
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Heydari, Sara; Huang, Zhiren; Hiraoka, Takayuki; Ponce de Leon Chavez, Alejandro; Ala-
Nissila, Tapio; Leskelä, Lasse; Kivelä, Mikko; Saramäki, Jari
Estimating inter-regional mobility during disruption: Comparing and combining different data
sources

Published in:
Travel Behaviour and Society

DOI:
10.1016/j.tbs.2022.11.005

Published: 01/04/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Heydari, S., Huang, Z., Hiraoka, T., Ponce de Leon Chavez, A., Ala-Nissila, T., Leskelä, L., Kivelä, M., &
Saramäki, J. (2023). Estimating inter-regional mobility during disruption: Comparing and combining different data
sources. Travel Behaviour and Society, 31, 93-105. https://doi.org/10.1016/j.tbs.2022.11.005

https://doi.org/10.1016/j.tbs.2022.11.005
https://doi.org/10.1016/j.tbs.2022.11.005


Travel Behaviour and Society 31 (2023) 93–105

Available online 5 December 2022
2214-367X/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Hong Kong Society for Transportation Studies. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Estimating inter-regional mobility during disruption: Comparing and 
combining different data sources 

Sara Heydari a,*, Zhiren Huang a, Takayuki Hiraoka a, Alejandro Ponce de León Chávez b, 
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A B S T R A C T   

A quantitative understanding of people’s mobility patterns is crucial for many applications. However, it is 
difficult to accurately estimate mobility, in particular during disruption such as the onset of the COVID-19 
pandemic. Here, we investigate the use of multiple sources of data from mobile phones, road traffic sensors, 
and companies such as Google and Facebook in modelling mobility patterns, with the aim of estimating mobility 
flows in Finland in early 2020, before and during the disruption induced by the pandemic. We find that the 
highest accuracy is provided by a model that combines a past baseline from mobile phone data with up-to-date 
road traffic data, followed by the radiation and gravity models similarly augmented with traffic data. Our results 
highlight the usefulness of publicly available road traffic data in mobility modelling and, in general, pave the 
way for a data fusion approach to estimating mobility flows.   

1. Introduction 

An accurate, quantitative understanding of the mobility patterns of 
people is crucial for many applications, such as transport engineering 
(Wang et al., 2012; Ren et al., 2014; Guirao et al., 2018), emergency 
management (Lu et al., 2012; Huang et al., 2018), and modelling and 
forecasting the spread of contagious diseases (Balcan et al., 2009; Belik 
et al., 2011; Riley et al., 2015). While the relevant time scales for en-
gineering applications are fairly long, natural disasters or pandemics 
typically result in sudden changes in mobility, caused by the event itself 
and by government interventions (Lu et al., 2012; Tian et al., 2020; 
Kraemer et al., 2020; Barbieri et al., 2021). As the traditional mobility 
models are practically static, being based on geography and de-
mographics (Barbosa et al., 2018), this calls for the use of dynamic data 
on the movement patterns of people. In this paper, we combine data 
from various sources with the aim of investigating inter-regional 
mobility in Finland during the onset of the SARS-CoV-2 pandemic in 
early 2020. To this end, we develop various models, using the traditional 
static mobility models as starting point for some. 

The mobility flows of people have been modelled as early as in the 
19th century (Ravenstein, 1885) where the distribution of population 

and the distances between cities were found to be important factors for 
determining mobility. Since then, a large number of theoretical models 
have been proposed, most notably the gravity (Zipf, 1946) and radiation 
models (Simini et al., 2012; Ren et al., 2014) which have become the de 
facto standard for estimating intercity travel flows. Both models take 
geographical distances and the population distribution as inputs and 
provide static estimates for mobility flows. Generally, they capture the 
big picture of mobility rather well; however, they are not perfect and are 
at times prone to underfitting (see, e.g., Masucci et al. (2013)). Both 
models also require up-to-date census data, which may not always be 
available. Moreover, when there are sudden changes in mobility due to 
exogenous factors, these models are obviously of limited use on their 
own. 

Many studies have employed different data sources to improve the 
accuracy and timeliness of mobility estimates (Vespignani, 2009). 
Brockmann and Theis (2008) estimated the distribution of travel be-
tween cities in the U.S. by using the circulation records of dollar bills 
from a website (wheresgeorge.com). Another approach is to estimate 
mobility patterns using the digital traces that people leave behind while 
moving, e.g. smartcard data (Huang et al., 2018) and Bluetooth data 
(Laharotte et al., 2015). Furthermore, companies such as Twitter, 
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Google, and Facebook have access to the geolocation of their users via 
GPS sensors on the users’ mobile phones or via their IP address. Some 
studies have used such geolocation data to estimate mobility patterns 
(Giannotti et al., 2011; Hawelka et al., 2014; Provenzano et al., 2018; 
Huang et al., 2020; State et al., 2013). While data collected by these 
companies can have a high temporal and spatial coverage, they may not 
be representative of the general population and the availability of such 
data is limited. 

For capturing inter-regional mobility, the geolocation records of 
mobile phone operators provide an excellent source of data. These data 
are collected by base stations that continuously keep track of the phones 
within their range. Such data can be aggregated into dynamic Origin-
–Destination (OD) matrices that contain anonymized information on the 
number of phones that have moved between any two regions during a 
given time frame. However, these data are generally not freely acces-
sible for modelling purposes and it is difficult to obtain real-time access 
to them, which would be required for real-time monitoring of mobility 
flows. 

Real-time monitoring is, however, possible using publicly available 
data on road traffic. Such data are collected via automated sensors and 
they are mainly used for the purpose of monitoring traffic conditions and 
road usage. Contrary to data collected from personal devices, road traffic 
data do not require anonymization and they are typically freely shared 
by the traffic authorities. The shortcomings of road traffic data are that 
they only represent one mode of transportation and are sampled only 
from specific locations on the major roads. 

In this paper, we set out to provide a paradigm for accurately esti-
mating the changing mobility between 20 hospital districts in mainland 
Finland during the first wave of the COVID-19 pandemic in the spring of 

2020, a period in which regular mobility patterns were highly distorted. 
For this purpose, we use different types of data, including public datasets 
such as the distribution of population, real-time road traffic data, 
mobility reports published by Facebook and Google, and proprietary 
data provided by a major telecommunication company. We explore how 
these different types of data can be used to develop temporal models, 
and compare the performance of these models in estimating changes in 
human mobility under unusual circumstances. For measuring the per-
formance of our models, we use a part of the mobile phone data provided 
by the telecommunication company as the ground truth. We also 
compare the performance of our models with those of the widely-used 
static radiation and gravity mobility models. 

Our results point out the utility of road traffic data in estimation of 
inter-regional mobility. The advantage is particularly prominent when 
the regular patterns of mobility are distorted, such as during the spring 
of 2020. Augmenting the traditional static mobility models with dy-
namic road traffic data improves their performance, and road traffic 
data works particularly well in combination with pre-pandemic mobile- 
phone mobility data. 

The structure of the paper is as follows. In Section 2 we describe the 
contents and origin of the different datasets used in this study. Then, in 
Section 3 we introduce the models developed for estimating mobility 
flows and discuss the error function for measuring their performance. 
We then present results from a comparison of the models against the 
ground truth data in Section 4, and finally discuss the results and present 
our conclusions in Section 5. The paper is followed by an Appendix in 
which we elaborate the datasets in more details (Section B) and present 
the mathematical proof for our modified version of the radiation model 
(Section C). 

Fig. 1. Illustration of the three different datasets on mobility in Finland used in the present study. The left panel shows mobile phone data overlaid on the 20 hospital 
districts in mainland Finland. These data provide the numbers of trips between each pair of hospital districts. The orange and blue lines demonstrate trips originating 
from two hospital districts on a typical day, so that the line thickness is proportional to the number of trips. The road traffic data (middle panel), on the other hand, 
only report the observed number of motor vehicles travelling between neighbouring districts. These traffic flows are calculated based on the number of passing 
vehicles as captured by road traffic sensors located close to the borders of the hospital districts, as marked on the map. Similarly to the left panel, the orange and blue 
lines demonstrate the flows on a typical date. The Facebook data (right panel) report changes in the level of movement of people inside the regions indicated with 
black lines; there is no information on inter-regional mobility. The regions used by Facebook are larger than the hospital districts. The inset plot illustrates the 
mobility change index provided with Facebook for one of the regions, from March 2020 to June 2020. 

S. Heydari et al.                                                                                                                                                                                                                                 



Travel Behaviour and Society 31 (2023) 93–105

95

2. Datasets 

We use five different data sources. Data on the geographical distri-
bution of workers and jobs, from Statistics Finland, are used for esti-
mating mobility flows with the static gravity and radiation models. 
Dynamic mobility data from road-traffic sensors, Facebook, and Google 
are used to make these models dynamic. Finally, we use a commercial 
mobile-phone-based mobility dataset partially for parametrizing our 
models and partially as the ground truth for their validation. The main 
features of the mobility datasets are introduced below. For a detailed 
description, we refer the reader to Appendix B. 

The public road traffic data contain the number of vehicles captured 
by traffic sensors in 5-min intervals. There are in total over 450 of these 
sensors on the Finnish roads. Data from the year 1995 to the current day 
are available from the website of Traffic Management Finland (Finland, 
2022). We aggregate data provided by those sensors that are located 
near the borders of the 20 hospital districts and use them as a proxy of 
the total traffic entering and leaving each district (cf. Fig. 1). Google and 
Facebook data are available only since March 2020, the time when 
COVID-19 became widespread. They report how the movement of 
people inside each region has changed relative to the pre-pandemic 
situation. It should be noted however, that Google and Facebook data 
have different geographical resolutions (See Fig. S1 for a comparison of 
these different geographical resolutions and for how we map these 
different scales to each other). 

The final dataset that we use is based on aggregated and anonymized 
mobile-phone geolocation records, provided for research purposes by 
Telia, the 2nd largest mobile phone operator in Finland. These data span 
two 4-month periods in 2019 and 2020, from the beginning of February 
to the end of May for both years. We refer to the 2019 data as pre- 
pandemic mobile phone data and the 2020 data as pandemic mobile phone 
data. The data contain the number of trips in six-hour time bins between 
the 295 Finnish mainland municipalities (see Appendix A, Fig. S1). 
Unlike the other three mobility datasets, the mobile-phone data provide 
a full origin–destination (OD) matrix. We use the pandemic mobile 
phone data as the ground truth for measuring the performance of our 
various models. From the pre-pandemic mobile phone data, we extract 
the essential patterns of mobility which can be used instead of the 
gravity and radiation models. Moreover, we use these data to augment 
the road traffic data. 

3. Methods 

Our aim is to develop and investigate models that use different data 

sources to provide accurate mobility estimates at the inter-regional 
level. Our particular focus is on dynamic models that perform well 
even under extraordinary circumstances that result in sudden deviations 
from typical mobility patterns. To this end, we use the first months of the 
COVID-19 pandemic to test the performance of the models. 

We use our models to estimate origin–destination matrices whose 
elements describe the number of people moving between pairs of 
Finnish hospital districts during 12-hour time bins. Hospital districts are 
a natural choice for the geographical granularity of any mobility esti-
mates intended the be used as input in pandemic modelling, because 
during the course of COVID-19 pandemic, important statistics such as 
the number of hospitalisations were reported at this level (Statistics in 
Finland, 2021). Regarding temporal granularity, since the static gravity 
and radiation models that we use are models of commuting flows, we 
choose a matching resolution of 12 hours. Note that we use a higher 
initial geographical and temporal resolutions for some of the other 
models, but then aggregate the results into hospital districts level and 
12-h time bins. The aggregation enables us to compare the performance 
of the models. 

In this Section, we will first introduce the concept of mobility vectors 
that are used as a building block of several of our models. We will then 
introduce each of our models, and finally discuss the error function that 
is used for comparing the performance of the different models. 

3.1. Mobility vectors 

The connectivity profile of a region can be quantified using the 
concept of mobility vectors. The mobility vector of a region captures the 
way how it is embedded in the broader mobility network. We will use 
mobility vectors in Section 3.3 for combining mobile phone and road 
traffic data, and in Section 3.4.3 to make radiation and gravity models 
dynamic with the help of the road traffic data. 

Two mobility vector can be defined for each region and for each 
period of time: the out-vector quantifies how the outgoing flow from the 
region is distributed among the destinations during the time period, and 
the in-vector similarly quantifies the incoming flows to this region. 

Given an OD matrix F with diagonal elements equal to zero (only 
containing inter-regional flows) and whose element fod denotes flow 
between origin o and destination d, the out-vector of o is defined as the 
normalized vector 

vout
o =

1
∑

ifoi

(
fo1,…, foj,…

)
=

(
vout

o1 ,…, vout
oj ,…

)
, (1)  

where vout
od indicates the fraction of flow to destination d. Similarly, the 

in-vector of d is 

vin
d =

1
∑

ifid

(
f1d ,…, fjd,…

)
=

(
vin

1d ,…, vin
jd,…

)
. (2) 

The geographical granularity and temporal span of the calculated 
mobility vectors are the same as those of the corresponding OD matrix. 
For example, the mobility vectors constructed based on estimations of 
the static radiation or gravity models would be static as well (see Sec-
tions 3.4.1 and 3.4.2 for more details on these static models). An 
example of mobility vectors estimated by static radiation and gravity 
models for one of the hospital districts in Finland is shown in Fig. 2. 

3.2. Using pre-pandemic mobile phone data to estimate the OD matrix 

Under normal circumstances, the inter-regional mobility patterns 
can remain fairly similar over several years. Therefore, as the first 
approximation, our simplest model approximates mobility flows directly 
from the patterns of the previous year. This model is not expected to 
perform well for spring 2020—rather, it serves as a point of comparison 
with the more involved models that utilize data concurrent with the 
COVID-19-driven mobility changes. 

Fig. 2. Out-vector (a) and in-vector (b) of Uusimaa hospital district as esti-
mated by static radiation and gravity models, depicting the fractions of flow to/ 
from other hospital districts. The hospital districts of the horizontal axes have 
been sorted on the basis of the radiation model estimates, in decreasing order 
of flow. 
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The mobile phone data originally come with a 6-h granularity, pre- 
binned for each date into 4 bins: night (00-06), morning (06-12), af-
ternoon (12-18), and evening (18-00). 

When estimating mobility flows from the pre-pandemic mobile- 
phone data, our aim is to retain the periodic temporal patterns typical 
for mobility, such as periodic daily variations, while removing random 
temporal fluctuations. Therefore, for an origin–destination pair (o, d) 

and a given time bin t, we estimate the flow ̃f
mobile
odt as the median of the 

flows from o to d in all the time bins in the pre-pandemic data that 
correspond to the same weekday and a similar 6-h bin: 

f̃
mobile
odt = med[fodi],∀i : WD(i) = WD(t)&

TD(i) = TD(t),
(3)  

where WD(i) indicates the day of the week of bin i and TD(i) the time of 
the day of i (night, morning, afternoon, evening). Note that the estimate 
is therefore the same for, e.g., any Monday morning. 

3.3. Augmenting pre-pandemic mobile phone data with road traffic data 

Next, we continue with pre-pandemic mobile phone data, using it as 
a baseline to be augmented with dynamic data from the road traffic 
sensors in order to obtain estimates that work for the 2020 pandemic 
period. We start by investigating the relation between the two sets of 
data during the spring of 2019, developing a model that estimates 
mobility flows for any given date from continuously available, up-to- 
date traffic data and an earlier mobile-phone baseline. As discussed in 
Section 2, road traffic data only capture partial traffic flows between 
neighbouring hospital districts, and cannot therefore alone provide a full 
OD matrix. Therefore we use pre-pandemic mobile data as part of the 
model. 

The procedure of combining road traffic data with mobile phone data 
consists of two steps. First, we find the scaling from the number of ve-
hicles observed on the roads to the total in-flow and out-flow of each 
region in the pre-pandemic mobile data. Second, we use mobility vectors 
together with these flows to get the full OD matrix. This is done, for each 
region, by distributing the total out-flow (in-flow) among destinations 
(origins) proportionally to the corresponding mobility vector elements 
(see Section 3.1 for the definition of mobility vectors). 

To find the relation between the observed number of vehicles and the 
number of travellers in the pre-pandemic mobile-phone OD matrix, we 

start by aggregating both types of data into the same regional and 
temporal level. We set the temporal resolution to 6 h (the resolution of 
the mobile phone data). For the spatial resolution, we use the 20 hospital 
districts (cf. Fig. S1 in the Appendix). 

To find the transformation between the road traffic and mobile 
phone data, we first use the mobile phone data to compute the total 
number of individuals leaving and entering region i at time t, fout

i∗t and f in
∗it. 

Similarly, we use the road traffic data to calculate the total numbers of 
vehicles entering and leaving the region, rout

i∗t and rin
∗it . 

We then investigate how the number of travellers from the mobile 
phone data is related to the number of vehicles from the road traffic 
data, separately for each region i and direction (out-flow and in-fow). 
The dependence can be expected to be approximately linear (the 
average number of passengers per car should not strongly depend on 
traffic volume), which is confirmed by visualizing the data (see Fig. 3). 
Therefore, we perform simple linear regression with rout

i∗t and rin
∗it as the 

independent variables and fout
i∗t and f in

∗it as the dependent variables, 
respectively. With the resulting slopes (mout

i and min
i ) and intercepts (bout

i 

and bin
i ), we can estimate the total mobility in-flows and out-flows for 

each region i at each time t as 

f̃
out
i∗t = mout

i rout
i∗t + bout

i , (4)  

and 

f̃
in
∗it = min

i rin
∗it + bin

i . (5) 

Each region thus has its own linear model for the in- and outflows. 
Next, we want to determine how the outflow (inflow) of a given 

district is distributed among destinations (origins). To this end, we use 
the mobility out-vector and in-vector of each region, calculated using 
the pre-pandemic data (see Section 3.1). The out-vector of origin o at 
time t is an array of fractions vout

odt of flow from the origin o to each 
destination d. Similarly, we denote the fractions of in-flow by vin

odt . For 
each region o, we calculate the median values of the fractions of in-flow 
and out-flow over all time bins in the pre-pandemic data. We denote 
these median fractions as 

ṽ out
od = med

[
vout

odt

]
; (6)  

ṽ in
od = med

[
vin

odt

]
. (7) 

Fig. 3. The components of the model explained in Section 3.3. The model combines pre-pandemic mobile phone data with road traffic data to get temporal estimates 
of inter-regional mobility. In the figure, we visualise the steps for estimating the flow originating from Päijät-Häme hospital district as an example. Panel (a) Total 
out-flow from Päijät-Häme in 4-h time bins in the pre-pandemic mobile phone data (f out

i∗t ) as a function of the road traffic flow (rout
i∗t ) in the same time bins. The data 

points are grouped based on their temporal features, in this case the time of the day, and then the line of best fit is found for each group (the dotted lines). Panel (b) 
Fractions of out-flow of Päijät-Häme to each destination (solid lines) and the corresponding median flows (dotted lines). Here, only the fractions for the morning time 
bins and their corresponding medians are visualized. Information in panels (a) and (b) is combined to estimate inter-regional mobility. For details see Eqs. (4)–(8) and 
Section 3.3.1. 
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Then, these values are renormalized so that the “median” mobility 
vector is also a unit vector, i.e., 

∑
dṽ

out
od = 1 and 

∑
dṽ

in
od = 1. Now, by 

combining the models for the individual regions and the median 
mobility vectors, we can estimate the entries of the OD matrix. To this 
end, we take the total out- and in-flows of Eqs. (4) and (5) and distribute 
them among destinations/origins by multiplying them with the values 
provided by Eqs. (6) and (7). As we get two estimations for each pair (o, 
d)—one for the out-flow from o to d and another for the in-flow to d from 
o, we finally average over them to arrive at the estimated flow 

f̃ odt =
(

f̃
out
o∗t ṽ

out
od + f̃

in
∗dt ṽ

in
od

)/
2. (8) 

Please note that unlike in the theoretical radiation and gravity 
models, where the in-flow from o to d is equal to the out-flow from d to o, 
this is not necessarily the case for this data-driven model—travelers 
from o to d do not necessarily return on the same day. 

3.3.1. Taking weekly and daily periodicities into account 
In the previous section, we constructed a model which estimates the 

OD matrix for time bin t based on the number of observed vehicles 
leaving and entering regions in that time bin. In training this model, we 
used all the datapoints in the pre-pandemic mobile phone data. How-
ever, it is well known that mobility is influenced by weekly and daily 
periodicities—e.g., there is less traffic on weekends and the morning 
rush hour is different from the early afternoon. As the average number of 
passengers per vehicle can also be expected to depend on these peri-
odicities, we should arrive at a better estimate if this is taken into ac-
count in the regression of Eqs. (5) and (4). Similarly, the mobility vectors 
can be expected to differ, e.g., between weekends and weekdays 
(commuting vs leisure travel), which can be accounted for in Eqs. (6) 
and (7). 

We use three time-dependent models: one where the time bins are 
grouped by weekday, one where the grouping is by time of day, and one 

where both are used. We then perform both the linear regression from 
traffic counts to mobility as well as the median estimation from pre- 
pandemic data separately for different groups of time bins. For the 
regression, the coefficients of Eqs. (5) and (4) therefore become time- 
dependent: for each group of time bins, we get separate values of mout

it 

and bout
it . Similarly, the median mobility vectors of Eq. (6) and (7) will 

explicitly depend on time and we have ṽ out
odt and ṽ in

odt where the medians 
are now taken over the data points in similarly defined groups of time 
bins. The final flow estimate is then calculated as an average similarly to 
Eq. (8). An example of the procedure is shown in Fig. 4. 

3.4. Models based on publicly available data 

Mobility data based on mobile-phone location is considered as one of 
the best proxies for the movement of people. However, mobile phone 
data are usually not public. In this section, we propose mobility models 
developed based on public data such as distribution of population and 
jobs, as well as road traffic data and the public mobility trends published 
by Google and Facebook as a response to the COVID-19 pandemic. 

We first introduce versions of the static radiation and gravity models 
which predict an OD matrix based on the geographical distribution of 
workers and jobs. Then we augment these models in turns with road 
traffic data and mobility trends from Facebook and Google to make the 
estimates dynamic. 

3.4.1. Static OD matrix from the radiation model 
The radiation model (RM) is an intervening opportunity model 

where a given job-seeker chooses a workplace considering a trade-off 
between the job’s benefits and the commute length. In the basic 
model proposed by Simini et al. (2012), a job-seeker chooses the closest 
job to the home region which is better than the best job available in the 
home region. 

Fig. 4. An illustration of how we augment the static radiation model (RM) and gravity model (GM) with the road traffic data to get dynamic estimates. Panel (a) 
shows a schematic picture of the out-vector of the Päijät-Häme hospital district based on the RM. Line thickness corresponds to the magnitude of the out-vector 
component. We combine these fractions with the temporal out-flow from Päijät-Häme, using road traffic data (displayed in panel (b)), to get dynamic estimates. 
In panel (c), the resulting dynamic estimate of the flow between Päijät-Häme and Uusimaa is shown in red. The blue lines indicate the ground truth from the mobile 
phone data. The temporal variations are in good agreement. The static RM estimate is shown by the dashed grey line. 
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In Simini et al. (2012), it is assumed that the number of employment 
opportunities in each region is proportional to the local population. 
However, having access to the spatial distribution of jobs and com-
muters in Finland (Section B.2), we propose a modified version of the 
RM which uses these data instead of the general population distribution. 
For this model, we initially use a higher spatial resolution (at the level of 
municipalities) and then aggregate the results to the level of hospital 
districts. The details of the model are explained in Appendix C. 

According to the model, the conditional probability that a worker 
living in municipality i works in municipality j is: 

pij =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
ni+

ni
, j = i;

ci
mimj(

mi + sij
)(

mi + mj + sij
), j ∕= i,

(9)  

where ni denotes number of workers residing in i out of which ni+ are 
out-commuters, mi denotes number of jobs located in i, sij =
∑

k∕=i:dik<dij
mk denotes the number of jobs which are located closer to i 

than j is, and the normalization constant is given by ci =

ni+
ni

(

1 − mi∑
i
mi

)− 1
. If all ni workers living in i choose their work desti-

nation using (9), then the expected number of people living in i and 
working in j equals 

nij = nipij.

These numbers are then aggregated to the level of hospital districts. 
We denote the aggregated flow from hospital district i to hospital district 
j by ηij. 

The RM is a model of commuting, and therefore a natural choice is to 
divide each day into two twelve-hour time bins (00–12 and 12–24) and 
assume that the flow observed from midnight to noon consists of people 
commuting to work and the flow from noon to midnight of returning 
commuters. Then, the flow of people from hospital district i to hospital 
district j at time bin t is estimated as 

f̃
RM
ijt =

{
ηij, t ∈ [00 − 12];
ηji, t ∈ [12 − 24]. (10) 

Later in Section 3.4.3 we combine the estimates of the static RM with 
road traffic data for a dynamic version of the RM. 

3.4.2. Static OD matrix from the gravity model 
The gravity model (GM) refers to a class of models for describing 

spatial interactions between regions and has many variations (Zipf, 
1946; Wilson, 1971). The most common model of movement between 
regions is the production-constrained gravity model (Wilson, 1971; 
Lenormand et al., 2016) where the share of between-municipality 
commuters who live in municipality i and work in municipality j is 
given by the proportionality 

pij∝nimjexp
(
− βdij

)
, j ∕= i. (11)  

Here ni is the number of workers who live in municipality i,mj is the 
number of jobs in municipality j, dij is the distance between the two 
municipalities, and β is the parameter in the exponential function (data 
on the distribution of jobs and workers are discussed in Section B.2). 
According to Lenormand et al. (2016), β can be directly inferred from 
the average spatial unit surface as 

β = 0.3
〈
S〉− 0.18

, (12)  

where 〈S〉 is the average surface area of the municipalities which equals 
1081.016 km2 in our case. We use the value of the exponent, − 0.18, that 
was estimated in Lenormand et al. (2012) using data for 4 countries. 

From official statistics we can get ni+, the total number of out- 
commuters of each municipality (see Section B.2 for details on the 

data). We determine the expected number of commuters nij who live in 
municipality i and work in municipality j by distributing out-commuters 
according to the probabilities in Eq. (11): 

nij =
pij

∑

k
pik

ni+. (13) 

As the last step, we aggregate these estimates to get the OD matrix for 
the mobility between the hospital districts. We denote the aggregated 
flow from hospital district i to hospital district j by ηij. As for the tem-
poral resolution, similarly to the case of the radiation model we assume 
that the population commutes to work during the twelve-hour time bin 
from midnight to noon and commutes back home from noon to 
midnight. Thus, the flow from hospital district i to hospital district j at 
time bin t according to the static GM is 

f̃
RM
ijt =

{
ηij, t ∈ [00 − 12];
ηji, t ∈ [12 − 24]. (14)  

3.4.3. Dynamic radiation and gravity models with road traffic data 
Next, we want to increase the accuracy of the RM and GM models by 

making them dynamic with the help of the road traffic data. We begin by 
using the static RM and GM models to calculate the mobility vectors for 
each region similarly to how the pre-pandemic mobile data is used in 
Section 3.3, but without any time dependence. As the outcome, for each 
region o, we get the out-vector vout

o which consists of fractions of out-flow 
to each destination vout

od (see Eq. 1). Similarly, for each region d, we get 
the in-vector vin

d which consists of in-flow fraction from different origins 
vin

od (see Eq. 2). An example of the out-vectors and in-vectors calculated 
based on the RM and GM is shown in Fig. 2. 

We then use road traffic data to compute the total outgoing and 
incoming number of vehicles for each hospital district in each time bin, 
rout
i∗t and rin

∗it , respectively. Following the reasoning of Section 3.4.1, we 
use a time resolution of 12 h. We assume that all vehicles leaving a re-
gion in the morning (from midnight to noon) are out-commuters who 
live in that region. Similarly, all traffic observed in the evening (from 
noon to midnight) are assumed to be out-commuters returning to their 
regions of residence. Furthermore, as the models introduced in this 
section are to be developed using publicly available data only, we cannot 
perform regression against pre-pandemic mobile phone data as in Sec-
tion 3.3. Therefore, we directly use the numbers of vehicles as mobility 
estimates, in effect assuming that each vehicle contains one commuter: 

f̃
in
∗it = rin

∗it and f
∼out

i∗t = rout
i∗t . 

Following these assumptions, we can estimate the entries of the OD 
matrix at time t from the observed road out-flow and in-flow in that time 
bin combined with the mobility vectors calculated from the static ra-
diation or gravity model (for a schematic overview, see Fig. 4). 
Combining all steps, the estimate of the dynamic radiation model is 

f̃
RM+R
ijt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
rout

i∗t vout,RM
ij + rin

∗jtv
in,RM
ij

)/
2, t ∈ [00 − 12];

(
rout

j∗t vin,RM
ij + rin

∗itv
out,RM
ij

)/
2, t ∈ [12 − 24], (15)  

and similarly, the estimate of the dynamic gravity model is 

f̃
GM+R
ijt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
rout

i∗t vout,GM
ij + rin

∗jtv
in,RM
ij

)/
2, t ∈ [12 − 24];

(
rout

j∗t vin,GM
ij + rin

∗itv
out,GM
ij

)/
2, t ∈ [12 − 24]. (16)  

. 
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3.4.4. Dynamic radiation and gravity models with Google and Facebook 
data 

As alternative public data sources for making the radiation and 
gravity models dynamic, we use data from Google and Facebook. These 
data provide daily indices of how the level of mobility inside regions has 
changed. The regions used by Facebook and Google are fairly large, 
consisting of several municipalities. Therefore, we use the mobility 
change index of each region for all its constituent municipalities, in 
order to arrive at the municipality-level resolution of the static RM and 
GM. The public availability of Google and Facebook data is limited to the 
pandemic period, as the companies started releasing these data in 
response to the pandemic. 

As the dynamic Google and Facebook mobility indices inform about 
changes in mobility with respect to the pre-pandemic baseline, we use 
them as dynamic multipliers to adjust the flows given by the static RM 
and GM. For this, we assume that mobility between regions has changed 
similarly to mobility within regions, which is what the indices measure. 
As an example, assuming that the estimates from static RM are valid for 
pre-pandemic times, we use the Facebook multipliers to adjust these 
estimates for pandemic times as 

n̂FB+RM
ijt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nRM
ij

(
cFB

it + cFB
jt

)/
2, t ∈ [00 − 12];

nRM
ji

(
cFB

it + cFB
jt

)/
2, t ∈ [12 − 24], (17)  

where t specifies a unique 12-h time bin and cFB
it is the mobility change 

index of municipality i according to Facebook data on the date of time 
bin t. After calculating the OD matrix at the level of municipalities, 
similarly to the other models, we aggregate the results to the level of 
flows between hospital districts. 

3.5. Estimation error 

To measure the performance of our models, we will compare their 
estimates with the ground truth from the 2020 mobile phone data. We 
denote the ground truth OD matrix at time t by Ft and the estimated OD 
matrix by F̃t. We use the absolute difference to measure the error for 
each data point, so that the error of the entry ij of the OD matrix equals 
⃒
⃒
⃒̃f ijt − fijt

⃒
⃒
⃒. The total weekly error in the estimation of inter-regional 

mobility in the whole country for week w is 

∊w =
∑

t∈w

∑

i,j
i∕=j

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

f̃ ijt − fijt

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

. (18) 

We then calculate the weighted mean absolute percentage error 
(WMAPE) at the country-wide level and during the span of a week by 
dividing the weekly error by the total weekly inter-regional mobility: 

Fig. 5. Comparison of the weekly country-wide weighted mean absolute percentage error WMAPE (see Eq. (19)). For the different models, for weeks 5 to 22 in the 
year 2020. The shaded grey area between weeks 12 and 20 marks the period of governmental restrictions including the closure of schools. The light red shading 
marks the closure of the borders of the capital Uusimaa region to non-essential traffic. Overall, the best performance is produced by the model that combines pre- 
pandemic mobile phone data with road traffic data from 2020 when taking the weekly patterns into account. For the weeks 13–16, this is almost matched by the 
static models augmented with road traffic data. 
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WMAPEw =

∑

t∈w

∑

i,j
i∕=j

⃒
⃒
⃒
⃒
⃒
⃒
f̃ ijt − fijt

⃒
⃒
⃒
⃒
⃒
⃒

∑

t∈w

∑

i,j
i∕=j

fijt
× 100%. (19) 

WMAPE has been used in the literature for measuring traffic flow 
prediction error Do et al. (2019) and as compared to the closely related 
measure of mean absolute percentage error, it overcomes the problem of 
diverging error when it comes to the prediction of small values. 

4. Results 

4.1. Background: the beginning of the pandemic in Finland 

We examine the performance of all models from the beginning of 
February to the end of May 2020. As explained in Section 2, we use 
mobile phone data from this time period as the ground truth. On week 5 
of the year 2020, the first confirmed case of COVID-19 was detected in 
Finland (YLE, 2021b). This was an isolated case, but the case numbers 
started rising on week 10 (YLE, 2021a). On week 12, the Finnish gov-
ernment implemented the first restrictions, including the closure of 
schools, a ban on gatherings of more than ten people, the closure of 
recreational and sports facilities, and the recommendation to work 
remotely (YLE, 2020a; YLE, 2020b). These restrictions were followed in 
the first half of April (from the mid-week of 13 until end of week 16) by a 
decree on banning unnecessary road traffic between the capital region of 
Uusimaa, where the prevalence of the disease was the highest, and the 
rest of the country (YLE, 2020c). 

4.2. Performance of models based on pre-pandemic mobile phone data 

Let us first consider the scenario where we have access to mobile- 
phone mobility data from 2019 (pre-pandemic mobile phone data) 
and we want to predict the mobility in 2020 around the time of the onset 
of the pandemic. There are two possible strategies: we can estimate the 
OD matrix directly using pre-pandemic mobile phone data (see Section 
3.2), or augment the pre-pandemic mobile phone data with road traffic 
data (see Section 3.3). 

4.2.1. Pre-pandemic mobile phone data as the only input 
When the pre-pandemic mobile phone data are used as described in 

Section 3.2, so that the estimated flows for each weekday and time of 
day equal the median flows over those weekdays and times of day in 
2019, the model performs well for the early weeks of 2020 (see Fig. 5). 
In other words, under normal circumstances, the mobility patterns can 
be predicted rather well from an earlier baseline because there is little 
change. However, from week 12 on, as the pandemic and the related 
government restrictions induce changes in mobility, the error of esti-
mation grows quickly and clearly exceeds the other models from weeks 
13 to 17. 

4.2.2. The effect of adding road traffic data 
For augmenting the pre-pandemic-data-only model with road traffic 

data, we first need to choose the best way of taking daily and weekly 
periodicities into account (see Section 3.3.1). We therefore test four 
models: the basic version does not account for periodicity, the second 
considers daily periodicity, the third the differences between weekdays, 

Fig. 6. Comparison between the weekly country-wide weighted mean absolute percentage error WMAPE. for different variations of the model that combines pre- 
pandemic mobile phone data with road traffic data. The plot shows the WMAPE (see Eq. (19)) in weeks 5 to 22 of the year 2020. The shaded areas are the same as in 
Fig. 5. The error is smaller for all models that take periodic patterns into account until week 11. After this, the situation changes as the mobility patterns are disrupted 
by COVID-19: the model tuned with the pre-pandemic daily patterns performs poorly during the pandemic while tuning only to the pre-pandemic weekly patterns 
decreases the prediction error slightly. This result suggests that daily patterns have changed more significantly than weekly patterns. See Section 3.3.1 for 
more details. 
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and the fourth both. The resulting errors are shown in Fig. 6. 
We observe that considering the periodic temporal patterns, in 

particular the combination of daily and weekly patterns, reduces the 
error until week 11. However, the situation changes from around week 
12, with the daily and daily + weekly models performing the worst and 
the model focusing on weekly patterns performing marginally better 
than the basic model. As the weekly-patterns model works best during 
the COVID-induced mobility disruption and as its average error during 
the whole timeline is the smallest of the four models, we choose it for the 
final comparison. 

The result is that the chosen model clearly achieves the best per-
formance for the pandemic period, while being almost on par with the 
pre-pandemic-only model for early 2020, as seen in Fig. 5. Therefore, 
considering overall performance, this model clearly wins the 
comparison. 

4.3. Performance of models that rely on public data 

Let us next consider the scenario where there is no pre-pandemic 
mobile phone data, but we need to rely on publicly available data 
sources. We first estimate static mobility patterns with the radiation and 
gravity models and then use road traffic data, Google data, and Face-
book data to augment these models. 

4.3.1. Static radiation and gravity models 
The performance of the static radiation and gravity models, con-

structed following Sections 3.4.1 and 3.4.2, is shown in Fig. 5. Being 
static, both models yield the same mobility flows for each week, and 
therefore changes in their weekly errors are purely due to changes in the 
ground truth. It can be seen that before the pandemic, in February 2020, 
both models perform considerably worse than the mobile-phone-data 
based models, with the radiation model having a smaller error than 
the more traditional gravity model. However, their performance be-
comes comparable during weeks 13–17. 

4.3.2. The effect of adding road traffic data 
We find that for the radiation model, using the road traffic data de-

creases the weekly estimation error on average by 15%. For the weeks 
14 and 15, the decrease is more than 30%, and the road-traffic- 
augmented radiation model performs almost as well as the best model 
(pre-pandemic mobile data  + road traffic), as seen in Fig. 5. Aug-
menting the static gravity model with the road traffic data also reduces 
the weekly error, on average by 32%, and its performance in the 
pandemic weeks 14 to 17 is comparable to the road-traffic-augmented 
radiation model. 

4.3.3. The effect of adding Facebook and Google mobility data 
Mobility reports published by Facebook and Google as a response to 

the COVID-19 pandemic are another alternative for augmenting static 
mobility models (see Section 3.4.4). The weekly errors of the radiation 
and gravity models augmented with these data are presented in Fig. 5. 
Comparing the overall errors reveals that augmenting the static models 
with these types of data does not improve their performance. On the 
contrary, for the gravity model, both data sets decrease the performance 
from week 13. For the radiation model, Facebook data slightly improve 
the estimates at the pandemic’s peak, but this effect is reversed else-
where and is not persistent. 

Fig. S1. The map of Finland indicating different geographical regions considered in this work. The 295 municipalities in mainland Finland are marked with light 
gray lines, excluding the island of Åland, and municipalities are the finest geographical regions among all our datasets. The OD matrix from mobile phone data 
reports the numbers of trips between these municipalities. The estimations of the static radiation and gravity models are also calculated for inter-municipality 
mobility flows. These data are finally aggregated to the level of 20 hospital districts as indicated by the map on the left. Google and Facebook data come with 
their own geographical divisions (the maps in the middle and to the right) that are larger than hospital districts. 

Table S1 
Sample rows of data provided by Statistics Finland on the distribution of the 
number of workers and jobs in 2017 for the 295 municipalities in mainland 
Finland.  

i Workers residing in i (ni) Jobs in i (mi) Out-commuters (ni+) 

Helsinki 309 685 397 346 70 820 
Espoo 131 153 120 676 67 308 
Vantaa 106 531 116 320 57 801 
Kirkkonummi 18 086 10 863 12 309  
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5. Summary and discussion 

Accurate and real-time estimation of country-level mobility patterns 
is a challenging but crucial task. Such estimates are particularly 
important in times of crisis, for example when attempting to forecast the 
spread of contagious disease as well as for evaluating the effect of re-
strictions imposed to control their spread. 

In this study, we have used models based on various types of mobility 
data as well as traditional static models for the timely estimation of the 
OD matrix in Finland during the onset of the COVID-19 pandemic. To 
understand the usefulness of different types of data, we focused on 
models that are transparent and fairly straightforward. We observed that 
the best strategy is to extrapolate OD matrices from past data, in our case 
from a mobile telephone operator, and refine them with dynamic, up-to- 
date road traffic information. Moreover, using road traffic data in this 
way also improves the traditional static mobility models substantially. 

With the road traffic data and pre-pandemic mobile-phone data, we 
examined how the different types of periodicity affect the accuracy of 
the estimates. We found that before COVID-19 became prevalent in 
Finland, the best estimates were obtained when considering both weekly 
and daily patterns, that is, variations in mobility between different 
weekdays and different times of day, as seen in Fig. 6. However, the 
situation changed dramatically with the onset of the first wave of the 
pandemic in March 2020. While the performance of all road-traffic- 
augmented models became substantially worse, the order of the 
models changed, with the pre-pandemic winner with both daily and 
weekly patterns now having the worst performance and the weekly 
model the best. This indicates that in addition to changes in mobility 
levels, also studied elsewhere (see, e.g., Schlosser et al. (2020, 2022)), 
there were considerable changes in the temporal patterns of mobility on 
different timescales. These would be an interesting topic for future 
studies. 

Besides using road traffic data, as an alternative way of augmenting 
the static mobility models, we investigated using the mobility indices 
provided by Google and Facebook. In combination with our models, 
these data sets did not produce further enhancements. There are several 
likely reasons for this. First, the mobility indices by Facebook and 
Google quantify changes in mobility trends inside regions, while road 
traffic data provide a proxy of the in-flows and out-flows. Second, 
Facebook and Google indices are unitless indices of changes in mobility 
with respect to the pre-pandemic situation, whereas road traffic data 
yield absolute numbers of vehicles. Third, Facebook and Google indices 
are provided for relatively coarse geographical regions (see Fig. S1). 
However, we should emphasize that even though Facebook and Google 
data are not useful for our models, they might work better for other 
types of models or other geographical regions. 

The performance of any model of mobility is bounded by the accu-
racy of the data used for the calibration of the model and the ground 
truth that it is validated against. Therefore, the quality of these data is 
crucial. In our study, we used mobility data provided by a teleoperator 
both for the calibration and as the ground truth. These data were scaled 
at the source (Telia) to account for the operator’s market share in 
different user segments, so that the mobility patterns are representative 
of the whole population. Naturally, combining mobility data from all 
(major) teleoperators would be even more optimal, but this can be rarely 
achieved in practice. Another factor is how recent the training and 
ground truth data are. Our dynamic models are capable of nowcasting 
mobility flows by combining the past ground truth with observed signals 
in the current day. Evidently, long-term changes in mobility patterns 
degrade the quality of ground truth data from the past, but the quanti-
tative understanding of the relevant timescales would require data from 
a longer period of time than we had at our disposal. 

Essentially, our mobility estimation problem can be seen as a data 

fusion problem—how to combine various types of data and various 
models for accurate estimates of mobility? Similar problems have been 
addressed with different types of data (smart cards, GPS) for the smaller 
scale of cities in Zhang et al. (2014) and Huang et al. (2018)). Generally, 
for mobility estimates on the scale of a country as investigated in this 
paper, there are many possible ways forward. As stated above, we have 
opted to focus on models that are fairly straightforward and transparent 
in order to learn the fundamentals of combining data from such a di-
versity of sources. However, the next steps forward could include the use 
of machine-learning approaches (Xie et al., 2020; Luca et al., 2021), 
such as using the deep learning structure ResNet (Zhang et al., 2017) or 
considering land-use information (Simini et al., 2021), that may provide 
more accurate estimations using all available data at the cost of 
decreased transparency or increased model complexity. 

5.1. Conclusion 

To conclude, we have investigated the use of multiple types of data 
and models in estimating inter-regional mobility during the onset of the 
COVID-19 pandemic in Finland. The highest accuracy was provided by a 
model that combined past mobile phone data with public up-to-date 
road traffic data. The use of road traffic data also improved the perfor-
mance of traditional static mobility models. These results pave the way 
for a data fusion approach to estimating inter-regional mobility flows. 
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Appendix A. Python codes for implementing the models 

To facilitate the reproducibility of this study, we are sharing the Python codes developed to implement our models (SaraHeydari, 2022). 

Appendix B. Datasets 

B.1. Road traffic 

The road traffic data used in this study are provided by ITM Finland Ltd (Intelligent Traffic Management Finland). Vehicle count data are collected 
by over 450 induction loops installed into the road network. These sensors capture the number of vehicles passing by each induction loop in time 
intervals of five minutes, together with their average speed. The data are available from the year 1995 to the present day and can be downloaded from 
https://www.digitraffic.fi/. 

We have taken part in implementing a Python package that allows to fetch the road traffic data for any desired time period and also to aggregate 
the information geographically or temporally. The package is accessible on Github (Fin-traffic data, 2021). In the present study, we have used the 
package to coarse-grain the traffic-count data to obtain the number of vehicles moving between neighbouring hospital districts during 6-h time bins. 
There are 20 hospital districts mainland Finland, as shown in Fig. S1). 

B.2. Population statistics and commuting 

The radiation and gravity models of Sections 3.4.1 and 3.4.2 are traditionally are used to estimate the number of commuters between different 
regions. These models estimate mobility based on the geographical distribution of the population. They often assume that number of commuters and 
jobs in an area are both proportional to the population on region. Here, instead, we use the actual distribution of commuters and jobs. 

Data on the geographical distribution of jobs and workers in Finland are publicly available from Statistics Finland (Finland, 2021). The spatial 
resolution of the data is at the level of municipalities; there are in total 295 municipalities in mainland Finland, see Fig. S1). The data are available 
annually from 1987. 

In this study, we use the statistics for the year 2017, which are the most recent data available at the time of this study. The publicly available data 
include the number of workers living in municipality i, which we denote by ni, the number of jobs available in municipality j, which we denote by mj, 
and the number of people working outside of their municipality of residence i, which we refer to as out-commuters and denote by ni+. 

These data are used as inputs data to the radiation and gravity models to estimate a static origin–destination matrix, to be augmented by the road 
traffic data as introduced in Section 3.4.3. 

B.3. Mobile phone data 

The mobile phone data set, licenced from the teleoperator Telia, is a set of time-stamped origin–destination matrices aggregated to the level of 
Finnish municipalities. The company has aggregated these matrices from base-station-level information on the numbers of users travelling between 
municipalities. A break of 20 min or less has been allowed during the trip. The numbers of trips have then been scaled by the company according to its 
market share (∼ 30% Transport and Agency (2022)). Thus, assuming that the operator’s customer base is representative of the population, the values 
should be a good proxy for the numbers of individuals travelling between regions. The specifications of the data are:  

• Geographical resolution: Municipalities in Finland (total of 295 municipalities in mainland Finland)  
• Time period: 2019.02.01–2019.05.31 and 2020.02.01–2020.05.31 (total of 8 months)  
• Time resolution: 4 times a day (00–06, 06–12, 12–18, and 18–00) 

The data are missing for some dates and origin municipalities due to low signal quality. We have removed those dates which are missing the trips 
related to more than 10 origins from the dataset (18 days in total) (See Table S1). 

B.4. Publicly available mobility trend indices 

In response to the COVID-19 pandemic, both Facebook and Google have published mobility trend indices that are derived from the usage of their 
mobile applications together with location services. These indices measure changes in mobility levels compared to the pre-pandemic baseline. It 
should be noted that it is hard to assess whether the users constitute a representative sample of the population, as no details on demographics are 
released. 

B.4.1. Facebook movement range maps 
The Facebook movement range maps project (Facebook, 2021) provides two kinds of mobility indices: Change in Movement and Stay put. In this study, 

we use the Change in Movement index which reports the overall level of mobility as compared to a pre-pandemic baseline period (i.e., Feb. 2020). This 
index is provided daily for the 5 regions of mainland Finland (see Fig. S1 for the geographical resolution). 

B.4.2. Google community mobility reports 
The Google movement trends (Maps, 2021) provide six mobility trend indices corresponding to different categories of places such as retail and 

recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. Similarly to the Facebook data, these indices report the 
changes in mobility compared to a pre-pandemic baseline. The indices are produced for 19 regions in mainland Finland once per day (see Fig. S1). In 
our models, we used the index related to transit stations as the proxy of changes in the intensity of inter-regional mobility. 
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Appendix C. An asymmetric radiation model for work commuting 

Assume a spatial region (e.g. country) partitioned into a finite number of cells (e.g. municipalities) where cell i contains a set of resident travelers 
Ni (e.g. people with jobs) and a set of travel destinations Mi (e.g. workplaces). We denote size of sets Ni and Mi by ni and mi. For every traveler x and 
every travel destination y, there is a number Wxy describing how much x values destination y. The numbers Wxy are assumed distinct. We denote by 
Zxj = maxy∈Mj Wxy the best value of cell j to traveler x. The destination cell of traveler x with residence in cell Ni is defined as 

Di(x) =

⎧
⎨

⎩

i, if Zxi = max
j

Zxj;
j, if Zxj > Zxi > max

k:dik<dij
Zxk,

where dij is a cost (e.g. travel distance between suitably weighted geographic cell centers) associated with the ordered cell pair (i, j). Hence traveler x 
resident in cell i selects cell j ∕= i as destination if and only if j is the cell with least cost among the cells offering better value than Zxi. 

In the special case where mi = cni for some constant c, and dij is the Euclidean distance on R2, this model reduces to the radiation model described 
in Simini et al. (2012). In this paper, we too regard cost dij to be the Euclidean distance, but take the number of jobs and workers from official statistics 
rather than assuming a constant relation between mi and ni, 

Proposition 5.1. Assume that the values Wxy are mutually independent and distributed according to a continuous probability distribution on R 

(atom-free property). Then the random variables Di(x) are mutually independent and distributed as 

P(Di(x) = j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mi
∑

k
mk

, j = i;

mimj(
mi + sij

)(
mi + mj + sij

), j ∕= i,
(20)  

where mi = |Mi| and sij =
∑

k∕=i:dik<dij
mk. 

Proof. (Proof of Proposition 5.1) (i) Fix a traveler x with residence cell Ni. The assumptions that the values Wxy are independent and distributed 
according to a continious probability distribution imply that there is almost surely a unique y* for which y ↦ Wxy attains its maximum. By symmetry, 
each destination y attains the maximum equally likely. Hence the maximum is attained by a destination y in cell i with probability |Mi |

|∪kMk |
= mi∑

k
mk

. This 

is the probability that Di(x) = i. 
(ii) Denote Sij = {k ∕= i : dik < dij}, and let Zx,ij = maxk∈Sij Zx,k and Mij = ∪k∈Sij Mk. Note that for j ∕= i, 

P
(
Di
(
x
)
= j

)
= P

(
Zx,ij⩽Zx,i < Zx,j

)

= P
(
Zx,i⩾Zx,ij

)
− P

(
Zx,i⩾max

{
Zx,ij,Zx,j

})

= P

(

max
y∈Mi

Wxy⩾max
y∈Mij

Wxy

)

− P

(

max
y∈Mi

Wxy⩾ max
y∈Mj∪Mij

Wxy

)

.

The independence assumption and the atom-free property imply that there is an almost surely unique value y ∈ Mi ∪ Mij for which y ↦ Wxy attains 
its largest value. Moreover, each of the random variables Wxy has an equal probability of being the largest. Therefore, the largest value belongs to Mi 

with probability |Mi |

|Mi∪Mij|
= mi

mi+sij
. Hence 

P

(

max
y∈Mi

Wxy⩾max
y∈Mij

Wxy

)

=
mi

mi + sij
.

A similar reasoning shows that 

P

(

max
x∈Mi

Wx⩾ max
x∈Mj∪Mij

Wx

)

=
|Mi|⃒

⃒Mi ∪ Mj ∪ Mij
⃒
⃒

=
mi

mi + mj + sij
.

Hence the claim follows. □ Based on Eq. 5.1, the probability that a worker living in region i also works in i is equal to mi/
∑

kmk. However, we can 
obtain the diagonal entries of OD-matrix -e.g. number of people who work in their regions of residence- from the official statistics in Finland (see 
Section B.2 for more details on the data). We combine the empirical information on the diagonal entries with the probabilities related to the non- 
diagonal entries based on Eq. 5.1. Then, the probability that a worker living in municipality i works in municipality j would be: 

pij =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
ni+

ni
, j = i;

ci
mimj

(
mi + sij

)(
mi + mj + sij

), j ∕= i,
(21)  

where ni+ = ni − nii is the number of out-commuters of i, sij =
∑

k∕=i:dik<dij
mk and the normalization constant is given by ci =

ni+
ni

(
1 − mi

n
)− 1 with n =

∑
ini. 

This can be interpreted as follows: A person in municipality i flips a coin and with probability ni+/ni decides to be an out-commuter (work outside the 
home municipality). Conditionally on being an out-commuter, the target municipality of a worker living in municipality i is sampled from the 
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conditional law of Di(x) given Di(x) ∕= i, where Di(x) is distributed according to (20). If all ni workers living in i choose their work destination using 
(21), then the mean number of people living in i and working in j equals 

μij = nipij.
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