
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Dietrichstein, Marc; Major, David; Trapp, Martin; Wimmer, Maria; Lenis, Dimitrios; Winter,
Philip; Berg, Astrid; Neubauer, Theresa; Bühler, Katja
Anomaly Detection Using Generative Models and Sum-Product Networks in Mammography
Scans

Published in:
Deep Generative Models - 2nd MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022,
Proceedings

DOI:
10.1007/978-3-031-18576-2_8

Published: 01/01/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Dietrichstein, M., Major, D., Trapp, M., Wimmer, M., Lenis, D., Winter, P., Berg, A., Neubauer, T., & Bühler, K.
(2022). Anomaly Detection Using Generative Models and Sum-Product Networks in Mammography Scans. In A.
Mukhopadhyay, I. Oksuz, S. Engelhardt, D. Zhu, & Y. Yuan (Eds.), Deep Generative Models - 2nd MICCAI
Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Proceedings (pp. 77-86). (Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 13609 LNCS). Springer. https://doi.org/10.1007/978-3-031-18576-2_8

https://doi.org/10.1007/978-3-031-18576-2_8
https://doi.org/10.1007/978-3-031-18576-2_8


Anomaly Detection Using Generative

Models and Sum-Product Networks

in Mammography Scans

Marc Dietrichstein1?, David Major1?, Martin Trapp2, Maria Wimmer1,
Dimitrios Lenis1, Philip Winter1, Astrid Berg1, Theresa Neubauer1, and

Katja Bühler1

1 VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH,
Vienna, Austria

david.major@vrvis.at
2 Department of Computer Science, Aalto University, Espoo, Finland ??

Abstract. Unsupervised anomaly detection models that are trained
solely by healthy data, have gained importance in recent years, as the
annotation of medical data is a tedious task. Autoencoders and gener-
ative adversarial networks are the standard anomaly detection methods
that are utilized to learn the data distribution. However, they fall short
when it comes to inference and evaluation of the likelihood of test sam-
ples. We propose a novel combination of generative models and a proba-
bilistic graphical model. After encoding image samples by autoencoders,
the distribution of data is modeled by Random and Tensorized Sum-
Product Networks ensuring exact and e�cient inference at test time. We
evaluate di�erent autoencoder architectures in combination with Ran-
dom and Tensorized Sum-Product Networks on mammography images
using patch-wise processing and observe superior performance over uti-
lizing the models standalone and state-of-the-art in anomaly detection
for medical data.

Keywords: Anomaly Detection · Generative Models · Sum-Product
Networks · Mammography.

1 Introduction

Acceleration of the detection and segmentation of anomalous tissue by auto-
mated computer-aided approaches is a key to enhancing cancer screening pro-
grams. It is especially important for mammography screening, as breast cancer
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is the most common cancer type and the leading cause of death in women world-
wide [20]. Training an arti�cial neural network in a supervised way requires a high
amount of pixel-wise annotated data. As data annotation is very costly, meth-
ods that involve as less annotation as possible are in high demand. Anomaly
detection approaches are good representatives of this type, as they only uti-
lize healthy cases for learning, and anomalous spots are detected as a deviation
from the learned data distribution. The deviation is measured either by straight-
forward metrics such as reconstruction error of input and output samples or by
more sophisticated constructs such as log-likelihood in probabilistic models.

Unsupervised anomaly detection methods have been evaluated on a plethora
of di�erent pathologies and medical imaging modalities. A state-of-the-art method
in this area is f-AnoGAN [15], which leverages Generative Adversarial Networks
(GANs) to model an implicit distribution of healthy images and detect outliers
via a custom anomaly score based on reconstruction performance. f-AnoGAN
has been utilized to detect anomalies in Optical Coherence Tomography (OCT)
scans [15], Chest X-rays [1], and 3D Brain scans [17]. However, it requires the
training of a separate encoder module to obtain latent codes of images, which are
used by the generator for reconstruction. The autoencoder (AE) architecture, on
the other hand, jointly trains an encoder and decoder and is thus able to directly
map an input to its corresponding latent representation. AE variants have been
applied to lesion detection in mammography images [19] and brain scans [8,21],
as well as head [14] and abdomen [8] Computed Tomography scans. However,
the practical applicability of all those models is limited by the fact that the re-
spective anomaly scores are not easily interpretable by a human decision maker.
Here, to remedy the situation, it would be desirable for the model to provide
some degree of certainty for its decision. To this end, density estimation mod-
els can be employed. Such models learn an explicit probability density function
from the training data and assume that anomalous samples are located within
low-density regions. Examples are the application of Gaussian Mixture Mod-
els [2] for brain lesion detection as well as Bayesian U-Nets for OCT anomaly
detection [16]. Although these approaches are similar to ours, they are tailored
to speci�c image modalities and can thus not be directly applied to our domain.

In this work, we introduce a novel and general method for anomaly detec-
tion that combines AEs with probabilistic graphical models called Sum-Product
Networks (SPNs). A recent powerful SPN architecture called Random and Ten-
sorized SPN (RAT-SPN) [12] was chosen, as it is easy to integrate into deep
learning frameworks and is trained by GPU-based optimization. More than that,
standard and variational AEs do not allow to derive exact data likelihoods, they
rather provide approximations that can be used for anomaly detection. SPNs
solve this problem and allow exact and e�cient likelihood inference by impos-
ing special structural constraints on the model capturing the data distribution.
We compare the performance of di�erent standalone AEs to that of their com-
bination with RAT-SPNs on unsupervised mass and calci�cation detection in
public mammography scans and demonstrate improvements.
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Fig. 1: The encoder of an AE outputs a low-dimensional latent representation zn
of healthy mammography patches. This representation serves then as input to a
SPN that learns the corresponding probability distribution p(E(x)). The likeli-
hood of test samples is predicted over the same pipeline using trained models.

2 Methods

Our approach learns the healthy data distribution in a patch-wise fashion. First,
the dimensionality of patch data is reduced by an AE, and the likelihood for
membership to the data distribution is approximated by a RAT-SPN. During
inference, the learned model is applied to test images patch by patch, where at
every position, the likelihood yields the anomaly score. As the models capture
the distribution of healthy data, this score should be signi�cantly di�erent at
anomalous image positions. We compare the performance of our pipeline to that
of standalone AE models. The di�erent AEs, that we considered, are described
in Section 2.1 and RAT-SPNs in Section 2.2. It is followed by our proposed
combination of an AE with a RAT-SPN in Section 2.3. A system overview is
provided in Fig. 1.

2.1 Autoencoders

Convolutional AEs (CAEs) [9] utilize convolutional blocks to map high dimen-
sional image data x ∈ RH×W into a lower dimensional latent space z ∈ RM

using an encoder by z = E(x) and reconstruct it utilizing a decoder model by
x̂ = D(E(x)). The compression and reconstruction process is learned by min-
imizing the reconstruction loss LCAE = `2(x, x̂) where `2 signalizes the mean
squared error (MSE). Computation of LCAE for test samples yields the anomaly
score at inference.

Variational Autoencoders (VAEs) [6] are equipped with the same building blocks
as CAEs when applied to images, but additionally, they aim to approximate
the true posterior distribution p(z|x) in the encoder E by a simpler and more
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tractable distribution q(z|x). This is achieved by minimizing the KL divergence
DKL(q(z|x) || p(z|x)) between the two distributions. On the other hand, the
decoder D learns the posterior p(x|z) and reconstructs x from a given z by
maximizing the log-likelihood log p(x|z). The overall objective to minimize is
called the evidence lower bound (ELBO), and it can be formulated as follows:

LV AE = Eq(z|x) [log p(x|z)]− βDKL(q(z|x) || p(z)). (1)

The MSE was utilized as the reconstruction loss for log p(x|z), and β was set
to 0.1 following [5], which is a weighting factor between the two terms. Thus,
our models are called βVAEs [5]. LV AE is utilized as the anomaly score for a
given test sample during inference.

Vector Quantised-Variational Autoencoder (VQVAE) [10] is a VAE variant that
di�ers from the original in a crucial aspect: it uses discrete instead of continuous
variables to represent the latent space. Discretization is realized by mapping
the encoder output E(x) to the index of the closest vector ei in the latent
embedding space e ∈ RK×B , where K is the number of distinct discrete values
and B is the dimension of each embedding vector ei. The posterior variational
distribution q(z|x) is one-hot-encoded in such a way that q(z = k|x) = 1, with
k = argmini ||E(x)−ei||2. The mapping of E(x) to the nearest embedding vector
ei is de�ned as Eq(x) = ek with k = argmini ||E(x)−ei||2. The loss formulation
consists of three parts, each aiming to optimize a di�erent aspect of the model:

LVQVAE = log p(x|Eq(x)) + ||sg[E(x)]− e||22 + λ||E(x)− sg[e]||22. (2)

The �rst term is the reconstruction loss, for which MSE was again chosen.
The remaining terms are concerned with learning an optimal embedding space.
The codebook loss, the second term, attempts to move the embedding vectors
closer to the encoder output, whereas the third term, the commitment loss,
attempts the inverse and forces the encoder output to be closer to the closest
embedding vector e. sg[·] is the stop-gradient operator and prevents its operand
from being updated during back-propagation. λ is a weighting factor for the
commitment loss, which we set to 0.25, following [10]. The anomaly score for a
given test sample is determined by calculating its reconstruction loss.

2.2 Sum-Product Networks

SPNs [13] are tractable probabilistic models of the family of probabilistic cir-
cuits [3] and allow various probabilistic queries to be computed e�ciently and
exactly. For consistency with recent works, we will introduce SPNs based on the
formalism in [18]. An SPN on a set of random variables Z = {Zj}Jj=1 is a tuple
(G, ψ) consisting of a computational graph G, which is a directed acyclic graph,
and a scope function ψ mapping from the set of nodes in G to the set of all subsets
of Z including Z. The computational graph of an SPN is typically composed of
sum nodes, product nodes, and leaf nodes. Sum nodes compute a weighted sum of



Mammography Anomaly Detection by Generative Models and SPNs 5

their children, i.e., (S(z) =
∑

N∈ch(S) θS,N N(z)), product nodes compute a prod-

uct of their children, i.e., (P(z) =
∏

N∈ch(P) N(z)), and leaf nodes are tractable
multivariate or univariate probability distributions or indicator functions. The
scope function assigns each node a scope (subset of Z or Z) and ensures that the
SPN ful�lls certain structural properties, guaranteeing that speci�c probabilistic
queries can be answered tractably. In this work, we will focus on SPNs that are
smooth and decomposable, we refer to [3] for a detailed discussion. Moreover, we
consider a representation of the SPN in the form of a random and tensorized
region graph called RAT-SPNs [12] and employ the implementation based on
Einstein summation as proposed in [11]. The region graph is parametrized by
the number of root nodes C, input distributions I as well as the graph depth D,
and the number of parallel SPN instances, or recursive splits, R. By choosing
these parameters, RAT-SPNs with arbitrary complexity may be constructed.
From a given region graph, it is possible to obtain the underlying SPN structure
in terms of its computational graph and scope function exactly, for more details
see [18,12]. A simple region graph with C = 1, I = 2, D = 1, and R = 1, and
the underlying SPN is illustrated in Fig. 1. In a generative learning setting like
ours, the optimal network parameters w are found by applying (stochastic) Ex-
pectation Maximization (EM) to maximize the log-likelihood LL of the training
samples:

LL(w) =
1

N

N∑
n=1

log S(zn). (3)

2.3 Combining Autoencoders and Sum-Product Networks

We combine each AE type of Section 2.1 with a RAT-SPN by passing the learned
latent representation of encoded samples z = E(x) as observed states for the ran-
dom variables Z to a RAT-SPN (see Fig. 1). This way, after input images are
mapped to a low-dimensional space, likelihoods can be obtained exactly and
e�ciently in an end-to-end fashion at inference. Extra computations, essential
for reconstruction and ELBO-based scores of standalone AEs, are therefore not
necessary. Two RAT-SPN setups are utilized, one with Gaussian input distri-
butions for the continuous latent representations of CAEs and βVAEs, and the
other with categorical inputs for the discrete features of VQVAEs. Training is
done separately, �rst the AE models are trained followed by RAT-SPNs. The
anomaly score is yielded by the likelihood of a trained AE and RAT-SPN com-
bination for a given test sample.

3 Experimental Setup

3.1 Datasets

We train our models on the Digital Database for Screening Mammography
(DDSM) [4], a collection of 2620 mammography exams, with each exam con-
sisting of multiple images. The images in this dataset are categorized according
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to the type of diagnosis, either into healthy or into a cancer type (i.e., ma-
lignant, benign). As we want to learn a healthy model, we selected only the
695 healthy exams containing 2798 images for training purposes. From each im-
age, 120 patches of 64×64 pixels (px), the resolution also used by [15], were
extracted; half of these containing internal breast tissue, the other half were
sampled along the breast contour. We evaluated all methods against a selec-
tion of cancerous mammograms from the Curated Breast Imaging Subset of
DDSM (CBIS-DDSM) [7], which provides improved annotations of masses and
calci�cations for images from DDSM. In order to �lter out images with large-
scale annotations, we set the restriction that the annotation mask area must
be smaller than 4-times of our patch area for masses, and it should contain the
whole calci�cations. 79 scans were selected from the mass and 30 scans from
the calci�cation test set that ful�lled these criteria. The healthy training images
consisted of equally distributed dense and non-dense tissues, whereas the mass
test cases had a ratio of 14%/86% and the calci�cation test samples a ratio of
40%/60% (dense/non-dense).

3.2 Training

The 2798 healthy images were split into 90% training and 10% validation images
(with no patient overlap) for training both the AE (CAE, βVAE, VQVAE) and
the RAT-SPN models. Following [9], all of our AE models had an architecture
with 32-64-128 2D convolutional layers with 5×5 kernels and a stride of 2 in the
encoder and 2D transposed convolutional layers in the decoder. The VQVAE
model had additional 6 residual blocks with 128 �lters, and the dimensionality
of the embedding vector was 64. All models had 64 latent units and were trained
with a batch size of 64. CAEs and βVAEs were trained for 100 epochs with a
learning rate of 1e-5, whereas VQVAEs converged to an optimum after 20 epochs
with a learning rate of 1e-4. The best-�t RAT-SPN parameters of C = 1, I = 45,
D = 1, R = 50 were found utilizing the 10% validation images, possible values
were taken from the supplement of [12]. The RAT-SPN setup was the same for
all AE models, and it was trained by the EM algorithm for 50 epochs with a
batch size of 64 and a learning rate of 1e-4.

3.3 Evaluation

We evaluated our methods on the 79 mass and 30 calci�cation test images.
The anomaly score assignment was performed in a lower dimensional image
space than the original resolution, and thus, patches were sampled around ev-
ery 16th pixel per image. Only breast tissue pixels were considered using pre-
segmentations of the breast area in every image. In order to show the anomaly
scores' discriminative power between healthy and anomalous positions, we de-
rived the Area Under the ROC Curve (AUC) in two ways, either considering
all pixels from all test images at once (pixel-wise) or doing it for each image
separately and calculating the average over all test samples additionally (image-
wise). In order to measure the capability of the methods for detection of the
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anomalous regions, we apply the Hausdor� distance (H) image-wise to assess
the pixel distance between masks generated by our models and the provided
CBIS-DDSM ground-truth. It measures the maximum of the distances from any
annotated point in one mask to the nearest point in the other mask, thus, the
smaller it is, the closer the match between prediction and ground-truth.

Test Data Model
Pixel-wise Image-wise

AUC AUC H

Masses

CAE 0.53 0.58±0.25 30.80±12.57
CAE-RATSPN 0.88 0.88±0.10 30.10±14.50

βVAE 0.80 0.83±0.14 30.78±12.79
βVAE-RATSPN 0.88 0.88±0.11 29.07±14.57

VQVAE 0.67 0.67±0.19 33.37±12.53
VQVAE-RATSPN 0.82 0.84±0.13 32.21±14.01

f-AnoGAN 0.86 0.85±0.12 30.41±11.91

Calci�cations

CAE 0.65 0.77±0.21 32.79±10.82
CAE-RATSPN 0.72 0.78±0.16 33.03±13.74

βVAE 0.73 0.80±0.17 29.73±12.56
βVAE-RATSPN 0.66 0.73±0.17 30.72±13.07

VQVAE 0.69 0.79±0.17 31.79±12.66
VQVAE-RATSPN 0.68 0.75±0.19 33.34±10.61

f-AnoGAN 0.67 0.74±0.20 34.95±6.98

Table 1: Anomaly detection results utilizing di�erent models. Metrics are com-
puted either over pixels or images. Next to AUC scores average Hausdor� (H) dis-
tances (px) between anomaly segmentations and ground-truth masks were com-
puted. Segmentations are calculated after score thresholding by 99th-percentile.
Statistically signi�cantly better performance (based on image-wise AUCs) be-
tween standalone and RAT-SPN extended models are depicted in bold (p<0.01).

4 Results and Conclusion

We compare the anomaly detection performance of the three AE models in their
standalone con�guration as well as with a RAT-SPN extension. Additionally, we
trained and evaluated a state-of-the-art f-AnoGAN model in its default con�g-
uration. The results are illustrated in Table 1 and Fig. 2.

For the mass test set, the overall best performing model was the βVAE-
RATSPN with 0.88 pixel-wise and average image-wise AUCs, and an average
H-distance of 29.07 px (see Fig. 2). Statistically signi�cant superior image-wise
AUC performances over standalone models were achieved by CAE-RATSPNs
and VQVAE-RATSPNs. Except for VQVAE-RATSPN, all RAT-SPN extended
models performed better than f-AnoGAN in terms of image-wise AUC, although
there were no statistically signi�cant di�erences (cf. Table 1). It is also visible
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Fig. 2: Anomaly detection results of a mass sample. The �rst column shows the
mammography scan (top) and anomaly ground-truth (bottom). The remaining
columns depict an anomaly score heatmap (top) and a segmentation mask (bot-
tom) for each model. Bright yellow pixels represent high and dark red pixels
low anomaly scores in the heatmaps. The respective Hausdor� distance to the
ground-truth (px) is displayed after each method name in brackets. Segmenta-
tions are calculated after score thresholding by 99th-percentile.

in Table 1 that RAT-SPNs applied to continuous features yielded better re-
sults than the discrete version. Furthermore, it is depicted in Fig. 3 a) and b),
that attaching RAT-SPN models to AE models facilitate a better discrimina-
tion between healthy and anomalous tissue by increasing the gap between their
respective distributions.

Moreover, the standalone βVAE was the best performing model for the cal-
ci�cation test set with an 0.73 pixel-wise and 0.80 average image-wise AUC, and
an average H-distance of 29.73 px. It is in general visible that all models re�ect
a consistently poorer performance for this data. This is due to the fact that this
set contains a higher proportion of dense breasts than the mass collection (see
Section 3.1), and most of the small calci�cations were generally hard to detect
accurately by all models in images dominated by dense tissue. On the other hand,
the standalone versions performed here better than the ones with RAT-SPN ex-
tension except for the CAE setup, but no statistically signi�cant di�erences were
discovered based on the image-wise AUC scores (cf. Table 1). This behavior is
well visualized by the score distribution plots of the best-performing standalone
βVAE and βVAE-RATSPN versions in Fig. 3 c) and d). All models except for
βVAE-RATSPN yielded better image-wise AUCs than f-AnoGAN, although no
statistically signi�cant di�erences were detected (cf. Table 1).

In summary, we have introduced a novel unsupervised anomaly detection
method that extends various AE architectures with a RAT-SPN module. This
approach is a promising avenue for generating exact likelihoods and incorpo-
rating them into the detection of di�erent anomalies, such as masses and cal-
ci�cations in mammography scans. Our experiments suggest that our method
clearly outperforms standalone AE models on mass samples. Furthermore, it ex-
hibits similar results to those of the state-of-the-art f-AnoGAN, however, with
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(a) (b) (c) (d)

Fig. 3: Distribution of healthy and anomaly scores on the masses (a,b) and calci-
�cations datasets (c,d) for CAE without (a) and with RAT-SPN extension (b),
for βVAE without (c) and with RAT-SPN extension (d).

the advantages of a comparatively simpler training setup and exact likelihood
inference. All of the investigated methods have di�culties when applied to calci-
�cation samples. We interpret that this is due to the presence of a larger propor-
tion of dense tissue in the latter dataset. In future work, we plan to analyze how
this problem can be eliminated and in particular whether increasing the input
resolution has a positive e�ect on the performance.
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