
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Riwanto, Bagus Adiwiluhung; Niemela, Petri; Ehrpais, Hendrik; Slavinskis, Andris; Mughal,
Muhammad Rizwan; Praks, Jaan
Particle swarm optimization for magnetometer calibration with rotation axis fitting using in-
orbit data

Published in:
IEEE Transactions on Aerospace and Electronic Systems

DOI:
10.1109/TAES.2021.3122514

Published: 01/04/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Riwanto, B. A., Niemela, P., Ehrpais, H., Slavinskis, A., Mughal, M. R., & Praks, J. (2022). Particle swarm
optimization for magnetometer calibration with rotation axis fitting using in-orbit data. IEEE Transactions on
Aerospace and Electronic Systems, 58(2), 1211-1223. https://doi.org/10.1109/TAES.2021.3122514

https://doi.org/10.1109/TAES.2021.3122514
https://doi.org/10.1109/TAES.2021.3122514


Particle Swarm Optimization
for Magnetometer Calibration
With Rotation Axis Fitting
Using In-Orbit Data

BAGUS ADIWILUHUNG RIWANTO

PETRI NIEMELÄ
Aalto University School of Electrical Engineering Aalto, Finland

HENDRIK EHRPAIS

ANDRIS SLAVINSKIS
University of Tartu Tõravere, Estonia

MUHAMMAD RIZWAN MUGHAL

JAAN PRAKS , Member, IEEE
Aalto University School of Electrical Engineering Aalto, Finland

This article demonstrates the performance of an improved particle
swarm optimization (PSO) algorithm with scalar checking and rota-
tion axis fitting objectives using in-orbit data, which is obtained from
two CubeSats missions, Aalto-1 and ESTCube-1, as well as simula-
tion as reference. The improved algorithm uses sequential objectives
refinement process to combine the two optimization objectives. This
improvement addresses some challenges of magnetometer calibration
when using in-orbit data. First, the change in the magnetic field vector
direction at different points in orbit which is uncorrelated to the
rotation of the spacecraft itself. Second, the uncertainty of the rotation
axis information used as the reference, e.g., from gyroscope noise.
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Third, the available data set is heavily affected by the rotation mode
of the spacecraft, which imposes some limitation in the rotation axis
information needed by the algorithm. The improved PSO algorithm
is applied on simulated data in order to analyze the calibration per-
formance under different spacecraft tumbling rates and noise levels.
In ideal condition (varying rotation axis during measurements and
sufficient sampling rate relative to the spin rate), the rotation axis
fitting objective can reach ∼0.1° of correction accuracy.

I. INTRODUCTION

Attitude determination and control system performance
of a spacecraft is a combination of its sensors’ and actuators’
technical performance and calibration, which ensures their
reliability in acceptable range of error. One of the typical
and critical attitude sensors in low earth orbit (LEO) space-
craft is a three-axis magnetometer. This sensor provides a
very good long-term stability because of the well-defined
knowledge on the Earth magnetic field vector model, such as
the International Geomagnetic Reference Field model [1].

In practical applications, the influence of multiple error
sources distorts the magnitude and direction of the magnetic
field vector measured by the magnetometer. A calibration
procedure is required to minimize these errors, and for
LEO spacecraft application, most calibration processes are
based on scalar checking algorithm, which only relies on the
ambient magnetic field magnitude. Thus, in this case, the
calibration procedure does not depend on attitude knowl-
edge. However, this relaxed knowledge requirement implies
that the usable information for calibration process is limited,
resulting in an underdetermined estimation problem. This
appears mathematically as a constraint in the calibration
parameters, particularly in the calibration matrix: the matrix
is assumed as a diagonal or triangular matrix (3–6 inde-
pendent elements instead of 12 elements in a full 3 × 3
matrix) [2]–[9]. Physically, this means that the distortion
which can be corrected is limited to nonorthogonality and
nonuniform scaling of the axes, with the assumption that
at least one axis is perfectly aligned with reference, i.e.,
the magnetic field scalar based calibration cannot resolve
rotational error.

Several approaches have been discussed in different
studies to resolve this rotational error, although the calibra-
tion parameters estimation is still sensitive to larger error
in nondiagonal values of the total scaling matrix [10] or
requires additional information from sensor unsuitable for
space application [11]. Other approach requires an interme-
diary knowledge on the system attitude information and use
a neural network to fit the known model of the ambient mag-
netic field with the measured magnetic field [12]. Riwanto
et al. [13] have proposed a method to resolve this rotational
error component using rotation axis information derived
from the magnetometer reading and fit it into a reference
rotation axis information, which, in spacecraft settings, can
be read directly from gyroscopes or determined from other
sensors. This rotation axis fitting method was used com-
plementarily with the scalar checking method implemented
inside a particle swarm optimization (PSO) algorithm. The
testing method, however, only covered ground-based test
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under a specific rotation mode, where the spacecraft is
rotated around one axis at a time, with at least two different
rotation axes performed separately.

This article demonstrates the performance of an en-
hanced version of the rotation axis fitting algorithm, origi-
nally described in [13]. The algorithm is applied on simu-
lated data that models the attitude dynamics in orbit as well
as using real in-orbit flight data from Aalto-1 [14], [15]
and ESTCube-1 [16], [17] satellites. This means that the
algorithm robustness is tested under the changing magnetic
field direction experienced by the spacecraft in orbit due to
Earth’s magnetic field vector variation with relation to the
position in orbit, which will appear as if the magnetome-
ter is rotating. The approach also takes into account the
presence of noise in the reference rotation axis information,
which, in this case, is represented by on-board gyroscope
measurement noise. However, as the algorithm is using a
PSO architecture, it inherits the disadvantage of the previous
algorithm in computation cost and the nature of offline
estimation. This means that it is not suitable for real-time
calibration routine and is more suitable for establishing ini-
tial estimate for calibration using online estimation methods
(e.g., filters) or in fault detection and isolation scenario.

In order to describe the design and validation methods
of the enhanced algorithm, this article is organized as fol-
lows. Section II briefly presents the mathematical model of
the magnetometer and gyroscope measurements used for
simulations and calibration algorithm. Section III describes
the implementation of PSO algorithm for optimizing the
scalar checking and rotation fitting objectives. Section IV
describes the test setups and results.

II. TEST ENVIRONMENT MODEL

The scalar-checking algorithm uses the mathematical
model of the magnetometer and apply calibration param-
eters to fit the measurement data with the reference Earth
magnetic field. Additionally, the rotation axis fitting algo-
rithm uses the estimated rotation axis from magnetometer
data to fit into the reference rotation axis; in this article,
the reference rotation axis is gathered from gyroscope mea-
surement. Both magnetometers and gyroscopes are affected
by error sources, described in their models in the following
subsections.

A. Magnetometer Model

The simplified mathematical model that describes the
relationship between the measured magnetic field vector b̌
and the reference ambient magnetic field b is

b̌ = Sm
(
b + offm + ηm

)
(1a)

where 3 × 3 matrix Sm and 3 × 1 vector offm are the
compounded calibration parameters from the combination
of individual magnetometer error sources such as scaling
factors, nonorthogonality, internal bias, soft iron, and hard
iron errors described more extensively in [13], while the
vector ηm is the magnetometer measurement noise. Note
that in magnetometer calibration, the calibration parameters

need to transform the measured magnetic field b̌ into the
corrected magnetic field b̂, flipping (1a) into

b̂ = Kmb̌ − km (1b)

where the ambient magnetic field b is now substituted by
the corrected magnetic field b̂, while the measurement noise
ηm is assumed as zero-mean Gaussian random process.
Km = S−1

m and km = offm are the calibration parameters
that need to be optimized by the calibration algorithm. With
this definition, the scalar checking algorithm will serve to
minimize the difference in the magnitude of the known
reference field b and the corrected field b̂.

B. Gyroscope Model

A three-axis gyroscope is used as the source for refer-
ence axis information in the rotation axis fitting method.
Gyroscope measurement can be described as

ω̌ = Sgω + offg + ηARW (2a)

where ω̌ is the measured angular rate, Sg is the gyroscope
total scale error, ω is the true angular rate, offg is the angular
rate bias with a drifting rate

˙offg = ηRRW, (2b)

which is also known as the rate random walk (RRW), while
ηARW is the measurement noise or angular random walk
(ARW). Both ηARW and ηRRW are assumed as zero-mean
white noise. The variance of these noise sources can be
determined, for example, using Allan Variance [18]–[20].

III. PSO ALGORITHM

This article implements a PSO algorithm based on the
work in [13], where a rotation axis fitting objective was
proposed to calibrate the rotation error factor that cannot be
resolved by scalar checking method alone. In [13], however,
the rotation axis fitting objective was only validated for
ground-based test conditions, i.e., in the absence of vary-
ing magnetic field magnitude and with discrete separation
between different rotation axis experienced by the mag-
netometer, where measurements from each rotation axis
can be grouped into one measurement locus. The previous
algorithm version also requires manual fine-tuning of the
individual fitness value’s weight for the weighted aggregate
approach it used in combining the two objectives.

This article extends the algorithm validation with in-
orbit data and implements a different approach in the rota-
tion axis fitting objective definition as well as the multiple
objectives combination method. This improves the algo-
rithm robustness in calibrating data from actual in-orbit
conditions without the need to fine-tune the fitness values’
weights.

To fully describe the implementation of the modified
PSO algorithm, the following subsections are arranged as
follows. Section III-A describes the summary of the bare-
bone PSO algorithm, Section III-B describes the summary
of the two objectives (scalar checking and rotation axis
fitting) used for calibration, and Section III-C describes the
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architecture of the implemented PSO algorithm with the
two different objectives.

A. Basic PSO Algorithm

The barebone PSO algorithm implemented in this article
is identical with the previous work in [13]. A short summary
on the key equations governing the swarm behavior is
described in the following steps.

1) Swarm initialization: Initialize np numbers of par-
ticles (the swarm size) randomly in nc-dimensional
search space (the swarm dimension). Each particle
is defined with two properties “position” pi(k) and
“velocity” vi(k)

pi(k) ≡ [
pi j | j=1...nc (k)

]
,

vi(k) ≡ [
vi j | j=1...nc (k)

]
where the subscript i is the particle index (i =
[1, np] ∈ Z), subscript j is the particle component
index ( j = [1, nc] ∈ Z), and k is the iteration index.
In PSO, the number of optimized parameters also
translates directly into the swarm dimension nc (i.e.,
the dimension of pi). Each particle has its own local
best position pbest i, which is the position with best
fitness value in the search history of each particle i.
Local best position is initialized as its initial position
(pbest i(k = 0) ≡ pi(k = 0)). Additionally, a global
best position gbest is defined as the best position in
the whole swarm, i.e., the local best position of the
particle with the best fitness.

2) Swarm positions update: The velocity and position
of each particle are updated with the basic formula

vi j (k + 1) = wvi j (k)

+ rand(0, 1)c1(pbesti j (k) − pi j (k))

+ rand(0, 1)c2(gbest j (k) − pi j (k))
(3a)

pi j (k + 1) = pi j (k) + vi j (k + 1) (3b)

where rand(0, 1) is a random number in the range of
[0 . . . 1] ∈ R, w is the inertia weight parameter, c1 is
the cognitive rate parameter, and c2 is the social rate
parameter.

3) Best position evaluation: pbest i for each particle i is
updated when the fitness value during that iteration k
is better than the last known best fitness. The magne-
tometer calibration is a minimization problem; thus,
the best position at iteration k is defined as

pbest i(k) = arg min
pi

f (pi(1 . . . k)), (4a)

gbest (k) = arg min
pbest i

f (pbest i(k)) (4b)

where pbest i and gbest are the local and global best
positions which represent the known positions in the
search space with the minimum fitness value for each
particle i and among all particles, respectively. f ()

is the fitness function which returns the fitness value

Fi = f (pi ), for i = 1 · · · np (4c)

which will be evaluated in every iteration to gener-
ate the best local and global positions (F b

i and F b
g ,

respectively), which are defined as

F b
i ≡ f (pbest i ) F b

g ≡ f (gbest ). (4d)

After the local best position for each particle is
evaluated with (4a), the global best position is then
reevaluated with (4b): If a new local best position
with a fitness value lower than the current global
best position exists, then the global best position will
be updated with the new, better position—else, the
global best position stays the same.

4) Iteration evaluation: The iteration ends when the re-
quired goals are met, e.g., global best fitness reached
threshold value, number of iteration reached limit, or
the swarm converged to the best global position in a
certain range—else, the iteration will continue. This
iteration termination marks the end of a single PSO
run, where the algorithm then returns gbest as the
optimization solution.

B. Optimization Objectives

In this article, instead of being optimized as a full
3 × 3 matrix, where all 12 components are optimized in
a single run of multiobjective PSO as it was implemented
in [13], the calibration matrix Km is decomposed with QR
decomposition into orthogonal and upper triangular matrix.
The upper triangular matrix KRm represents distortion of the
magnetometer measurement locus with the z-axis perfectly
aligned with the reference z direction (e.g., the spacecraft
body frame), while the orthogonal matrix KQm represents
the rotational error of the magnetometer measurement lo-
cus. Thus, KQm is a direction cosine matrix describing the
angular displacement of the magnetometer z-axis from the
reference.

Scalar checking objective is only capable of solving
bias, scaling, and skewing errors. Thus, the scalar checking
method will only optimize the components of the upper
triangular matrix KRm and bias vector km for every particle
i, which are defined as

KRm,i ≡
⎡
⎣KRm1,i KRm2,i KRm3,i

0 KRm4,i KRm5,i

0 0 KRm6,i

⎤
⎦ , (5a)

km,i ≡ [
km1,i km2,i km3,i

]�
. (5b)

Complementarily, rotation axis fitting objective will
optimize the components of the orthogonal matrix KQm.
However, KQm is not directly solved with PSO because
from the nine elements in an orthogonal matrix, only three
parameters are independent. To translate the actual physical
rotation properties of KQm into the PSO search space, KQm

could be represented in the form of quaternion (four param-
eters), Euler angle rotation sequence (three parameters), or
axis-angle (four parameters), among other forms. In this
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article, KQm is implemented in Euler rotation sequence
form.

For Euler rotation sequence form, the PSO search pa-
rameters can be converted into the rotation matrix KQm with
the straightforward equation

KQm,i ≡
⎡
⎣c1c3 − c2s1s3 −c1s3 − c2c3s1 s1s2

c3s1 + c1c2s3 c1c2c3 − s1s3 −c1s2

s2s3 c3s2 c2

⎤
⎦ (6)

where s and c denote sine and cosine, and the subsets
1, 2, and 3 denote the Euler sequence rotation angle
defined by KQm1,i, KQm2,i, and KQm3,i, respectively, e.g.,
c1 = cos(KQm1,i ), s3 = sin(KQm3,i ), and so on. While it is
possible to do this conversion in various sequence orders
and notations, (6) is derived from Z-X-Z Euler sequence.
Conversions from different notations and representations
(e.g., using quaternion search space) are available in litera-
ture [21].

For this article, the two objectives are optimized in
separate PSO runs. Thus, from the components of KRm,
KQm, and km, we define two separate PSO search spaces

p1,i = [KRm1,i, . . ., KRm6,i,

km1,i, km2,i, km3,i]
(7a)

p2,i = [KQm1,i, . . ., KQm3,i]. (7b)

Then, the final calibration matrix is calculated back from
QR components with

Km,i ≡ KQm,iKRm,i. (8)

Note that (7b) shows KQm defined with three parameters
(e.g., euler angle sequence). For four-parameter representa-
tion (e.g., for quaternion or axis-angle form), an additional
parameter KQm4,i is required.

With this definition of the search space, we then define
the PSO objectives.

1) Scalar Checking: Scalar checking objective mini-
mizes the difference between the calibrated magnetic field
vector magnitude |b̂| with the known reference magnetic
field magnitude |b|. We can translate this mathematically as
the fitness function

F1,i =
ns∑

s=1

[|bs| − |b̂i,s|
]2

(9a)

or by substituting (1a) into (9a)

F1,i =
ns∑

s=1

[|bs| − |Km,ib̂s − km,i|
]2

(9b)

where i = [1, np] ∈ Z and s = [1, ns] ∈ Z are the index for
swarm particles and measurement data, respectively. Note
that the scalar checking objective only optimizes the upper
triangular matrix part KRm in (8), while the orthogonal
rotation matrix part KQm is optimized by the rotation axis
fitting objective.

2) Rotation Axis Fitting: Instead of grouping multiple
magnetic field measurements into a predetermined number
of loci that correlate to a particular rotation plane as pro-
posed in [13], which assumes a relatively constant rotation

Algorithm 1: Algorithm for Rotation Axis Estimate
With Direct Vector Cross Product.

1: procedure RotEstb̂, ω̂
2: for i = 1 . . . np � swarm particle i
3: for l = 1 . . . nl � continuous measurement locus l
4: for sl = 1 . . . nsl �measurement in the locus sl
5: calculate rotation axis vector with cross product:

ni,l,sl = (
b̂i,l,sl+1 − b̂i,l,sl+2

) × (
b̂i,l,sl − b̂i,l,sl+1

)
6: n̊i,l,sl = norm(ni,l,sl ) normalize into unit vector
7: average and normalize reference rotation vector:

ω̊l,sl = norm
((

ω̂l,sl + ω̂l,sl+1 + ω̂l,sl+2
)
/3

)
8: end for
9: end for

10: end for
11: end procedure

plane, this article updates the method for defining the ro-
tation axis fitting objective in order to accommodate the
magnetic field measurement locus of an in-orbit spacecraft,
where the rotation mode of the spacecraft does not guarantee
a perfectly stable rotation plane(s).

The measurement locus is defined by grouping each
continuous measurements as a single locus l , which contains
estimated calibrated data b̂i,l,sl , where sl = [1, nsl + 2] is
the index of measurement data in that specific locus. In
each locus, a rotation axis vector is estimated from every
three magnetometer measurements, as defining a unique
plane requires a minimum of three points in 3-D space—this
means with nsl + 2 number of measurements in each locus,
we can estimate nsl number of rotation axis. The calculated
rotation axis is then compared with reference rotation axis
direction using vector dot product in the fitness function

F2,i =
nl∑

l=1

[
nsl∑

sl=1

[
1 − (

n̊i,l,sl · ω̊l,sl
)]

/nsl

]
/nl (10)

where the rotation axis direction for every three measure-
ment points n̊i,l,sl (subset sl indexes three-measurements
pair in the locus) and the reference rotation axis direction
ω̊l,sl (averaged over the three-measurements period) can be
calculated directly with Algorithm 1.

It is important to note that since the rotation axis is
estimated with a direct cross product, under ideal condi-
tion (zero noise and constant ambient magnetic field), the
angular displacement between the two continuous magnetic
field vectors b̂i,l,sl and b̂i,l,sl+1 should not exceed 180° or the
estimated rotation axis vector will be inverted. This also sets
the condition of the continuous measurements that can be
grouped as a single locus l: The magnetometer sampling
rate needs to be at least twice the rotation rate, and delays
in measurement interval that exceed half the rotation period
should be discarded or grouped into separate locus.

For this article, the reference rotation axis ω̊l,sl is ob-
tained directly from gyroscope measurement ω̂, which is
sampled at the same time as the magnetometer. Alterna-
tively, reference rotation axis can also be obtained from
direct observation (e.g.,in preflight test) or estimated from
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vector sensors such as star trackers or other image pro-
cessing techniques [22]–[25]. Thus, the rotation axis fit-
ting function F2,i represents the averaged sum of angular
difference between the estimated rotation axis from mag-
netometer data and the reference rotation axis. Note that in
(10), both the estimated and reference rotation axes are unit
vectors, and, thus, F2,i ranges from 0 to 2.

C. Multiobjective PSO Architecture

The more detailed PSO architecture used in a single
iteration is mostly identical with the original study in [13].
This section will expand more on the updated components
of the PSO architecture and parameters selection.

1) Initialization Condition: As the improved algorithm
needs to deal with two separate swarms defined in (7), a set
of swarm has to be initialized separately for each objective.
The swarm positions and velocities initial states are deter-
mined by pmax and vmax, respectively. In this implementa-
tion, both parameters determine the search space boundary
in which the swarm states are randomly generated during
initialization. This process is described mathematically as

pi j (k = 0) = pmaxs, j

+ rand(0, 1)
(
pmaxe, j − pmaxs, j

)
,

(11a)

vi j (k = 0) = −vmax j + rand(0, 2)vmax j (11b)

where the subscript j is the swarm component index. The
structure pmax j = [pmaxs, j, pmaxe, j] defines the swarm
position initialization range, while vmax j defines the max-
imum allowed velocity of the swarm.

For scalar checking objective, the initial positions of
KRm and kmcomponents are set to 0.1 unit around an identity
matrix and 5000 nT around a zero bias vector respectively
or using the same mathematical notation as (5) and (7a)

pmaxRKm
=

⎡
⎣[0.9, 1.1] [−0.1, 0.1] [−0.1, 0.1]

0 [0.9, 1.1] [−0.1, 0.1]
0 0 [0.9, 1.1]

⎤
⎦ , (12a)

pmaxRkm
= [

[−5, 5] [−5, 5] [−5, 5]
]�

μT. (12b)

This represents an a priori estimate of the calibration
parameters with no scaling and bias error, where the swarm
is allowed to initially explore from that region until it finds
the global optimum.

For rotation axis fitting objective, the initial positions of
KQm components cover the whole rotation range from 0 to
2π radians or in the same notation as (6) and (7b):

pmaxQKm
= [

[0, 2π ] [0, 2π ] [0, 2π ]
]

(13)

which allows the swarm to explore every possible rotation
sequence combinations possible from the beginning.

2) Boundary Condition: The main goal of boundary
condition is to limit the swarm search dynamics from “ex-
ploding” in the search space. In the updated algorithm, only
the boundary condition for the rotation axis fitting objective
is different, while the rest of the implementation is identical
with the previous version in [13].

Fig. 1. Flowchart of a single PSO run. The PSO objective (scalar
checking or rotation axis fitting) and parameters (w, c1, c2, kmax) are

initialized by the higher level refinement procedure.

This difference is because in rotation axis fitting objec-
tive, the search space of an Euler rotation sequence is a set
of three rotation angles, and, thus, the search space is cyclic
between 0 and 2π radians instead of expanding into in-
finity. This specific search space boundary characteristic is
implemented in order to preserve continuity in the physical
representation of the rotation transformation.

3) Sequential Objectives Refinement: This article im-
plements a different approach in the algorithm that com-
bines the two optimization objectives (represented by F1

and F2, which translates to the best swarm gbest1 and gbest2,
respectively) and evaluates the termination condition when
compared to the previous version in [13]: Instead of opti-
mizing the weighted addition of the two fitness values in
one PSO iteration, each PSO run, as summarized in Fig. 1,
will optimize the two objectives alternatively and combine
the results using a heuristic which will recognize stagnation
in the fitness value as the final termination condition.

This is implemented by adapting the refinement pro-
cedure from the previous version, where a PSO run is
reinitialized with a smaller range of initial search space
based on the gbest of the previous PSO run and p0 that
determines the range of initial search space around gbest .
This will dictate the new pmax and vmax of the next PSO
run. With this approach, fine-tuning the weight of each
objective is not necessary for different conditions during
measurements. This refinement procedure is described in
Algorithm 2.

The first PSO run will optimize for F1 (estimating the
upper triangular matrix KRm and bias vector km) while the
rotational calibration matrix KQm is initiated as identity
matrix. This optimizes the refinement process because at the
true global minimum, the scalar checking objective is not
affected by rotational error. On the other hand, rotational
calibration will try to compensate for the misalignment
errors that is contained in the triangular matrix of the scalar

RIWANTO ET AL.: PSO FOR MAGNETOMETER CALIBRATION WITH ROTATION AXIS FITTING USING IN-ORBIT DATA 1215



Fig. 2. Flowchart for the complete PSO with sequential objective refinement.

Algorithm 2: Refinement Procedure.
� The refinement procedure uses the previous PSO run solution
(gbest) as the values of its initialization conditions.

1: procedure Refine gbest, p0
2: for j = 1 . . . nc � swarm component j
3: pmax j = [gbest j − p0, j , gbest j + p0, j ]

� define the initial position range
4: vmax j = (pmaxe, j − pmaxs, j )/vlim

� define the velocity limit
5: for i = 1 . . . np � swarm particle i
6: initialize pi j and vi j using (11)
7: end for
8: end for
9: pi|i=randi(1,np ) = gbest

� Set one random particle in the swarm equal to previous
global best (ensures at least the same fitness value with the
previous run)

10: end procedure

checking objective. The PSO run is then terminated when
the maximum iteration kmax is reached: Preliminary tests
showed that gbest2 requires less number of iterations to
converge into minimum compared to gbest1. In this article,
kmax for F1 and F2 is set to 1000 and 200, respectively.
Then, the PSO is reinitiated using the refinement proce-
dure, and the fitness value of the subsequent PSO run is
compared to the previous one: If the last fitness value is
lower and the difference is smaller than a set threshold
�Ft , then the objective is switched to the next one (from
scalar checking to rotation axis fitting, and vice versa).
The refinement and objective switching will stop and return
the final solution for both objectives when the solutions
of both objectives (gbest1 and gbest2) stagnate and do not

compete with each other, i.e., the last refinement procedure
does not show improvement larger than the set threshold
for both objectives consecutively. The complete sequential
objectives refinement procedure is summarized in Fig. 2.

IV. PSO CALIBRATION ALGORITHM VALIDATION

The PSO algorithm is tested with both simulation and
real in-orbit flight data. The simulation data will emulate
the condition of the real in-orbit data so that the result can
be evaluated against the known simulated calibration error.
The main evaluation metric for the simulation result is the
accuracy of the rotation correction matrix KQm, which can
be calculated directly by converting the rotation matrix into
axis-angle representation and taking the angular compo-
nent [21]

θ̃ = arccos

(
trace(KQmSQm) − 1

2

)
(14)

where SQm is the orthogonal matrix from the QR-
decomposition of Sm (known magnetometer error matrix
model; see (1). The accuracy of the scaling and misalign-
ment matrix KRm has been demonstrated in controlled test
environment of the previous paper [13].

A. Calibration of Simulated Data

The simulation will emulate the orbit and attitude dy-
namics of Aalto-1 and ESTCube-1 in-orbit conditions,
i.e., the simulation will replicate the orbit parameters and
physical properties of each spacecraft, including the Earth
magnetic model. Both satellites orbit around polar LEO,
where the magnetic environments are practically identical.
As for their physical geometries, Aalto-1 is a three-unit
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Fig. 3. Time plot of the simulated models spin rate, with initial spin rate of around 20°/s. (a) 3U spin-stabilized model. (b) 1U high nutation model.
(c) Baseline model.

(3U) CubeSat [14], while ESTCube-1 is a one-unit (1U)
CubeSat [16], both without any major deployable structures
that will affect the attitude dynamics significantly during
the time the data was collected. The difference in geometry
does affect the rotation mode of the spacecraft as it naturally
tumbles in orbit because 3U CubeSats have a distinct minor
axis of inertia, while 1U CubeSats are closer to symmetrical
in all axes.

The simulation will run three sets of simulation model.

1) 3U spin-stabilized model: 3U CubeSat form factor,
modeled moment of inertia is[

0.04309 0.04242 0.007896
]�

kg m2.

Initial spin rate around z-axis, with small nutation on
the other axes.

2) 1U high nutation model: 1U CubeSat form factor,
modeled moment of inertia is[

0.001813 0.001963 0.001796
]�

kg m2.

Initial spin rate set on x- and z-axes, with small
random initial rate around the y-axis.

3) Baseline model: The measurement data is collected
from simulations with two initial rotation axes in (ap-
proximately) spin-stabilized condition, i.e., around
the major and minor axes of inertia of a 3U CubeSat
(geometrically identical with the 3U model). The
measurements from this baseline condition is closer
to the conditions of the ground test conducted in [13],
as the spacecraft now have more than one distinct
(initial) rotation axis. However, in-orbit factors such
as the changing magnetic field along the orbit and
nutations from spacecraft body dynamics still ap-
ply; this makes the baseline model close to ideal
condition while still realistically emulating in-orbit
data, especially when the spacecraft is capable of
controlling its attitude to meet these conditions.

All three sets of simulations are run under varying initial
spin rate (from 0 to 180°/s) and noise level, and the sensor
data are sampled every 1 s. Noise level (in three standard
deviation) for the magnetometer ηm ranges from 0 up to
10 μT, while the gyroscope ARW ηARW and RRW ηRRW
ranges from 0 up to 0.5 and 0.05°/s, respectively. This
gyroscope noise is relatively high compared to the typical
noise variance of different types of gyroscopes in order to

TABLE I
Combinations of Simulated Magnetometer and
Gyroscope Noise (In 3σ ), Uniform for All Axes

see the limit of the algorithm performance in the presence
of noise as well as representing other uncertainty factors
attributed to the gyroscope or other sources of the reference
rotation axis [18]–[20].

The calibration algorithm is applied on all model sets
with different combinations of noise levels. Table I shows
the combinations of magnetometer and gyroscope noise
levels used in the simulation, and the results are as follows.
Fig. 3 shows an example of the simulated spin dynamics
from one initial spin rate. Sample of 3-D plot of measured,
calibrated, and modeled magnetic field vectors from each
model with specific initial spin rate and noise level is shown
in Fig. 4, while the rotation correction accuracy calculated
from (14) for every model is shown in Fig. 5. Fig. 5(d)
specifically showcases the rotational accuracy of the pre-
vious algorithm from [13] on every model with zero noise
(index 1 in Table I). In order to adapt this algorithm to the
dynamic rotation axis of the simulated data set, a single
locus is defined from a group of every three measurements.
The weight for each fitness value is set to a constant value
(numbers taken from [13]) across all conditions.

B. Validation With In-Orbit Data

1) Calibration of Aalto-1 In-Orbit Data: Aalto-1 at-
titude is mostly in a tumbling state around its major or
minor axis [15], [26]. The measurements were gathered at
varying sampling period, mostly under 1 s, at an average of
≈ 284 ms, with a total of 5400 measurements that was taken
on December 12, 2019 over a single ≈ 25 min session. The
calibration algorithm is applied on the in-orbit data during
a tumbling state with a spin rate of 24°/s around the z-axis,
which is the spacecraft minor axis of inertia, with some
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Fig. 4. 3-D plot of magnetic field vectors, showing the measured, calibrated, and known modeled data points. The sphere grid is set at a radius equal
to the maximum magnetic field magnitude of the known model. Modeled at initial spin rate of 20°/s and noise 3σ of ηm = 600 nT, ηARW = 0.15◦/s,

and ηRRW = 0.05◦/s. (a) 3U spin-stabilized model. (b) 1U high nutation model. (c) Baseline model.

Fig. 5. Plot of rotation correction accuracy θ̃ against the spacecraft initial spin rate for varying noise levels (noise level indexed in Table I). (a) 3U
spin-stabilized model. (b) 1U high nutation model. (c) Baseline model. (d) Each model with zero noise estimated with previous PSO version

(weighted aggregate multiobjective combination).

nutation on the other axes. The gyroscope data during this
rotation mode can be seen in Fig. 6.

The estimated calibration parameters for this data set
are

Km =
⎡
⎣ 1.114 −0.057 0.122

0.066 0.956 −0.023
−0.143 0.024 1.023

⎤
⎦ , km =

⎡
⎣ 37819

−7150
−5298

⎤
⎦ nT

where the calibration matrix Km can be decomposed into
the distortion and rotation components

KRm =
⎡
⎣1.125 −0.003 −0.01

0 0.958 −0.005
0 0 1.03

⎤
⎦ ,

1218 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 2 APRIL 2022



Fig. 6. Time plot of Aalto-1 angular velocity from on-board gyroscope,
measured as one continuous locus. Rotation mode is dominated by 24°/s

spin around z-axis with 6°/s nutation.

Fig. 7. Time plot of ESTCube-1 angular velocity from on-board
gyroscope. Data collected in May 2014 in several continuous

measurements, where gray areas indicate breaks (up to several days) in
the measurement.

KQm =
⎡
⎣0.9902 −0.056 0.128

0.059 0.998 −0.017
−0.127 0.025 0.992

⎤
⎦

where KQm for Aalto-1 corresponds to a 8.13° angular
correction when converted to axis-angle form. The magnetic
field measurement locus before and after calibration are
shown in Fig. 8(a).

2) Calibration of ESTCube-1 In-Orbit Data:
ESTCube-1 attitude is largely dominated by the torque
from residual magnetic moment of the spacecraft, resulting
in its magnetometer reading mostly pointing on one side
of the spacecraft. The measurement was taken over several
measurement campaigns in May 2014, where several
attitude control maneuvers were conducted, resulting in
better data set for this calibration method [17], [24], [27].
The sensors sampling period varies from 400 to 700 ms,
with a total of 2744 measurements. The gyroscope data can
be seen in Fig. 7.

The estimated calibration parameters are

Km =
⎡
⎣ 0.942 0.007 0.035

−0.011 0.933 0.003
0.064 −5.6e − 4 0.959

⎤
⎦ , km =

⎡
⎣ 1841.5

−161.8
−3510.9

⎤
⎦ nT

Fig. 8. 3-D scatter plot magnetic field vectors, showing the measured
and calibrated data points. The sphere grid is set at a radius equal to the

maximum magnetic field magnitude from Earth magnetic model.
(a) Aalto-1 in-orbit data. (b) ESTCube-1 in-orbit data.

where Km can be decomposed into

KRm =
⎡
⎣0.944 −0.004 0.101

0 0.932 −0.003
0 0 0.954

⎤
⎦ ,

KQm =
⎡
⎣ 0.998 0.011 −0.068

−0.011 0.999 0.001
0.068 −3.1e − 4 0.998

⎤
⎦

where KQm for ESTCube-1 corresponds to a 2.137° angular
correction in axis-angle form. The magnetic field mea-
surement locus before and after calibration are shown in
Fig. 8(b).

RIWANTO ET AL.: PSO FOR MAGNETOMETER CALIBRATION WITH ROTATION AXIS FITTING USING IN-ORBIT DATA 1219



C. Discussion

1) Simulated Data: The PSO-based calibration algo-
rithm was applied to three different simulated data sets as
described in Section IV-A. With the knowledge of the error
models of the magnetometer, the calibration results can
be validated against the reference model by examining the
rotation correction error θ̃ , and this reveals several findings
on the algorithm technical performance.

a) Performance of the previous PSO algorithm.
Fig. 5(d), compared to other figures in Fig. 5, shows that
the performance of the previous PSO algorithm, even in
noise-free data, is not as robust as the improved algorithm.
The main cause of this is the competition between the two
optimization objectives, which is affected by the selection
of fitness function’s weight for each objective in conjunction
with different convergence rate from the initial estimates of
the swarm. In this case, the previous algorithm has smaller
window in initial spin rate for optimal convergence. For the
3U spin-stabilized model, the lack of rotation axis variation
narrows this optimal window even further. Other factors
such as noise will also affect the optimal weights for the
fitness values. In a real data scenario where the “true”
calibration parameters are not known, evaluation of the
rotational correction element accuracy might be difficult, as
in some cases of the simulations, the estimate for KRm and
km still converges to global optimum while KQm converges
very far from global optimum.

b) In-depth performance of the improved PSO algo-
rithm. The biggest advantage for the improved algorithm is
the absence of a separate weight for each fitness value that
needs to be manually fine-tuned. However, the improved
algorithm is still affected by many factors such as spin
rate, sampling rate relative to spin rate, magnetometer and
reference rotation axis (gyroscope, in this article) noise, and
the spin mode of the spacecraft.

Magnetometer data sampling rate in conjunction with
the type of spin mode will affect θ̃ on higher spin rate.
This is in line with the requirement for a single continuous
locus due to the rotation axis estimation in Algorithm 1,
where the upper spin rate limit is half the sampling rate, i.e.,
180°/s spin rate upper limit in the case of the simulated 1 Hz
sampling rate [shown in Fig. 5(c) at 185°/s]. Measurement
noise blurs this limit as the noise affects the 180◦ angular
displacement limit between the magnetic field vector.

Rotation correction error θ̃ will be larger for very low
spin rate. This is because the magnetic field direction
changes along the orbit, which will affect the rotation axis
estimation in Algorithm 1 by adding rotation components
that are uncorrelated to the spacecraft actual spin axis.
While in noise-free condition the accuracy error is hitting
minimum from around 40 to 50°/s spin rate, the presence
of noise in general is a more dominant factor and the error
already reaches minimum at a spin rate of 10–30°/s with
higher magnitude of error.

As expected, the theoretically “ideal” condition of the
baseline model [Fig. 5(c)] gives the most consistent perfor-
mance in minimizing θ̃ across the spin rate limit. θ̃ can be

kept under 0.1◦ magnitude until the highest gyroscope noise
level (noise index 4 and 5 in Table I) is applied, where the
gyroscope noise is more dominant than the magnetometer
noise (except when the magnetometer noise is set very high
as in index 6) and only higher spin rate can mask this
presence of noise.

Spin mode with mostly one rotation axis with small nu-
tation (3U spin-stabilized model) shows the weakest results
in terms of calibration performance. This is expected, as
more than one distinct rotation axis (ideally orthogonal to
each other) is needed to resolve rotational ambiguity in all
axes. The small nutation rate and the change of magnetic
field direction along the orbit actually helps in adding vari-
ation to the available rotation axis [resulting in the locus
coverage in Fig. 4(a)], but this model is very sensitive to
noise: The difference in θ̃ between different noise levels is
much less pronounced compared to the 1U high nutation
model and baseline models, where θ̃ is at several orders of
magnitude higher even at low noise. Error in the order of
1°–10° can be expected even at low to moderate noise (noise
index 2–3 in Table I).

Spin mode with more pronounced nutation shows earlier
rise of θ̃ before the spin rate reaches the upper limit: The 1U
high nutation model error starts to rise an order of magnitude
at ≈50°/s initial spin rate, while 3U spin-stabilized and
baseline model only starts to behave similarly at 100–120°/s
initial spin rate (see Fig. 5). This is caused by the higher
nutation rate [e.g., the oscillation of the spin rate around
x-axis in Fig. 4(b)], where the estimated rotation axis that
was averaged over three measurement points is undersam-
pled compared to the speed the spin rate is changing.

2) In-Orbit Data: With this knowledge on algorithm
performance with different simulated models, the calibra-
tion of real in-orbit flight data of Aalto-1 and ESTCube-1
can be evaluated.

The attitude mode of Aalto-1 is very similar to the
3U spin-stabilized model, although Aalto-1 has a higher
nutation rate [see Fig. 6 compared to Fig. 3(a)]. Combined
with the very high magnetometer noise level in Aalto-1
data (between noise index 3 and 6 in simulated model), the
rotation correction accuracy of the calibration is likely in
the order of ∼10°. The rotation correction factor of Aalto-1
calibration is around 8.13°, which is under the expected
uncertainty itself. This means that there is no major mis-
alignment between the magnetometer axes and the reference
axes (in this case, the gyroscope axes), but no accuracy
improvement can be expected from the magnetometer data
besides the obvious bias correction.

ESTCube-1 in-orbit data, on the other hand, does not
exactly fit any of the specific simulated models; while
geometrically a 1U CubeSat, ESTCube-1 is affected by
high residual magnetic moment and thus “locked” to the
Earth magnetic field, resulting in most of the data showing
a spin rate around one axis—visible in the mostly parallel
measurement locus planes in Fig. 8(b). However, the data
does include some variations in the rotation axis due to the
attitude control attempt around the time of measurement,
especially in the first part of the gyroscope reading in Fig. 7.
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This variation in rotation axis is important as this allows a
much better performance compared to the spin-stabilized
model—closer to the high nutation or baseline model. Since
ESTCube-1 also has relatively slow nutation rate compared
to its data sampling rate, the rotation correction accuracy can
be expected in the 0.1°–1° order. The rotation correction
factor of ESTCube-1 calibration result is ≈2.14°, which
shows possible misalignment between the magnetometer
axes with the reference gyroscope axes.

V. CONCLUSION

An enhanced PSO-based magnetometer calibration us-
ing scalar checking and rotation axis fitting has been de-
veloped. This is based on an improvement of the rotation
axis fitting method and a novel approach in the integration
of the two optimization objectives using a sequential ob-
jectives refinement process. These improvements allow the
algorithm to process measurements taken under different
spacecraft dynamics without the restriction of a clearly
defined rotation axis and the need to manually fine-tune
the objectives’ weight of the previous version [13].

Using sensors data with simulated in-orbit spacecraft
dynamics, the accuracy of the rotation correction factor
from the calibration result can be validated. In best cases,
rotation accuracy in the order of ∼0.1° between the magne-
tometer and the reference sensor (in this case, gyroscope)
can be achieved under reasonable noise level (up to noise
index 4 in Table I). To achieve this, there are three main
factors that determine the quality of the data for calibration:
rotation mode of the spacecraft, spacecraft spin rate, and
sampling rate of the sensors (magnetometer and the sensor
for reference rotation axis).

The rotation mode and spin rate should ideally result
in varying rotation axis during measurements, which can
be achieved either from a significant angle of nutation or
using attitude control to change the rotation axis. The sensor
sampling rate defines the range of spin rate in which the
calibration will perform best. Generally, the sampling rate
lower limit is twice the rotation rate, i.e., a sampling rate
of every 1 s if the spacecraft fully rotates every 2 s. For
spacecraft dynamics with high nutation angle and rate, the
sampling rate also needs to be higher than the oscillation
of the spin rate. Faster sampling rate than the lower limit
(or higher spin rate) is also needed to improve accuracy,
especially in the presence of noise, as the natural change of
magnetic field direction along the orbit lowers the accuracy
in lower spin rate.

Applying the calibration on real in-orbit data of Aalto-1
and ESTCube-1 shows that the measurements do not always
fulfill the ideal conditions desired from the spacecraft atti-
tude dynamics. If a higher accuracy from the magnetometer
is required, dedicated calibration session that actively uti-
lizes the spacecraft attitude control can be used. This also
depends on other uncertainties associated with the sensor
used as the reference rotation axis for the rotation axis
fitting—this article only focuses on random noise typically
modeled for gyroscopes.

Further improvements on the calibration process as
a whole should take into account other error sources
for the magnetometer and the calibration reference
sources. Magnetometer model could include temperature
dependency or time-varying magnetic moment from the
spacecraft electronics. Reference for the scalar checking
objective might contain error from the orbit estimation
in combination with the Earth magnetic field model. The
reference sensor used for rotation axis fitting could also
include other uncertainty models.
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