)), the algorithm in Reference [11] is the fastest, and thus
we consider the LocalEC algorithm in Reference [11].

Implementation and Experimental Studies. To the best of our knowledge, this article is the
first experimental study on vertex connectivity algorithms; there were no prior experimental stud-
ies on vertex connectivity algorithms.3 This is in stark contrast to the edge-connectivity problem
(which is considered as a sibling problem) where we compute the minimum number of edges to
be removed to disconnect the graph. For edge-connectivity, there are many experimental studies
[5, 16, 18, 28]. More recently, the work by the authors of Reference [14] implemented the local
search framework in Reference [11] to compute directed edge-connectivity.

3 PRELIMINARIES

LetG = (V ,E) be a directed graph. In general, we denotem = |E | andn = |V |. We denote E (S,T ) be
the set of edges from vertex-set S to vertex-setT . We say that S ⊂ V is an xy-vertex cut if x cannot
reachy inG−S . S is a vertex cut, if it is an xy-vertex cut for some x ,y ∈ V . If no vertex cut of size k
exists, then the graph is k-(vertex)-connected. Let κG be the vertex connectivity of G, i.e., the size
of the minimum vertex-cut (or n − 1 if no cut exists). Let κG (x ,y) denote the size of the minimum
xy-vertex cut inG or n−1 if the xy-vertex cut does not exist. If the graphG is obvious from context,
then we can omit it from the notation. We say that a triplet (L, S,R) is a separation triple if L, S ,
and R form a partition of V , L, and R are not ∅ and E (L,R) = ∅. In this case, S is a vertex-cut in
G. The decision problem for vertex connectivity, which we call the k-connectivity problem, is the
following: Given G = (V ,E), and integer k , decide if G is k-connected, and if not, output a vertex-
cut of size < k . For the optimisation version, we omit k as input and output a minimum vertex cut.

Sparsification. For an undirected graph G = (V ,E), the algorithm by Nagamochi and Ibaraki
[26] runs inO (m) time and partitions E into a sequence of forests E1, . . . ,En (possibly Ei = Ei+1 =

. . . = En = ∅ for some i). For each k ≤ n, the subgraph FGk := (V ,
⋃

i≤k Ei ) has the property that
FGk is k-connected if and only if G is k-connected. Moreover, any vertex cut of size < k in FGk is
also a vertex cut in G. Clearly, |E (FGk ) | ≤ nk .

With preprocessing in O (m) time, we can assume that the input graph to the k-connectivity
problem is FGk . In particular, we can assume that the number of edges is O (nk ). We can also
assume that the minimum degree is at least k (because, otherwise, we can output the neighbor of
the vertex with minimum degree).

Split Graph. The split graph construct is a standard reduction from vertex-connectivity-based
problems to edge-connectivity-based problems, used in the algorithms featured in this article,
among others [9, 11, 17]. Given graphG, we define the split graph SG as follows. For each vertex x
inG, we replace x with an “in-vertex” xin and an “out-vertex” xout, with an edge (xin,xout). We will
use this index notation to relate vertices to the corresponding out- and in-vertices in the split graph.
For each edge (x ,y) inG, we add an edge (xout,yin) in SG. Any path inG corresponds to a path in SG
with an additional edge for every vertex in G that the path passes through. The reduction follows
easily from the observation that edge-disjoint paths in SG correspond to vertex-disjoint paths inG.

4 LOCALEC ALGORITHMS AND DEGREE COUNTING HEURISTICS

In this section, we review two variants of LocalEC algorithms in Reference [11], and describe their
corresponding new version using the degree counting heuristic. Note that their original versions
of Local1 and Local2 in Section 4.1 apply a multiplicative factor of 8 instead of our 2 to ν . The

3The experimental work by the authors of Reference [29] mentioned k-vertex connectivity problem. However, in the

experiment, they studied only the algorithm for deciding (k, s, t )-vertex connectivity where the source s and sink t are

given as inputs.
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4.4:6 M. Franck and S. Yingchareonthawornchai

ALGORITHM 1: AbstractLocalECG (x ,ν ,k )

1 repeat k times

2 Grow a DFS tree T starting from x , stopping early at some point to get y ∈ V (T ).

3 If the DFS terminates normally, then return V (T ).

4 Reverse all edges along the unique path from x to y in the tree T , unless this is the last iteration.

5 return ⊥.

smaller factor is more practical. In addition, Section 5.2 provides mathematical justification. The
full vertex connectivity algorithm that applies LocalEC is discussed in Section 5. All the algorithms
in this section follow a common framework called AbstractLocalEC as described in Algorithm 1.
Let G = (V ,E) be the graph that we work on. The algorithm takes as inputs x ∈ V and two
integers ν ,k . The basic idea is to apply Depth-first Search (DFS) on the starting vertex x but
force early termination. We repeat for k iterations. If DFS terminates normally at some iteration,
i.e., without having to apply the early termination condition, then the set of reachable vertices
satisfy Equation (1). Otherwise, we certify that no cut satisfying Equation (1) exists. The only main
difference is at line 2, where we need to specify the condition for early termination and selection
of the vertex y ∈ V (T ) (where V (T ) is the set of vertices of the DFS tree T ) in such a way that the
entire algorithm outputs correctly with constant probability.

Next, we define time and space complexity (in terms of edges and vertices required to run the
algorithm) of a LocalEC algorithm.

Definition 4.1. Let A (x ,ν ,k ) be a LocalEC algorithm. A has (t , se , sv )-complexity if A termi-
nates in O (t ) time and accesses at most O (se ) distinct edges, and at most O (sv ) distinct vertices.

4.1 Local1, Local2, and Degree Counting Versions

Algorithm for Local1. On line 2 in Algorithm 1, stop growing the DFS tree when the number of
accessed edges is exactly 2νk . Let E ′ be the set of accessed edges. We sample an edge (u,v ) ∈ E ′

uniformly at random and set y ← u. If we choose τ ∈ [1, 2νk] uniformly at random to sample the
τ th edge visited, then we can instead stop the DFS after that edge.

Theorem 4.2 (Theorem A.1 in Reference [11]). Local1(x ,ν ,k ) is LocalEC with (νk2,νk2,νk2)-
complexity.

Next, we present the degree counting version of Local1, which we call Local1+.
Algorithm for Local1+. On line 2 in Algorithm 1, stop growing the DFS tree as soon as

volout (V (T )) ≥ τ , where τ is chosen uniformly at random from [1, 2νk]. On the last iteration,
instead set τ ← 2νk . Finally, we set y to be the last vertex added to the DFS tree. Note that the
volume can be calculated as the sum of the degrees of the visited vertices.

Theorem 4.3. Local1+(x ,ν ,k ) is LocalEC with (νk2,νk2,νk )-complexity.

We say that an edge is new if it has not been accessed in earlier iterations. Otherwise, it is old.
It follows that reversed edges are old.

Algorithm for Local2.4 On line 2 in Algorithm 1, stop the DFS when the number of accessed
new edges is exactly 2ν . Let E ′ be the set of new edges accessed in DFS. We sample an edge
(u,v ) ∈ E ′ uniformly at random and set y ← u. To avoid storing E ′ for sampling, we can choose
τ ∈ [1, 2ν] uniformly at random and set y to be the τ th new edge.

4The algorithm Local2 described in this article is similar to Algorithm 1 in Reference [11]. Our description here is simpler,

and achieves the same properties as Algorithm 1 in Reference [11].
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Theorem 4.4 (Eqivalent to Theorem 3.1 in Reference [11]). Local2(x ,ν ,k ) is LocalEC

with (νk2,νk,νk )-complexity.

Next, we present the degree counting version of Local2, which we call Local2+.
Algorithm for Local2+. For each v ∈ V , let c (v ) be the remaining capacity for v , representing

the number of uncounted outgoing edges. At the start of LocalEC, set c (v ) = degout (v ). On line
2 in Algorithm 1, stop growing the DFS tree T as soon as

∑
v ∈V (T ) c (v ) ≥ 2ν and update c (v ) for

each visited vertex as follows. For the last vertex visited u, set c (u) ← (
∑

v ∈T c (v )) − 2ν . For other
vertices v ∈ T , set c (v ) ← 0.

To select y, choose τ ∈ [1, 2ν] uniformly at random before DFS. Let T ′ be the DFS tree at the
earliest point where

∑
v ∈V (T ′) c (v ) ≥ τ (before updating capacities). At this point, we set y to be

the latest vertex added to T ′.
Intuitively, we count previously uncounted outgoing edges and choose the origin vertex for one

of them at random.

Theorem 4.5. Local2+(x ,ν ,k ) is LocalEC with (νk2,νk,ν )-complexity.

4.2 Optimisations for Local1, Local1+, Local2, and Local2+

We use a few simple heuristics in all featured LocalEC algorithms that deviate slightly from a literal
interpretation of Forster et al. [11]. The original version of Local1 explores a number of edges and
then samples one of them at random. As we have already included in our description of Local1, we
sample a random number τ ∈ [1, 2νk] and stop DFS as soon as it has explored τ edges in Local1
and Local1+. This alone should speed up the DFS process by 50% in expectation. Note that Local2
and Local2+ must mark edges, not only explore them, which means this heuristic is not applicable.

The seed vertex x is always included in any S � x (as in Definition 1.1). We can leverage the
fact that we know one of the vertices in any such S by subtracting the outdegree of x from ν
and subsequently not counting/marking any outgoing edges from x . Correctness proofs still apply
with the modification that instead of using ν as an upper bound for the number of outgoing edges
for the set S , we use ν − degout (x ), or the new value of ν , to bound the number of unknown edges.
This heuristic provides minor speedups in a few ways: For Local1 and Local1+, we can subtract
deg(x ) before multiplying by k , which means that the outgoing edges of x are effectively counted
k times each in each iteration. For Local2 and Local2+, we effectively allow ourselves to mark the
outgoing edges from x in each iteration. For Local1 and Local2 the heuristic also has an effect
similar to using degree counting on the vertex x only.

4.3 Potential Speedup in Practice with Degree Counting (Local1+, Local2+)

Here, we explain the intuition behind the degree counting heuristic and why it can speed up
LocalEC in practice. We focus on Local1 and Local1+ (the idea is similar for Local2 and Local2+).
At any iteration of Local1 or Local1+, the goal is to locate and count τ edges reachable through
the DFS tree. When a new vertex is explored, Local1+ counts all its outgoing edges and makes a
lot of progress all at once. The only time Local1 makes progress but Local1+ does not is when it
explores a back edge that Local1+ has already counted. At worst Local1+ counts the same edges
before Local1. In the best case scenario only few of the counted edges are explicitly explored before
DFS terminates.

To illustrate, consider the graph shown in Figure 1. It is a 5-regular graph with most edges and
vertices omitted. Let τ = 20. Suppose that DFS starts from x and explores vertices a,b, c , and d in
that order at which point Local1+ has counted 20 edges excluding outgoing edges of x . In the best
case scenario, this can be done by exploring 4 edges, but there can be up to 6 back edges depending
on the order in which edges are considered for DFS. Therefore, we only have to explore between
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4.4:8 M. Franck and S. Yingchareonthawornchai

Fig. 1. Depth first search example: 5-regular graph with some edges/vertices omitted.

4 and 10 edges. Local1 would have to explore at least twice as many. Considering cases where
DFS needs to backtrack more, the worst case of Local1+ can be much closer to Local1 than in this
example, but the difference in best case can also be much greater if there are vertices with high
degree.

4.4 Proof of Theorems 4.2 to 4.5

In this section, we address proofs for Theorems 4.2 to 4.5.
Correctness. It can be shown that all four algorithms (Local1, Local1+, Local2, Local2+) are

LocalEC through a similar argument as used in Reference [11]. For completeness, we provide the
proofs in Appendix A.1.

Complexity. LetA be an LocalEC algorithm (Definition 1.1), and let ν and k be the parameters
of the algorithm. We define three measure of complexity T (A,G ),UE (A,G ), and UV (A,G ) on
input graph G and LocalEC algorithm A as follows. Let T (A,G ) be the number of times that the
algorithm accesses edges on the input graphG.T (A,G ) measures time complexity of the algorithm.
LetUE (A,G ) be the number of unique edges accessed by the algorithm on graphG. This measures
how much information (in terms of number of edges) the algorithm needs to run. Let UV (A,G )
be the number of unique vertices accessed by the algorithm on graph G.

Observation 1. For any graph G and LocalEC algorithm A, T (A,G ) ≥ UE (A,G ) ≥ UV (A,G ).

Local1. To see that Local1 has (O (νk2),O (νk2),O (νk2))-complexity, it is enough to prove that
T (Local1,G ) = O (νk2). This follows easily, because each iteration we stop the DFS after visiting
exactly 2νk edges, and there are at most k iterations.

Local1+. We first prove thatT (Local1+,G ) = O (νk2). Since there are k iterations, it is enough to
bound one iteration. Let S be the set of vertices visited by the DFS before the step at which it stops
early. Clearly, volout (S ) < 2νk , or we would have stopped earlier. By design, new edges can be only
visited within the set E (S, S ) or at the last step. Therefore, the number of edges visited is at most
|E (S, S ) | + 1 ≤ volout (S ) + 1 = O (νk ) per iteration and O (νk2) in total. We have T (Local1+,G ) =
O (νk2).

We can assume that the minimum degree is at least k (otherwise, we have a trivial degree cut).
When paths are reversed, only x will have reduced degree. It follows that k |S | − k = k ( |S | − 1) ≤
volout (S ) ≤ 2νk , which implies |S | ≤ O (ν ) for each iteration and UV (Local1+,G ) = O (νk ) in total.

Local2. We first prove that UE (Local2,G ) = O (νk ). By design, for each iteration, we collect at
most 2ν new edges. Since we repeat for k iterations, we collect at most 2νk total new edges. Next,
we prove T (Local2,G ) = O (νk2). Since each edge can be explored once per iteration, we have
T (Local2,G ) ≤ kUE (Local2,G ) = O (νk2).
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ALGORITHM 2: k-VertexConnectivity-unbalanced(G,SG,k,a)

1 for s = 2, 4, 8, . . . ,a/δ do

2 Let ν ← sδ .

3 repeat Θ( m
ν ) times

4 Sample a random edge (x ,x ′) ∈ E (G )

5 Run LocalECSG (xout,ν ,k )

6 If set L′ ⊆ V (SG ) was returned, then compute the corresponding vertex cut S ⊆ V (G ) and set

k ← |S |.

7 return the smallest cut found, or ⊥ if none found.

ALGORITHM 3: k-VertexConnectivity-balanced(G,SG,k,a)

1 repeat Θ(m/a) times

2 Sample random edges (x ,x ′), (y,y′) ∈ E (G )

3 Use Ford-Fulkerson on SG to compute maxflow (up to k) from xout to yin

4 If max flow was less than k , then compute the corresponding vertex cut S ⊆ V (G ) (well-known

reduction, e.g., Reference [9]) and set k ← |S |.
5 return the smallest cut found, or ⊥ if none found.

ALGORITHM 4: k-VertexConnectivity(G,k )

1 (If the graph is undirected, then skip Lines 3, 5, 8, and 10)

2 Compute the split graph (see Section 3) of G, SG.

3 Compute GR and its split graph SGR .

4 Check for degree cuts in G (vertices with out-degree less than k).

5 Check for degree cuts in GR (vertices with out-degree less than k).

6 Choose a threshold volume a = Θ(m/k ).

7 Run k-VertexConnectivity-unbalanced(G, SG,k,a).

8 Run k-VertexConnectivity-unbalanced(GR , SGR ,k,a).

9 Run k-VertexConnectivity-balanced(G, SG,k,a).

10 Run k-VertexConnectivity-balanced(GR , SG,k,a). (Note: Not SGR )

11 return the smallest cut found on Lines 7 to 10, or ⊥ if none found.

Local2+. We first prove that UE (Local2+,G ) = O (νk ). If true, then we also have
TE (Local2+,G ) ≤ kUE (Local2+,G ) = O (νk2). We will never visit an outgoing edge of vertex v
unless all its capacity has been exhausted. Therefore the total used capacity (at most k times 2ν ) is
an upper bound for the number of distinct edges visited. ForUV (Local2+,G ), fix any iteration. Let S
be the set of vertices visited by the DFS one step before terminating and S ′ ⊆ S the subset of S that
have not been visited before. Clearly, we have k |S ′ | ≤ volout (S ′) =

∑
v ∈S ′ c (v ) ≤ ∑

v ∈S c (v ) < 2ν .
The first inequality follows, since the minimum degree is at least k . We visit at most |S ′ | + 1 =
O (ν/k ) distinct vertices per iteration for a total of O (ν ) distinct vertices.

5 LOCALEC-BASED VERTEX CONNECTIVITY ALGORITHM

We review the full near-linear time small vertex connectivity algorithm by Forster et al. [11] (using
LocalEC algorithms described in Section 4 and Ford-Fulkerson max flow). The decision version
(find a min-cut smaller than k) of the algorithm is described by Algorithms 2–4. The parameter
δ in Algorithm 2 is the minimum degree of G and is found as a side effect of Lines 4 and 5 of
Algorithm 4. Algorithm 4 is closely based on the framework by Nanongkai et al. [27]. It finds a
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minimum vertex cut of size less than k or returns ⊥ to certify that κ ≥ k with constant probability.
During the algorithm we reduce the value ofk to match the smallest cut found to avoid unnecessary
work, since only smaller cuts can improve the result. This is optional. If we are not provided with
an upper bound k , then we can start at k = 1 and double it until a cut is found.

We provide a correctness proof for our version in Appendix A.2. It is similar to the original proof
by the authors of Reference [27].

5.1 Time Complexity

Since Ford-Fulkerson maxflow runs in Θ(mk ) time, the running time for finding balanced cuts is
Θ(mk )Θ(m/(m/k )) = Θ(mk2). Since LocalEC runs in O (νk2) time, the running time for each of
the Θ(log(m/k )) = Θ(logn) values for the parameter ν is Θ(νk2)Θ(m/ν ) = Θ(mk2), for a total
Θ(mk2 logn). For undirected graphs, we can assumem = Θ(nk ) with Θ(m) additional preprocess-
ing time due to Nagamochi and Ibaraki [26]. This yields Θ(m + k3n logn) time complexity for a
constant error rate. Square the logfactor for correctness with high probability.

5.2 Volume-Sample Tradeoff and Probability Boosting

The volume multiplier 2 (originally 8 in Reference [11]) used in LocalEC pseudocode is an arbitrar-
ily chosen number. Both running time and the error rate bound scale linearly with the multiplier.
We can also reduce the overall error rate by increasing the sample size. Multiplying the multiplier
by a factor p > 1 will turn error rate bound ϵ to ϵ

p
but repeating p times will give error rate ϵp .

Clearly, increasing the volume multiplier much beyond the point where a single LocalEC call has
error rate 0.5 seems inefficient.

Note that except at the lowest/highest values for ν , doubling/halving the multiplier or sample
size will result in the same number of calls at any given post-factor volume. This is because of
boosting up lower volume calls that have a larger sample size.

5.3 Implementation Details

We choose the parameter a to be m
3k

, because some cases where post-multiplier LocalEC volume is
very close to m resulted in poor practical performance. With the volume multiplier of 2, LocalEC
will attempt to explore at most 2

3m edges in any given DFS iteration. We use a sample size of
3k (= m

a
) samples for Ford-Fulkerson and �m

ν
� for LocalEC.

The graph implementation used for this article is based on adjacency lists with C++ vectors.
When we reverse edges along a path, we save the relevant vector indices to enable us to perform
the opposite operations later, in order from the newest reversed path to the oldest. We store in-
formation such as flags for vertices visited by DFS and the number of uncounted edges/coins in
LOCAL2+ per vertex. To avoid resetting this information for every vertex, we also maintain lists
of vertices that have been visited within the most recent DFS or LocalEC call.

6 EXPERIMENTAL SETUP

Four algorithms are compared. LOCAL1, LOCAL1+, and LOCAL2+ are implementations based
on the algorithm by Forster et al. [11]. The full vertex connectivity algorithm based on LocalEC is
described in Section 5. LOCAL1, LOCAL1+, and LOCAL2+ use Local1, Local1+, and Local2+ as their
LocalEC algorithm. We will refer to these three algorithms collectively as the LOCAL algorithms.
We run a directed version of the algorithm on the directed graphs. HRG is our implementation
of the randomised unit capacity version of the algorithm by Henzinger, Rao, and Gabow [17]. The
implementation details are described in Appendix B. We derive an optimisation version (find a min-
cut with no upper bound k as input) for the LOCAL algorithms by running the decision version
at k = 1, 2, 4, 8, . . . until a cut is found, similarly to HRG as described by [17]. The experiments
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use the optimisation version unless otherwise specified. The algorithms were implemented with
C++17 and compiled with g++. All experiments were run on an Ubuntu computer with i7-7700HQ
CPU (2.80 GHz) and 2×8 GB DDR4-2400 RAM.

All algorithms were implemented using parameters that bound theoretical success probability
from below by a similar constant. In Appendix A.2, we calculate an upper bound of 75% for the
error rate for the LOCAL algorithms. However, observed error rate is in the single digits. For undi-
rected graphs, the sparsification algorithm by Nagamochi and Ibaraki [26] is used for preprocessing
before each algorithm. The O (m) partitioning of the edges into disjoint forests is not included in
the measured time. Construction of the sparse graphs in O (nk ) time is included. The theoretical
running time therefore only depends on n and k . Due to sparsification, we report graph size in
vertices for undirected graphs. For directed graphs, we use the number of edges.

6.1 Input Graphs

The input graphs feature directed and undirected graphs with planted vertex cuts, undirected ran-
dom hyperbolic graphs and undirected real-world networks. Each data point is an average of 25
running times. For real-world data, we run the algorithms 25 times on each graph. For generated
data, we generate five graphs with the same parameters and run 5 times on each. Experiments on
the different algorithms are run on the same set of pregenerated graphs.

6.1.1 Undirected Graphs with Planted Cuts. We use planted cuts for undirected graphs in Sec-
tion 7.1. A planted vertex cut is a vertex partition (L, S,R) in a graph that is constructed to guar-
antee that S is the unique minimum vertex cut, such that there is no edge between L and R. The
sizes of L, S and R are fully configurable. Note that n = |L| + |S | + |R |. We also use an additional
parameter η > S such that for non-adjacent x ,y such that S does not restrict connectivity from x
to y, the smallest vertex cut that separates x from y should have size at least η. This guarantees
the uniqueness of the minimum vertex cut S .

We now describe the construction of random undirected graphs with planted cuts. We use a ran-
domised version of the sparsification algorithm by Nagamochi and Ibaraki [26], which partitions
the edges into forests E1,E2, . . . such that (x ,y) ∈ Ei implies that there is a path between x andy in
E1,E2, . . . ,Ei−1. A sparse graph using only the edges E1∪E2∪ · · · ∪Eη according to the original al-
gorithm guarantees that if vertices x andy are not separated by a vertex cut smaller than η vertices
in the original graph, then neither are they in the sparse graph. This, when applied to a complete
graph with edges between L and R removed, fulfills the requirements. For the randomised version,
we add random edges to the graph as long as it is possible to add edges to the η first forests. The
original proof for the algorithm by Nagamochi and Ibaraki [26] does not apply to this version but
in practice, S is a unique minimum vertex cut for all random graphs that were generated for these
experiments. We generate undirected graphs with planted cuts using the parameter value η = 64
(64 edge-maximal forests).

6.1.2 Directed Graphs with Planted Cuts. We use planted cuts for directed graphs in Section 7.2.
In directed graphs, we use the same definition for planted vertex cuts as the one for undirected
graphs; but, we can (and in fact do) include edges from R to L (but not the other direction). Paths
may enter, but not leave, L without passing through a vertex in S . This means that G \ S is not
a strongly connected graph, but it may be weakly connected. The parameters for the graphs are
|L|, |S |, |R |, and η.

We generate directed graphs with planted cuts by creating a deterministic base construct that
fulfills the definition of a planted cut. The number of edges in the base construct is approximately
ηn. We then add random edges that do not violate the definition (none from L to R, but possibly R
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to L) until we have the desired number of edges. The construction and its correctness is discussed
in Appendix C.

For all experiments (except for Section 7.2.4, where we scale κ), we have constant κ ∈ {4, 8} and
observe behavior when we change the size of the graph. For these, we set the generator parameter
to be η = κ +1 andm = 2κn, which is the lowest power of two above κ. This means that just under
half of the edges are random. These values approximately match the largest sparsified graphs in
the undirected graph experiments with corresponding parameters. In Section 7.2.3, we instead fix
the number of vertices and change the density (Figure 6); we use η = t (κ + 1),m = 2tκn for
t ∈ {1, 2, 3, 4, 5}, which preserves the ratio of random to nonrandom edges.

6.1.3 Random Hyperbolic Graphs and Real-world Data. We generate random hyperbolic graphs
using NetworKIT [30], which provides an implementation of the generator by von Looz et al. [32].
The properties of random hyperbolic graphs include a degree distribution that follows a power
law and small diameter, which are common in real-world graphs [3]. The graphs are generated
with a power law exponent of 5 and an average degree of 32 (for κ = 4) or 40 (for κ = 8). Graphs
are repeatedly generated until the number of graphs with the desired vertex connectivity is 5 for
each data point.

The real-world data is based on three graphs from the SNAP dataset [20], soc-Epinions1, com-
LiveJournal, and web-BerkStan. The LiveJournal dataset is originally undirected. The other two
are directed graphs read as undirected, which means that we compute weak vertex connectivity
for these graphs. We preprocess these graphs by taking the largest connected component for a
k-core. A k-core is defined as the edge-maximal subgraph with minimum degree at least k . Only
k-cores whose vertex connectivity is over 1 but less than the minimum degree are used. This
data was collected by manually searching for k-cores with nontrivial (κ > 1) vertex connectivity
instances. Due to time constraints, these data points are few and do not include directed instances
read as directed graphs.

7 EXPERIMENTAL RESULTS

7.1 Planted Cuts in Undirected Graphs

7.1.1 Balanced Versus Unbalanced Cuts. We study the performance of all four algorithms
(LOCAL1, LOCAL1+, LOCAL2+, HRG) when we vary the size of L, i.e., the balanceness of the
optimal vertex cuts. Our key finding is that every algorithm is faster when the cuts are balanced
than when the cuts are unbalanced (with the exception when the cuts are extremely unbalanced
for LOCAL1, LOCAL1+, and LOCAL2+). This suggests that the easy instances are those whose
optimal cuts are balanced. Next, we discuss in details.

In this experiment, we use graphs where n = 10,000 and κ = 4 with different values of |L|. For
each algorithm, we show the running time for every instance being normalized by the average
time over all instances of the same algorithm (as shown in Figure 2(b)). According to Figure 2(b),
all four algorithms perform reasonably well both for graphs with unbalanced cuts and those with
balanced cuts, although there is some variance in performance. The difference between the high-
est and lowest running time is a factor of 1.89 for HRG, 1.71 for LOCAL1 and LOCAL1+, and 1.79
for LOCAL2+. Internal testing suggests that the running time of HRG is roughly proportional to
|L|2+ |R |2. The running time for LOCAL1 is the fastest for very balanced cuts, which are found fast
by max flow before running LocalEC. For unbalanced cuts mainly found by LocalEC, the running
time is faster the more unbalanced the cut. LocalEC is run with gradually increasing ν parame-
ter. LOCAL1+ and LOCAL2+ have similar performance for balanced cuts but instead have stable
running time for moderately unbalanced cuts, dropping off fast for very unbalanced cuts. |L| = 5,
which is used as a fixed parameter in most of our experiments, is close to the average result for all
the LOCAL algorithms.
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Fig. 2. Undirected Planted Cuts with variable |L| or κ (Decision version with k = κ + 1). A vertical line marks

|L| = 5 in Figure 2(a).

7.1.2 Running Time Comparison. We conducted the experiments using the input graphs on
vertex connectivity κ ∈ {4, 8} up to 16 million edges. Based on discussion above, the difficult (and
interesting) instances are the ones with unbalanced cuts. Thus, we use unbalanced cuts in this
setting. That is, we set |L| = 5 (this corresponds to the vertical line in Figure 2(b)). We found that
the LOCAL algorithms outperform the quadratic-time HRG even on very small graphs. At κ = 8
in Figure 3(d), HRG overtakes LOCAL1 at 250–300 vertices and approximately 30 ms running time.
LOCAL1+ and LOCAL2+ are the fastest even for the smallest datapoint. As HRG approaches an
hour in running time the LOCAL algorithms are faster by more than an order of magnitude. In
Figure 3(e), HRG takes roughly 50 min at n = 50,000,κ = 8 and LOCAL1 takes 73 s while LOCAL1+
and LOCAL2+ take fewer than 8 s. As Figures 3(c) and 3(f) show, LOCAL1+ and LOCAL2+ stay
well under an hour even as the number of vertices reaches a million. LOCAL1 exceeds an hour for
κ = 8 but not κ = 4.

LOCAL1+ and LOCAL2+ are faster than LOCAL1 by an increasing margin as we grow the size of
the input graph. The speedup relative to LOCAL1 for κ = 4 and 500, 50,000, and 1,000,000 vertices,
respectively (the largest datapoints in Figures 3(a) to 3(c)), are 2.8, 5.7, and 8.6 for LOCAL1+ and
2.6, 5.8, and 9.6 for LOCAL2+. For κ = 8, the ratios are 1.3–2 times higher with greater additional
speedup for larger graphs. The largest observed speedup ratio compared to LOCAL1 in all included
experiments is 19.8 for LOCAL2+ on undirected graphs with planted cuts withκ = 8,n = 1,000,000.

7.1.3 Scalability in k (Decision Version, k = κ + 1). The theoretical running time for HRG is
O (nm) = O (n2k ) and the LOCAL algorithms are approximately cubic in k . Therefore, we should
expect HRG to scale better than LOCAL algorithms in terms of k when n is fixed. According to
the experiments where the graphs with n = 10,000, and |L| = 5, Figure 2(a) shows that that the
running time for HRG indeed grows slower with k . The running time for LOCAL1 exceeds that of
HRG at k = 22. For k > 12, LOCAL1+ settles around being 9–10 times faster than LOCAL1 and
LOCAL2+ 14–15 times faster than LOCAL1. For small k the ratios are smaller. Unlike the decision
version, the running time of the optimisation version goes up sharply when κ is an even power of
two as the decision version has to be run on an additional larger value for k .

7.2 Planted Cuts in Directed Graphs

7.2.1 Balanced Versus Unbalanced Cuts. We study the performance of all four algorithms
(LOCAL1, LOCAL1+, LOCAL2+, HRG) when we vary the size of L, i.e., the balanceness of the
optimal vertex cuts. As with undirected graphs, we observe that HRG and LOCAL1 are faster for
balanced cuts (with the exception of degree cuts for LOCAL1). LOCAL1+ and LOCAL2+ are not
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Fig. 3. Undirected Planted Cuts with fixed |L| = 5 and κ.

slower for unbalanced cuts so the general trend is still that the fast instances are those whose
optimal cuts are balanced. Next, we discuss in details.

In this experiment, we use graphs where n = 10,000 and κ = 4 with different values of |L|. For
each algorithm, we show the running time for every instance being normalized by the average time
over all instances of the same algorithm. Figure 4 shows the observed performance for directed
graphs with unbalanced and balanced cuts. We show separately the case where a planted vertex
cut restricts path into the smaller side of the cut (|L| > |R |), here called “in-cuts,” or out of the
smaller side (|L| < |R |), here called “out-cuts.” These perform slightly differently, because we look
for out-cuts before in-cuts. They are normalised based on the combined dataset. We can see that
performance of the LOCAL algorithms is better for unbalanced out-cuts than unbalanced in-cuts.
The difference between the highest and lowest running time in Figures 4(a) and 4(b) is a factor
of 1.36 for HRG, 1.22 for LOCAL1 and LOCAL1+ and 1.21 for LOCAL2+. Compared to undirected
graphs in Figure 2(b), we can see that variance is lower in this experiment for each algorithm.

An interesting discrepancy from the undirected counterpart is that LOCAL1+ and LOCAL2+ are
not consistently faster for very balanced cuts (which are searched for first) than unbalanced cuts in
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Fig. 4. Directed Planted Cuts with n = 10,000, κ = 4, and variable |L|, normalised 1 = average. A vertical line

marks |L| = 5 and |R | = 5.

Figure 4. Here is a possible explanation regarding the difference between volout (L) and volin (L). For
example, in the “out”-category, the graph may contain edges from any vertex to a vertex in L but
an edge that leaves L must go to the planted vertex cut. Due to this restriction, we add about 60%
more random edges that enter L than edges than leave L. As a consequence, L has lower average
outdegree than the outside, and vertices in it may be unproportionally likely to be explored by
LocalEC DFS, which means that they are more likely to have been already explored. It would then
be expected that degree counting is somewhat less effective at reducing running time, particularly
when a significant portion of the graph has been searched.

7.2.2 Running Time Comparison: Varying Edges, Fixed Density. In this section, we use directed
planted cuts with κ ∈ {4, 8} and scale the number of edges up to 16 million edges while fixing
the density for a given value for κ (m = 2κn). Based on the discussion above, the difficult (and
interesting) instances are the ones with unbalanced cuts. Thus, we use unbalanced cuts in this
setting. That is, we set |R | = 5 (this corresponds to the vertical line in Figure 4(b)). We choose this
over |L| = 5, because it is a slightly slower case for the LOCAL algorithms but not for HRG.

According to Figure 5, the LOCAL algorithms outperform HRG for fairly small instances, al-
though not as small as we observed with undirected graphs. At κ = 8 in Figure 5(d) LOCAL1
matches the running time of HRG at around 28,800 edges (1,800 vertices) and 1.25 s of running
time. LOCAL1+ and LOCAL2+ become faster than HRG at 4,800 edges (300 vertices) and 26–30 ms
running time. In Figures 5(b) and 5(e), we see that the LOCAL algorithms are again faster by orders
of magnitude when HRG approaches an hour in running time. At 400,000 edges (50,000 vertices)
HRG runs in 42 min while LOCAL1 takes 163 s, LOCAL1+ takes 28 s and LOCAL2+ takes 22 s
at κ = 8. In the largest graph going up to a million vertices and 16 million edges, LOCAL1+ and
LOCAL2+ still run in under an hour, although LOCAL1 does not.

LOCAL1+ and LOCAL2+ are faster than LOCAL1 and their advantage grows consistently as
we add vertices and edges. For example, the speedup factor relative to LOCAL1 for the largest
datapoints with κ = 4 in Figures 5(a) to 5(c) grows as follows: The speedup factor for LOCAL1+
is 2.5 at 500 vertices and 4,000 edges, 3.5 for 5,0000 vertices and 400,000 edges and 4.0 at 1,000,000
vertices and 8,000,000 edges. The corresponding ratios for LOCAL2+ are 2.6, 3.9, and 4.6. LOCAL2+
is faster than LOCAL1+ in the experiments with planted cuts in directed graphs. For κ = 8 the
speedup ratios for directed graphs are 1.4–2 times higher.

7.2.3 Running Time Comparison: Varying Edges, Fixed Vertices. In directed graphs, we can no
longer assume that the input graph is sparse, since there is no known linear-time algorithm for
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Fig. 5. Directed planted in-cuts with fixed |R | = 5 and κ and varying m,n wherem = 2κn.

sparsifying directed graphs. In this section, we study the running times in Figure 6, where we vary
the density of graphs while keeping the number of vertices constant. We achieve this by scaling
the generator parameter η and number of added random edges as described in Section 6.1.2. We
also compare the performance to corresponding graphs in Figure 5 where the same number of
edges is achieved by scaling the number of vertices with fixed density.

LOCAL1 behaves similarly when scaling density or the number of vertices, although it is slightly
faster when the same number of edges is achieved by scaling density. LOCAL1 runs for approxi-
mately 1500 s at m = 8,000,000,n = 200,000,κ = 4, which is the largest point in Figure 6(b) but
around 2100 s with the same number of edges and 1,000,000 vertices in Figure 5(c).

The running times of LOCAL1+ and LOCAL2+ grow significantly slower when we increase
density instead of adding vertices, which is expected considering that the degree counting heuristic
benefits from high degree vertices. For the same graphs referenced above, LOCAL1+ and LOCAL2+
take approximately 100 s at n = 200,000 and 500 s with n = 1,000,000.

Since the running time of LOCAL1+ and LOCAL2+ scales so slowly with density, we can expect
greater speedup compared to LOCAL1. At κ = 4,m = 400,000,n = 10,000 in Figure 6(a) LOCAL1
is 9.7 times slower than LOCAL1+ and 11.1 times slower than LOCAL2+, which is a significantly
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Fig. 6. Directed Planted In-Cuts with fixed |R | = 5 and κ. Variable average degree instead of number of

vertices.

greater difference than 3.5 and 3.9 at κ = 4,m = 400,000,n = 50,000 in Figure 5(b) where density
is constant.

For HRG, the theoretical worst-case running time is linear instead of quadratic when we only
scale density in a graph. In Figure 6(a), we observe that the scaling appears even slower than one
might expect from a linear relation. The running time grows from 41 s at 10,000 vertices and 80,000
edges to 54 s for 5 times as many edges in Figure 6(a). For n = 50,000,m = 400,000 in Figure 5(b)
the running time is 2,550 s. Clearly, the number of vertices is very important for the practical
running time of HRG. Furthermore, for dense graphs of moderate size, it may be significantly less
advantageous to use LOCAL1 over HRG. LOCAL1+ and LOCAL2+ seem more likely to maintain
the advantage even for dense graphs.

7.2.4 Scalability in k (Decision Version, k = κ + 1). In theory, the running time is constant in k
for HRG and approximately quadratic for the LOCAL algorithms when m is independent from k
(no sparsification). In Figure 7, we fix n = 10000,m = 64000 and η = 33 and vary κ up to κ = 32
for generating planted cuts in directed graphs. As anticipated, the running time for HRG does not
change when κ is variable, and LOCAL algorithms run slower for larger κ. Like for undirected
graphs, the running time for LOCAL1 exceeds that of HRG at k = 16. For k > 7 LOCAL1+ settles
around being 11–15 times faster than LOCAL1 and LOCAL2+ 16–19 times faster than LOCAL1. For
small k the ratios are smaller. Unlike the decision version, the running time of the optimisation
version goes up sharply when κ is an even power of two as the decision version has to be run on
an additional larger value for k (with the exception of HRG).
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Fig. 7. Directed Planted In-Cuts with variable κ, decision version with k = κ + 1.

7.3 Random Hyperbolic Graphs

Figure 8 shows performance of all four algorithms on large random hyperbolic graphs described
in Section 6.1.3 up to 1 million vertices and 32 million edges. HRG is by far the slowest algorithm
with 46 min at κ = 8,n = 600,000 in Figure 8(b). LOCAL1 is about 8 times faster at slightly under
6 min. LOCAL1+ is 3.2 times faster than LOCAL1 at 110 s and LOCAL2+ is 2.3 times faster than
LOCAL1 with 150 s of running time in Figure 8(b). Interestingly, the ratio between LOCAL1 and
LOCAL1+ or LOCAL2+ is fairly stable as we grow the size of the graph, unlike planted cuts where
the ratio grows with size.

Next, we compare the performance of each algorithm with respect to undirected planted cut
results. HRG is much faster on random hyperbolic graphs than on the undirected planted cut
data. We can compare to Figure 3(e), where the quadratic HRG has similar running time with only
50,000 vertices. The LOCAL algorithms are also faster on the random hyperbolic graphs than on
the graphs with planted cuts, but by a smaller margin. LOCAL1 is slower than LOCAL1+ and
LOCAL2+ by a notably smaller margin than on graphs with planted cuts.

We can explain the smaller degree counting advantage with observations from Section 8. For
the geometric-based random hyperbolic graphs, we explore noticeably more edges for each vertex
explored by DFS. This may be computationally cheaper for LOCAL1 while simultaneously coun-
teracting the benefits of degree counting. Note also that LOCAL2+ is slower than LOCAL1+ in
this experiment. LOCAL2+ benefits even more than LOCAL1+ from mostly visiting new vertices,
as it makes progress when exploring parts of the graph that have not been explored in previous
iterations. It turns out that the random hyperbolic graphs used in these experiments have very
balanced minimum cuts, which may speed up all three LOCAL algorithms, since a cut is probably
found in balanced search, which enables decreasing the value of the k parameter for the rest of
the algorithm, resulting in less computation (see Section 7.1.1).

7.4 Real-world Networks

Table 2 presents undirected real-world network data. Each row represents a k-core, where k = δ
is the minimum degree of the resulting graph. Note that in general, minimum degree for a k-core
can exceed k . Table 3 shows data for graphs with planted cuts with similar parameters to the real-
world graphs. The size of L for the generated data is not a constant 5, but instead corresponds to
the size of the small side of the cut of the corresponding real-world graph.

LOCAL1+ and LOCAL2+ clearly outperform LOCAL1 on this selection of real-world networks,
as on the artificial data. The k-cores of soc-Epinions1 have very similar performance in real-
world networks and graphs with planted cuts. For the other graphs, all algorithms are faster on
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Fig. 8. Running time (seconds) for Random Hyperbolic Graphs.

Table 2. Running Times (Seconds) on k-cores of Real-world Networks

real-world graphs than the artificial data, but by different factors. For com-lj.ungraph, the differ-
ence is only 10–38% for the LOCAL algorithms but a factor of 3.3–5.1 for HRG. For web-BerkStan,
the difference is similar for HRG but larger, ratios between 1.5–3.5, for the LOCAL algorithms.

7.5 Success Rate

We define the success rate of a vertex connectivity algorithm as the percentage of attempts that
yields an optimal cut. The observed success rate for HRG is at or near 100% on all featured datasets.
The success rate of LOCAL1 is slightly lower at 98% for graphs with planted cuts and 99–100% for
other graphs. LOCAL1+ has about 96–97% success rate for both kinds of graphs with planted cuts
and 98–99% for the other graphs. LOCAL2+ has noticeably lower accuracy when configured to
the same parameters as the other LOCAL algorithms: 98% for random hyperbolic graphs, 96% for
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Table 3. Running Times (Seconds) Per Vertex on Undirected Planted Cuts

with Parameters (n, |L|,κ) that Correspond to Table 2

real-world networks, 90% for undirected graphs with planted cuts, and 85% for directed graphs
with planted cuts. In addition to generally lower accuracy, LOCAL2+ also shows more variance in
accuracy on different graph families.

The success rate of the LOCAL algorithms is significantly better than the bounds shown in
Appendix A.2. Their success rate can be boosted by the standard repetition method or, equivalently,
by increasing internal sample sizes (see Section 5.2). By repeating the algorithms two to three times,
we would near 100% observed probability of finding the optimal cut with all three. After O (logn)
repetitions the algorithms are correct with high probability.

8 EXPERIMENTAL RESULTS: INTERNAL MEASUREMENT

8.1 Edges Explored in LocalEC DFS

In this section, we study internal measurements from LocalEC in the different algorithms to ex-
plore the context of their performance on different graphs. In Figure 9, we study planted cuts in
undirected graphs with n = 200,000,κ ∈ {4, 8} to see how many edges are explored in DFS com-
pared to theoretical performance. We use the decision version at k = κ, which means that no cut
is found and the internal value of k stays constant. Note that we apply a multiplicative factor of
2 to ν in LocalEC. The value for ν used here includes that increase. Therefore, with no optimisa-
tions, we would expect Local1 to explore exactly νk2 edges. The figure features the average number
of edges explored normalised by νk2 to show performance relative to this theoretical worst-case
bound. Note that the number of calls is inversely proportional to ν and k is a constant, so this
metric also shows the total number of edges explored at that ν times a constant.

From the values for Local1, we can see that the optimisations used cause fewer edges to be
explored at all values of ν , but have the biggest impact for low values. When we double k , the
values of the normalised metric decrease in this experiment. The decrease is approximately 10%
for Local1, 23% for Local1+, and 50% for Local2+ for the higher values for ν , which contribute the
most explored edges and are therefore the most significant. The decrease is somewhat larger for
the low values. The large decrease for Local2+ in particular is consistent with a possible practical
performance closer to νk , although this may not be the case for different graphs. As stated in
Section 4.3, Local2+ can potentially run faster than Local1+ by a Θ(k ) factor if it rarely visits the
same vertex in different depth first searches for the same LocalEC call.

Figure 10 shows the same metric as in Figure 9, average number of edges explored normalised
by νk2, in random hyperbolic graphs with n = 200,000,κ ∈ {4, 8}. We can see that degree counting
is much less effective at reducing the number of edges explored in this experiment. Although the
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Fig. 9. Undirected Planted cuts with n = 200,000, |L| = 5 (decision version with k = κ). Average (non-unique)

edges explored in DFS per LocalEC call, normalised by νk2.

Fig. 10. Random hyperbolic graphs with n = 200,000 (decision version with k = κ). Average (non-unique)

edges explored in DFS per LocalEC call, normalised by νk2.

normalised metrics for Local1 converges to very similar values, the values for Local1+ and Local2+
are larger by an order of magnitude compared to Figure 9 and within an order of magnitude of
the values for Local1. The metric decreases when we double k . The decrease is approximately 10%
for Local1, 80–90% for Local1+ and 50–70% for Local2+ for the higher values for ν , with smaller
decreases for the very highest values.
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Fig. 11. Edges explored per vertex explored for Undirected Planted cuts with n = 200,000, |L| = 5, and

Random hyperbolic graphs with n = 200,000 (RHG) (decision version with k = κ).

8.2 Edges Explored per Vertex in LocalEC DFS

Another internal metric that is useful for evaluating degree counting is the average number of
edges that we need to explore in DFS for each vertex that is explored. For degree counting, we
want to explore a vertex-set with sufficient edge volume as fast as possible. In theory, the fewer
edges per vertex explored, the better for degree counting. For a non-degree counting variant, we
may prefer fewer vertices per edge. Exploring a new vertex requires more operations and may
access memory in a more computationally expensive way than iterating over edges to already
visited vertices.

Figure 11 shows explored edges per explored vertex in undirected graphs with planted cuts and
random hyperbolic graphs with n = 200,000,κ ∈ {4, 8}. For planted cuts, most edges lead to a new
vertex except for very high ν where we explore a significant portion of the graph. For random
hyperbolic graphs, we visit significantly more edges per vertex. In particular, the edges per vertex
metric grows starting from the low ν values instead of staying low for most values. We can explain
the difference with how the graph families are constructed. Vertex adjacency in random hyperbolic
graphs is based on a distance function, which causes high correlation for which other vertices two
adjacent vertices are adjacent to. In this setting, it is more likely for already explored vertices to be
explored again in DFS compared to our graphs with planted cuts, which feature more uniformly
random edges.
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Table 4. CPU Use: Balanced Cuts/Ford-Fulkerson(FF) Versus Unbalanced Cuts/LocalEC(Local)

Undirected planted cuts with κ ∈ {4, 8}, n ∈ {10,000, 50,000}, Running time was measured separately.

8.3 CPU Time Allocation Between Unbalanced and Balanced Search

Local1 clearly visits more edges than Local1+ and Local2+, especially for graphs with planted cuts
in Figure 9. In Table 4, we show how much CPU time is spent looking for unbalanced cuts with
LocalEC compared to looking for balanced cuts with Ford-Fulkerson max flow on undirected
graphs with planted cuts with κ ∈ {4, 8},n ∈ {10,000, 50,000}. Most of the running time of LOCAL1
is used searching for unbalanced cuts with LocalEC. On the other hand, LOCAL1+ and LOCAL2+
spend a similar amount of time on balanced and unbalanced cuts. Note that only LocalEC is dif-
ferent between the versions. These results suggest that degree counting improves the practical
performance of LocalEC significantly and there is not much more room for improvement through
LocalEC without also further optimising x-y max flow to search for balanced cuts. Furthermore,
when we increase κ or n, the percentage for local search goes up for LOCAL1 but even further
down for LOCAL1+ and LOCAL2+. As the running time increases with κ or n, time spent on the
“other” category decreases for all three algorithms. This category is dominated by setup for data
structures.

9 CONCLUSION

We study the experimental performance of the near-linear time algorithm in Reference [11] when
the input graph connectivity is small. The algorithm is based on local search. We also introduce a
new heuristic for the local search algorithm, which we call degree counting. Based on experimental
results, the degree counting heuristic significantly improves the empirical running time of the
algorithm over its non-degree counting counterpart.

We point out new theoretical results that have potential to be practical and worth studying
the practical performance. We believe that new interesting heuristics for practical speedup remain
totally unexplored. This includes vertex connectivity in polylog max-flows [21], improved directed
vertex connectivity algorithms [6] or even new linear-time minimum edge-cut algorithms by the
authors of Reference [25].

APPENDICES

A OMITTED PROOFS

A.1 Correctness of LocalEC

To show that any algorithm among Local1, Local1+, Local2, and Local2+ is LocalEC, it is
enough to prove that it satisfies two properties:

Property 1. If V (T ) is returned, then |E (V (T ),V −V (T )) | < k and ∅ � V (T ) � V .
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Property 2. If there is a vertex-set S satisfying Equation (1), then ⊥ is returned with probability

at most 1/2.

The following simple observation is due to Reference [4].

Observation 2. Let S be a vertex-set in graph G and x ∈ S . Let P be a path from x to y. Let G ′

be G after reversing all edges along P . If y ∈ S , then |EG′ (S,V − S ) | = |EG (S,V − S ) |. Otherwise,

|EG′ (S,V − S ) | = |EG (S,V − S ) | − 1.

For the first property, the following argument works for all four algorithms.

Lemma A.1. Local1, Local1+, Local2, and Local2+ satisfy Property 1.

Proof. Let S = V (T ) be the cut the algorithm returned. Observe that x ∈ S by design. By
Observation 2, each iteration can only reduce the number of crossing edges by at most one. This
can happen at most k−1 times before the final iteration, which implies that initially |E (S,V −S ) | ≤
k − 1. �

For the second property, the following argument works for Local1 and Local1+.

Lemma A.2. Local1 and Local1+ satisfy Property 2.

Proof. We focus on proving that LOCAL1 satisfies Property 2 (the proof for Local1+ will be
essentially identical). If the algorithm terminates before the kth iteration, then it outputs V (T ),
and thus⊥ is never returned. So now we assume that the algorithm terminates at the kth iteration.
Let y1, . . .yk−1 be the sequence of chosen path endpoints y in DFS iterations. We first bound the
probability that yi ∈ S . Let volout

i (S ) be the volume of S at iteration i . So,

Pr(yi ∈ S ) ≤
volout

i (S )

2νk
≤ volout (S )

2νk
≤ ν

2νk
=

1

2k
. (2)

The first inequality follows by design. The second inequality follows by Observation 2.
By Observation 2, the algorithm can only return⊥ at the final iteration if at least one of theyi ’s is

in S (or if there is not viable cut). Let 1[yi ∈ S] be an indicator function. Let Y =
∑

i≤k−1 1[yi ∈ S].
Observe that Y ≥ 1 if and only if the algorithm outputs ⊥. We now bound the probability that
Y ≥ 1. By linearity of expectation, we have E[Y ] =

∑
i≤k−1 E[1[yi ∈ S]] =

∑
i≤k−1 Pr(yi ∈ S ) ≤ 1

2 .
Therefore, by Markov’s inequality, we have

Pr(Y ≥ 1) = Pr
(
Y ≥ 2 · 1

2

)
≤ Pr(Y ≥ 2E[Y ]) ≤ 1

2
. (3)

This completes the proof for LOCAL1. To see that the same proof works for LOCAL1+, observe
that it (Equation (2) in particular) does not use the identity of the edges. Outgoing edges of a vertex
are interchangible. The degree counting variant counts edges ensures that each outgoing edge for
visited vertices is included in the collection of edges without collecting explicitly. The precomputed
random number τ corresponds to a random edge from the collection. �

It remains to prove the second property for Local2 and Local2+. However, the arguments for
Local2 and Local2+ are very similar to Local1 and Local1+:

Lemma A.3. Local2 and Local2+ satisfy Property 2.

Proof. For Local2, each edge in E (S,V ) has a 1
2ν

probability to be chosen if the edge is visited.
The probabilities are not independent but can be used for Markov’s inequality. If Y is the number
of edges in E (S,V ) that are chosen, or equivalently the number of times a vertex in S is chosen,
then we have E[Y ] ≤ ν

2ν
= 1

2 , resulting in the same equation as Equation (3). If we consider the
case where all edges in E (S,V ) are visited in a single iteration, then we can see that the bound is
tight. For Local2+, apply the same logic to c (v ) instead of edges. �
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We finish with an observation on the effect of increasing ν on the probability bound.

Observation 3. The proofs above use the volume multiplier 2 in LocalEC (LocalEC uses 2ν instead

of ν ). It is easy to show that if we substitute a different multiplierC , the bound in Equation (3) will be
1
C

. In particular, if we can show that ν ≥ Cvolout (L) for some constantC , we effectively substitute the

multiplier with 2C for a bound of 1
2C

.

A.2 Correctness of LocalEC-based Vertex Connectivity (Algorithm 4)

If κ ≥ k , then the algorithm cannot find a cut and correctly returns ⊥. Suppose that there is a
vertex cut in G, represented by a separation triplet (L, S,R) such that |S | < k and all paths from
L to R contain a vertex in S . We define a partition (L′, R′) of the split graph (see Section 3) of G
as: L′ = {xin,xout |x ∈ L} ∪ {xin |x ∈ S }, R′ = {xin,xout |x ∈ R} ∪ {xout |x ∈ S }. If volout (L′) < a or
volin (R′) < a, then we say that the cut is unbalanced. If volout (L′), volin (R′) ≥ a, then it is balanced.

Lemma A.4. If there is an unbalanced cut, then Algorithm 4 returns it with constant probability.

Proof. Suppose that the cut is unbalanced. If we do not have volout (L′) < a, then the graph is
directed and we also run the algorithm on the reverse graph, where we have volout (R′) < a. We
can relabel L and R as needed to assume without loss of generality for both directed and undirected
graphs with unbalanced vertex cuts that volout (L′) < a.

If |L| = 1, then the cut is found on Lines 4 and 5 of Algorithm 4, so we can assume that |L| > 1.
We can also assume δ ≥ k , because otherwise a minimum degree cut is trivial to find. It follows
that volout (L) ≥ δ |L| ≥ k |L| ≥ 2k . The case k = 1 is trivial, so we also assume that k ≥ 2. We can
use the above to show that

volout (L) ≤ volout (L′) = volout (L) + |L| + |S | < volout (L) +
1

k
volout (L) + k

≤
(
1 +

1

k
+

1

2

)
volout (L) ≤ 2volout (L). (4)

For some iteration of the main loop in Algorithm 2, there exists C ∈ [1, 2] such that, ν
2 ≤

volout (L′) = ν
C
≤ ν . For this value of ν and each sampled edge (x ,x ′), we have

Pr(x ∈ L) =
volout (L)

m
≥ volout (L′)

2m
=

ν

2Cm
. (5)

By Observation 3 and volout (L′) = ν
C

, we have

Pr(LocalEC does not find cut|x ∈ L) ≤ 1

2C
. (6)

Now, for any given sampled edge, we have

Pr(x ∈ L ∧ LocalEC finds cut) ≥ ν

2Cm

(
1 − 1

2C

)
≥ ν

4m

(
1 − 1

4

)
=

3/16

m/ν
. (7)

Local minima for an expression of the form x (const − x ) can be found at the endpoints of its
domain. C = 2 minimizes this expression within the interval C ∈ [1, 2], which gives us the last
inequality. Finally, define Y =

∑
sampled edge (x,x ′) 1(x ∈ L∧LocalEC finds cut). Clearly, Y = 0 if and

only if the algorithm fails to find the cut with this value of ν . With a sample size of m
ν

, we have

Pr(Y = 0) ≤
(
1 − 3/16

m/ν

) m

ν

≤ e−3/16 ≤ 0.83. (8)

The final inequality holds for m
ν
> 3

16 , which is trivially true. (The inequality is easy to prove by

showing that ∂
∂x

(1 − a
x

)x is positive when a < x and therefore (1 − a
x

)x is lesser than its limit
e−a .) �
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Lemma A.5. If there is a balanced cut, then Algorithm 4 returns it with constant probability.

Proof. For balanced cuts, we use an additional assumption that k <
√

n
2 . This is a reasonable

assumption, since if k = Ω(
√
n), the HRG algorithm has superior time complexity. For directed

graphs at least m − k2 ≥ m − n
4 ≥ m − m

4 ≥
3m
4 edges are outside of E (S, S ). We define Cout =

volout (L)+volout (R )
m

and Cin =
volin (L)+volin (R )

m
. Clearly, Cout +Cin ≥ 3

4 . We sample (x ,x ′), (y,y ′) ∈ E (G )

independently. Equation (4) gives us volout (L) ≥ volout (L′)
2 ≥ a

2 . Assuming a = m
3k

, we have

Pr(x ∈ L,y ∈ R) =
volout (L) volout (R)

m2
=

volout (L) (mCout − volout (L))

m2
≥

a
2 (mCout − a

2 )

m2

=
Cout − a

2m

2m/a
=
Cout − 1

6k

2m/a
. (9)

We have another expression of the form x (const − x ), which is minimized at volout (L) = a
2 ,

or equivalently at volout (R) = (mCout − volout (L)) = a
2 , which gives us the inequality above. For

sampling (x ,x ′), (y,y ′) ∈ E (GR ) in directed graphs, we get a bound of
Cin− 1

6k

2m/a
=

3
4−Cout− 1

6k

2m/a
. We

define Y =
∑

samples in G and GR 1(x ∈ L,y ∈ R), which is 0 if and only if the cut is not found.

Pr(Y = 0) ≤ �
�
1 −

Cout − 1
6k

2m/a
�
�

m

a

�
�
1 −

3
4 −Cout − 1

6k

2m/a
�
�

m

a

≤ �
�
1 −

3
8 −

1
6k

2m/a
�
�

2m

a

≤ �
�
1 −

7
24

2m/a
�
�

2m

a

≤ e−7/24 ≤ 0.75. (10)

For the second inequality, Cout = Cin =
3
8 maximizes the expression. The third uses k ≥ 2. The

fourth inequality holds for (6k =) 2m
a
> 7

24 . For undirected graphs, we always haveCout = Cin ≥ 3
8 .

We do not sample inGR but if x ∈ L,y ∈ R is successful sampling, then so is the mutually exclusive

event x ∈ R,y ∈ L, which gives us a bound of 2
3
8−

1
6k

2m/a
in the equivalent of Equation (9) and an

identical bound at the equivalent of Equation (10) for undirected graphs. �

Lemmas A.4 and A.5 are sufficient to show that the error rate is bounded by a constant for both
balanced (0.75) and unbalanced (0.83) vertex cuts. We will now use independent probabilities to
slightly improve the overall probability bound.

Lemma A.6. If κ < k , then the LocalEC-based vertex connectivity algorithm finds a cut with prob-

ability at least 25%.

Proof. When volout (L) is low enough, the cut can be found by LocalEC calls with greater ν than
what was used in the proof for Lemma A.4. If volout (L′) ≤ a

2 , then we can run LocalEC at 2ν (with
half as many samples) in addition to ν the error rate for unbalanced cuts is lowered to 0.75 (insert
C = 4 instead of C = 2 in the proof to get the error rate at 2ν ).

When volout (L′) < a, we can find cuts with the balanced cut approach with reduced success rate.

We can get the error rate by inserting a bound other than volout (L) ≥ volout (L′)
2 ≥ a

2 at Equation (9).

If we insert volout (L′)
2 ≥ a

4 , then we get Pr(Y = 0) ≤ e−1/6 ≤ 0.85.

When volout (L′) ≈ a, we have a significant independent probability of finding the cut with both
the unbalanced and balanced approach. When a

2 ≤ volout (L′) ≤ a, we have an error rate of at most

e−3/16 using the unbalanced approach for volout (L′) ≤ a and an error rate of at most e−1/6 using
the balanced cut approach for a

2 ≤ volout (L′). The probability of finding the cut with neither is

at most (1 − e−3/16e−1/6) = (1 − e−17/48) ≥ 0.29. For more balanced cuts, we have 0.75 error rate
from Lemma A.5, and for more unbalanced cuts, we have 0.75 error rate by considering LocalEC

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.4. Publication date: December 2022.



Engineering Nearly Linear-time Algorithms for Small Vertex Connectivity 4.4:27

at ν ∈ [ 1
2 volout (L′), volout (L′)] and ν ∈ [ 1

4 volout (L′), 1
2 volout (L′)]. Therefore, we have an improved

upper bound of 0.75 for the error rate for all vertex cuts. �

We cannot use the same approach as above to improve the bound for balanced cuts. The suc-
cess rate bound for the unbalanced approach quickly goes to zero for higher volout (L′) due to the
pessimistic assumption in the probability bound for LocalEC that every edge in volout (L′) is ex-
plored/counted every time it is possible. It may be possible to improve the bound in the average
case with a smart order in DFS edge selection or just more analysis for a randomised edge order.

B PREFLOW-PUSH-BASED VERTEX CONNECTIVITY ALGORITHM

We use the algorithm by Henzinger, Rao, and Gabow [17] with only minor optimisations. For
details omitted here, see the original article. The core algorithm (Section 3 in Reference [17]) uses
a preflow-based algorithm to calculate the minimum Sixi -cut, where Si = {x }∪{x j : j < i}, for each
vertex xi not adjacent to x. The algorithm maintains an active set W of vertices from where the
current sink may be reachable. If there exists a minimum vertex cut S � x , which is very probable
for small κ, then the minimum of these cuts will be a minimum vertex cut.

On page 10 of Reference [17], in the proof for Theoreom 2.3, Henzinger et al. describe a ran-
domised version that repeats the core algorithm on random seed vertices to achieve a 50% or lower
error rate. None of the included test cases need to repeat to achieve this bound. In the same section,
Henzinger et al. provide a guaranteed method of doubling k to find some k ∈ (κ, 4κ), which we
need for undirected graphs. Using their method, the algorithm is run on an arbitrary nonrandom
vertex of degree k . To obtain an optimal cut with any probability guarantee, the algorithm needs
to be repeated on a random seed vertex. We use random seed vertices during doubling to avoid
having to repeat the algorithm after already finding a cut of size less than k .

For undirected graphs, we use the sparsification algorithm by Nagamochi and Ibaraki [26] to
reduce the average degree of the graph to at most k , doubling k until we find a cut smaller than k ,
as we do with the algorithms by Forster et al. [11]. For directed graphs, we can omit the doubling
process, since the algorithm itself does not depend on the k parameter. For directed graphs the
algorithm is repeated on the reverse graph using the same seed vertices. In case of weighted edges,
dynamic trees would be used to improve time complexity, but the experiments in this article only
use unweighted edges.

On page 20 of Reference [17], Henzinger et al. describe multiple auxiliary data structures used
to achieve the desired time complexity. One of these is a partition of vertices in the awake setW
by their current distance values. We add another auxiliary data structure that stores the index of a
vertex in this data structure to speed up finding and removing a vertex, which happened frequently
enough to create a CPU hotspot.

C CYCLE-BASED DIRECTED GRAPHS WITH PLANTED CUTS

The graphs with planted cuts are graphs with a vertex partition (L, S,R) such that S is a unique
minimum vertex cut and every path from L to R contains a vertex in S .

We construct the graph in the following way: Label the vertices 1, 2, . . . ,n. Let L =

{1, 2, . . . , |L|}, S = {|L| + 1, |L| + 2, . . . , |L| + |S |},R = V \ (L ∪ S ). We ban edges from L to R.
This is enough to guarantee that every path from L to R contains a vertex in S . For some integer
η > |S |, let every vertex have an outgoing edge to the η nonbanned vertices after it and an in-
coming edge from the η nonbanned vertices before it, mod n. For example, the last vertex in L has
edges to all of S and the (η − |S |) first vertices in L. See Figure 12 for an example.

We can show that S is a unique minimum vertex cut by explicitly constructing η vertex-disjoint
paths between non-adjacent vertices x to y when x � L or x � R. Start with an edge from x to the
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Fig. 12. Example of the deterministic base construct of a directed graph with a planted cut with parameters:

|L| = 3, |S | = 1, |R | = 6,η = 2. The dotted edge crosses the (orange) set S . It is removed and replaced by the

edges represented by dashed arrows.

η next nonbanned vertices. We then repeatedly extend the least advanced path, in the sense that
for its endpoint v , (v − y) mod n is the least among the paths. At most η − 1 vertices “ahead” of
it are included in other paths, so we can always extend the paths until they reach y or x again.

When we can end a path by adding an edge to y, we do. For the (η − |S |) last vertices in R have
a choice between an edge to L or to the beginning of R. We go to R if and only if y ∈ R. In this case
only |S | paths enter L. At the end of L, we only use the edges to the beginning of L if necessary,
which implies that y � S and S paths have already exited L, which then implies x ,y ∈ L.

At no point do we include an edge that skips vertices in L if y ∈ L or R if y ∈ R. Therefore, each
path inevitably reaches y, and we have η vertex-disjoint paths from x to y.
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