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Few-Shot Model-Based Adaptation in
Noisy Conditions

Karol Arndt , Ali Ghadirzadeh , Murtaza Hazara , and Ville Kyrki

Abstract—Few-shot adaptation is a challenging problem in the
context of simulation-to-real transfer in robotics, requiring safe
and informative data collection. In physical systems, additional
challenge may be posed by domain noise, which is present in vir-
tually all real-world applications. In this letter, we propose to per-
form few-shot adaptation of dynamics models in noisy conditions
using an uncertainty-aware Kalman filter-based neural network
architecture. We show that the proposed method, which explicitly
addresses domain noise, improves few-shot adaptation error over
a blackbox adaptation LSTM baseline, and over a model-free
on-policy reinforcement learning approach, which tries to learn an
adaptable and informative policy at the same time. The proposed
method also allows for system analysis by analyzing hidden states
of the model during and after adaptation.

Index Terms—Robot learning, supervised learning, predictive
models, machine learning.

I. INTRODUCTION

A PPLYING machine learning techniques to robot control
tasks is a challenging problem, largely due to low sample

efficiency of most machine learning methods. In the case of
reinforcement learning, additional challenge lies in the random
exploration process, which takes place during learning, and
poses a major risk of hardware damage.

A popular solution lies in using artificial data [1], [2] or
physics simulators [3] to facilitate the training; yet, in many
cases, the simulation is not accurate enough for the model to
achieve optimal performance in the real world without additional
adaptation [4]–[6].

While few-shot learning has been quite extensively studied by
the machine learning community, especially within the frame-
work of meta-learning [7], [8], most prior works assume that
noise-free labels are available for the learner during the adapta-
tion process. However, certain real-world physical systems can
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Fig. 1. Before seeing any samples, the model produces large uncertainty about
the final puck position (a). After performing some actions in the environment,
the prediction uncertainty falls down (b). The red cross marks the true position.

be noisy or stochastic; that is, executing the same action in the
same state may result in different observations. In such scenar-
ios, performing few-shot adaptation to real conditions may pose
an additional challenge. It has been shown that modelling and
utilization of uncertainty information is effective in guiding and
speeding up the policy learning for novel robotic tasks [9]; yet,
in many real-world problems, the noise characteristics are not
known in advance and thus cannot be easily injected into the
simulated data.

In this letter, we present an uncertainty-aware meta-learning
approach to adapt a dynamics model trained across a variety
of conditions in simulation to the physical world. Our goal is
to enhance sim-to-real transfer of dynamic skills in terms of
data-efficiency and speed of adaptation through uncertainty-
awareness. In contrast to previously explored gradient-based
methods [5], [6], [8], which merely look at the mean gradient
direction (ignoring the variance information), we propose to
use a memory-based approach, which allow the model to keep
track of uncertainty statistics [10]. This uncertainty can be
projected directly onto the predictions, as shown in Fig. 1; before
adaptation (Fig. 1(a)) the model reports large uncertainty about
the position of the hockeypuck after a planned hit, while after
adaptation the uncertainty falls down (Fig. 1(b)). In our method,
this is achieved by using a network architecture designed around
a trainable Kalman filter [11]–[13].

The focus on model adaptation, as opposed to policy adap-
tation, removes the need to run a random exploratory policy
altogether; instead, the data can be collected with the assistance
of a human operator, or by a specifically designed policy which
is known to be safe. It also allows for the adapted environment
model to be reused for different tasks in the same environment—
namely, the same adapted state transition model can be used
to maximize different objective functions in the environment,
provided that the state-action space region relevant for the new
task has been explored, or its properties have been identified
based on prior information from the meta-training phase.
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The contributions of this letter are as follows: (1) presenting
a novel noise-aware meta-learning method based on a trainable
Kalman filter, (2) showing that the proposed model structure
outperforms LSTM and MAML on domain adaptation tasks in
noisy conditions, (3) demonstrating that the learned latent repre-
sentations of dynamic conditions are interpretable, correspond-
ing to physical parameters, (4) showing that model adaptation
through meta-learning is more data efficient compared to policy
adaptation.

II. RELATED WORK

A. Meta-Learning

Many meta-learning approaches are based on a recurrent
neural network architecture, which the hidden state is updated
based on the observed learning data [14]. As the optimization
procedure itself is learned together with the state representations,
these methods are often referred to as blackbox meta-learning.

With the advancement of deep learning, another family of
meta-learning methods—optimization-based meta-learning—
was introduced by Finn et al. with the model-agnostic meta-
learning algorithm (MAML) [8]. Multiple extensions to the orig-
inal algorithm were proposed later [15], [16]. These methods,
however, rely only on the mean gradient direction calculated
over multiple samples while discarding the variance, and do
not encode the uncertainty information in any way. Various
probabilistic extensions to MAML were introduced [17], [18];
these approaches rely on ensemble models or Stein variational
gradient descent to introduce sampling operations to the network
during training, in order to encode uncertainty in the network
output.

Our approach to model-based meta adaptation is based on
the idea of training Kalman filters via backpropagation, as
proposed in [12]. In that work, a Kalman filter is embedded
inside a neural network and trained via backpropagation. The
architecture proposed in [12] is shown to improve performance
on standard state estimation tasks with deep learning over other
recurrent architectures. We propose to use a similar architecture
for adaptation of dynamics models, rather than standard state
estimation.

Recently, some considerations on uncertainty-aware meta-
learning were put forward by Gordon et al. [19], where it is
proposed to view meta learning as learning a distribution over
task-specific parameters. Our method can be viewed as a special
case of this generalized framework, where the parameters are
modeled as Gaussian distributions and the inference is per-
formed using standard Kalman filter update rules.

B. Sim-to-Real Transfer in Robotics

The problem of sim-to-real transfer in robotics has been
widely addressed in recent years, especially within the context
of reinforcement learning. In the most basic approach, policies
are trained in simulation and reused in the real world. This,
however, requires tedious fine-tuning of simulation parameters,
and sometimes requires extreme measures, such as disassem-
bling the robot and measuring the individual components in
order to fine-tune the simulation [20]. Moreover, some physical
phenomena such as backlash cannot be modeled in simulation,

making the policies learned in simulation inefficient for real
world.

The view-invariant servoing approach presented in [21] can
be thought of as an example of blackbox memory-based meta-
learning; the recurrent model is trained over a variety of different
simulated conditions such that it can adapt to real world condi-
tions, as more and more samples are collected during operation.
This method, however, focuses on optimizing a task-specific
policy, which requires that policy to be run on the physical setup
before being exposed to any real world data. Additionally, the
collected data cannot be reused for other tasks, and the method
does not account for the uncertainty present in real-world data.

Previous work on meta-learning for sim-to-real transfer fo-
cused on policy adaptation [5], [6], [22]. With these approaches,
the final policy is a direct result of an on-policy update performed
on the policy used to collect the data, as in [8]. As such,
not only do the meta-policy parameters need to constitute a
starting point for further adaptation, but also the meta-policy
itself needs to explore the environment in a way which provides
meaningful information for adaptation [16]; there is, however,
no straightforward and universal way of balancing between these
two objectives [16], [23], [24]. Using our method, on the other
hand, a dynamic model can be optimized using data collected
from a policy which is known to be safe, and is capable of
providing informative samples.

Model adaptation with meta-learning has been previously
utilized by Clavera et al. [25] as a method of regularizing and
stabilizing model-based reinforcement learning. This method,
however, only considered minor discrepancies between models,
and—like other gradient-based methods—discarded uncertainty
information in the update rule. The method we propose in this
letter, in contrast, aims at adapting to a wide variety of conditions
and explicitly keeps track of the uncertainty (as expressed by the
variance of the task-specific parameter vector).

III. METHOD

In this section, we first provide a formal statement of the
problem we are addressing in this work. We then proceed with
a more detailed description of our approach to the presented
problem.

A. Problem Formulation and Solution Overview

Given a state si and an empty initial database D0 of state
transitions (s, a, s′), we consider the problem of successively
choosing one of N actions. Each action ai leads to a new state
s′i. In addition, the state observation process may be disturbed by
random noise, leading to noisy observation s̃′. Successively, we
update the current database Di = Di−1 ∪ {(si, ai, s′i)} with the
newly observed state action pair (si, ai, s′i). We assume that the
dynamics of the considered sequential decision making problem
can be modeled as a supervised learning problem:

(s′i φi)
�
= fθ(si, ai, φi−1) (1)

using a function approximator fθ(·) where θ denotes its param-
eters and φi−1 represents the hidden state which is governed by
a function g of previous action and noisy state observations:

φi−1 = g(Di−1) (2)
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Fig. 2. Method overview. The architecture consists of three main parts: mea-
surement (green), state integration (yellow), and prediction (blue).

In the proposed method, the hidden state φ is a task-specific
parameter vector, describing the unknown system dynamics.
In order to estimate this state from noisy measurements, we
build a neural network, as shown in Fig. 2. The architecture
consists of three parts: measurement (which estimates the system
dynamics based on a noisy observation of a state transition),
state integration (which integrates the parameter estimations
together), and prediction (which estimates the next state given
the previous state and the action).

B. Measurement Model

The measurement model, shown in green in Fig. 2, estimates
the distribution of system dynamics z̃ given a state transition:
z̃i ∼ fm

θ (si, ai−1, s̃
′
i−1). To make the system robust to obser-

vation noise, we corrupt the state observations with Gaussian
noise: s̃ = s+ ε, where ε ∼ N (0,Σs). As we assume that we
do not know the exact level of noise variance of the real envi-
ronment, we incorporate Σs into the task description, with Σs

being a diagonal matrix with values sampled from a uniform
distribution:

diag(Σs) ∼ U(0, σ2
s,max) (3)

The dynamics representations z and φ are learned by the neu-
ral network during training with backpropagation, as visualized
in Fig. 2. The distribution described by fm is modeled as a Gaus-
sian parametrized by mean and covariance: z̃ = N (μz,Σz).
This procedure corresponds to step 9 of Algorithm 1.

For many systems, it is impossible to uniquely determine the
dynamic conditions based on a single measurement; i.e., the sys-
tem can be seen as underdetermined from the parameter estima-
tion perspective. Thus, in addition to uncertainty introduced by
measurement noise, the measurement covariance matrix has to
convey the uncertainty caused by the possible underdetermined
nature of the system. We hence use heteroskedastic uncertainty,
with covariance Σz predicted for each measurement. The re-
turned measurement can thus be interpreted as a probability
distribution over all systems from which the observed state
transition could originate. It is worth noting that the non-linear
measurement model can map an arbitrary continuous state dis-
tribution to a Gaussian in the latent space. Thus, despite using
a Kalman filter (which assumes all variables it operates on to
be normally distributed), the proposed method can, in theory,

handle arbitrary noise distribution in the input space by mapping
them to Gaussian distributions parameterized by μz , Σz .

C. Integration

The measurement distribution returned by the measurement
model is passed to the recurrent part of the network, marked
in yellow in Fig. 2, which is responsible for integrating the
observations together. In our method, this is achieved by a deep
Kalman filter [12]—a Kalman filter embedded within a neural
network, where the parameter matrices of the filter are trained
with backpropagation together with the rest of the network.
Such a network has the inference procedure built-in in the
computation graph, which was shown to improve its ability to
integrate information from individual samples and reason about
uncertainty [12].

The first step of a Kalman filter performs a state prediction
based on a learned model

μ
t+1|t
φ = Aμ

t|t
φ +Bu, (4)

where μ
t|t
φ represents the mean of the current belief about the

state of the system, and u represents external input. In our case,
where the Kalman filter state actually represents a belief over the
latent dynamic parameters of the system, this update represents
a temporal change in dynamics—thus, for a stationary system,A
can be explicitly set to the identity matrix. In this formulation, the
action u would correspond to an external action which directly
impacts the dynamics. We assume that no such action takes
place, and thus we set B to zero.

The state estimation is modeled as a Gaussian with the co-
variance

Σ
t+1|t
φ = A�Σt|t

φ A+Q. (5)
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In the state dynamics prediction formulation, a small non-zero
value of the covariance matrixQ can be used to approximate un-
modeled drift in dynamic conditions and prevent the estimation
covariance from approaching zero in limit, enabling lifelong
learning. This procedure corresponds to step 8 of Algorithm 1.

The state prediction is updated in step 10 of Algorithm 1 by
integrating information coming from a measurement, follow-
ing the standard Kalman filter equations [12], and resulting in
μ
t+1|t+1
φ and Σ

t+1|t+1
φ . First, the Kalman gain is calculated with

Kt = Σ
t+1|t
φ C�

z (CzΣ
t+1|t
φ C�

z +Σz)
−1 (6)

Then, the belief about the mean μφ is updated with

μ
t+1|t+1
φ = μ

t+1|t
φ +Kt(zt − Czμ

t+1|t
φ ) (7)

Finally, the covariance of the state belief is updated by

Σ
t+1|t+1
φ = (I −KtCz)Σ

t+1|t
φ (8)

We use a standard linear Kalman filter, as the non-linear
correspondence between the measurements and internal states is
already addressed by the non-linear measurement system. The
values of Cz and the initial state distribution (parametrized by
μ0
φ and Σ0

φ) are learned during outer-loop optimization. The use
of Kalman filters allows us to introduce additional information
in the prediction model—namely, we assume that the system
is stationary (the transition matrix A = I), while allowing for
some temporal drift to encourage the system to keep adapting
over long periods of time and to improve numerical stability
(Q = εI).

D. State Prediction

Finally, the future state of the environment is predicted for
the queried state-action pair by the prediction model ŝ′i =
fp
θ (si, ai, μφ). This model, like the measurement model, is a

neural network. The state prediction takes place in step 8 of
Algorithm 1.

During meta-training on data collected in a simulated en-
vironment, the optimization objective L is calculated as the
mean-squared error between the predictions of the entire model
at each timestep over the whole sequence, and the noiseless
ground-truth observations s′i:

L =
1

N

N∑

i=1

(ŝi
′ − s′i)

2. (9)

The loss calculation and model optimization are performed,
respectively, in steps 13 and 14 of Algorithm 1.

The whole model—the measurement model fm
θ , the predic-

tion model fp
θ , and the parameters of the Kalman filter Cz and

μφ,0—is trained as a whole in an end-to-end fashion.
When the model is deployed, the parameters are initialized

to the learned values (θ, μφ,0, and Σφ,0), and steps 6–12 of the
algorithm are repeated for each collected data point.

IV. EXPERIMENTS

In this section, we provide the details of the experimental
evaluation of our method and present the results. In order to
illustrate the details of the adaptation process, we first study the
performance of the method on a simple regression problem with

Fig. 3. Analysis of adaptation mechanism, visualized on linear regression
with 0 (a), (b), 2 (c), (d), and 30 samples (e), (f). The left column shows hidden
state belief distributions, and the right column shows the corresponding function,
with mean and standard deviation. The blue dots in (d) and (f) show the observed
samples.

a step-by-step walkthrough. For the sake of demonstration, we
visualize how the state and output distributions are changing as
more samples are observed. Then, we evaluate the method’s abil-
ity to adapt to different simulated conditions with different noise
levels in MuJoCo on FetchSlide, an environment from OpenAI
Gym [26]. Finally, we evaluate the sim-to-real performance of
the method on a hockeypuck hitting task, using simulated data
for training and data collected from a real robot for adaptation
and evaluation.

The comparison is performed both against gradient-based
adaptation methods [5], [8] and against an LSTM baseline [14],
which uses a blackbox adaptation scheme and does not explicitly
account for noise.

A. Linear Regression

In order to illustrate how the internal stateφ and the prediction
are changing during the adaptation process on a basic example,
we devise a simple regression problem, where the goal is to
predict values of a linear function based on a small amount
of noisy observations (xi, ỹi). In this setup, instead of taking
state-action pairs (s, a) and predicting future states ŝ′, the model
receives x as input and predicts the value of the function, ŷ.

The changes in state and prediction distributions are shown in
Fig. 3. Fig. 3(a) shows the prior state distribution over parame-
ters. This distribution is learned during outer-loop optimization
in the meta-learning phase and represents the prior over all
dynamics conditions seen during training, which minimizes the
expected prediction error over all samples, before any data is
observed. This behaviour arises as a result of including the
initial prediction error in the optimization objective (9). We
sample values of the output ŷ by sampling hidden state values φ
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TABLE I
FETCHSLIDE RANDOMIZATION PARAMETERS

from φ,±φ and passing the sampled hidden state values to the
prediciton model. This has been shown in Fig. 3(b)). The shaded
area shows one standard deviation in state space projected onto
the output domain.

After two samples are obtained, the variance of the latent
variable noticeably goes down (Fig. 3(c)). Due to noise, the
observed points do not exactly align with the true function, and
the predicted line does not exactly go through the observed
points; rather, it is still influenced by the prior (Fig. 3(d)), as
represented as the initial state belief.

As more samples are observed, the state and prediction vari-
ance further goes down and the prediction is more accurate
(Fig. 3(e) and (f)), despite the observations being very noisy.
The impact of the prior is also reduced as more samples are
observed. Due to non-zero value ofQ, the prediction uncertainty
will never go down to zero, allowing for lifelong adaptation to
changing conditions.

B. Fetchslide

To verify that the method is suitable for domain adaptation
in noisy conditions, we built an experimental setup based on
the FetchSlide environment from OpenAI Gym [26]. In this
environment, the goal is to hit an object located at a random
reachable location on the table such that it slides to a given target
location. In addition to the robot joint position, both the start and
target locations are known to the agent and included in the state
vector. The robot is controlled via velocity commands given in
Cartesian space. We used 16 dimensions for the measurement
and dynamics representations z and φ.

Following prior work on using generative models and latent
space trajectory representations [1], [5], [27], we use a varia-
tional autoencoder trained on a set of task-specific trajectories
provided by human experts. This approach turns a sequential
decision making problem into a multi-armed bandit problem
and provides a straightforward way of collecting data for model
adaptation—as the latent distribution is known to be a unit
Gaussian, new trajectories can be generated by simply sampling
latent vectors from that distribution and passing the latent values
to the decoder. We trained the trajectory model on a set of
5.6 million trajectories which move the arm to a random point on
the table and push the object away from the robot with a random
angle and velocity.

Using the trajectory model, we collected a set of 6.93 million
hits under 28 875 random friction conditions in simulation. The
parameters used for friction distribution are presented in Table I.
For both the baseline and the proposed method, we trained the
final dynamics model on sequences of 100 samples. We used
σ2
s,max = 0.3. For each method, we trained four models with

different random seeds with Adam [28] and averaged the test
results.

The evaluation data was collected in the simulator under three
scenarios—low, medium, and high friction. During evaluation,

Fig. 4. Domain adaptation results in FetchSlide.

Fig. 5. PCA analysis of hidden states in FetchSlide for the proposed (a), (b)
and LSTM-based (c), (d) model adaptation

we additionally consider three scenarios—no observation noise,
low noise (σ2 = 0.1) and high noise (σ2 = 0.5), where the high
noise condition corresponds to larger noise variance than was
seen in training. The results of this evaluation are shown in Fig. 4.

We see that the proposed method outperforms the baseline
most notably in the low-sample regime and high noise condi-
tions. Improved ability to generalize to out-of-distribution tasks
can be attributed to encoding optimization within the compu-
tation graph, similarly to how MAML improves generalization
performance through embedding gradient descent [29].

We additionally analysed the principal components (PCs) of
the hidden states φ in both networks. The results are shown in
Fig. 5. The left subplots (5(a) and 5(c)) are color-coded by the
evaluation domain (low, medium or high friction) and the right
ones (5(b) and 5(d)) by the number of samples observed by the
model. Looking at Fig. 5(a), we can observe that the dynamics
lie in the order of decreasing friction, with high friction on the
left, medium friction in the middle, and low friction much farther
to the right.

We also observe that the LSTM model encodes uncertainty,
as expressed by the number of observed samples, in the hidden
states. Additionally, it does not clearly separate the medium
and high friction conditions; rather, the PCA projections span
the same area even after observing 80 samples. The proposed
Kalman filter-based architecture clearly splits the two domains
already with less than 20 samples.

C. Hockey Puck

For the sim-to-real experiments, we used the same hockey
puck setup as in [5]. This setup consists of a KUKA LBR4+
robot arm equipped with a floorball stick, a horizontally placed
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Fig. 6. The simulated (a) and real (b) experimental setups, with a close-up of
tools used for the experiments (c).

whiteboard, and a two hockey pucks with different masses and
friction characteristics: an inline hockey puck and an ice hockey
puck. The goal is to hit the hockey puck with the stick such that
the puck stops at a given target location. Solving this problem
requires the model to learn the friction parameters between the
puck and the surface it is sliding on, as, after the puck is hit,
friction is the main force causing it to stop. This setup is very
similar to FetchSlide, with the additional challenge posed by
some phenomena which occur in the physical world, but are not
modelled in the simulator, such as hockey blade bending due to
elasticity or the whiteboard surface not being perfectly flat and
uniform. The state space contains the robot joint position and
the target position of the puck. Unlike in FetchSlide, the starting
position is not included in the state space, since small deviations
are considered a part of the task space that the model has to adapt
to. The experimental setup and the tools are presented in Fig. 6.

The position of the hockeypuck is measured by a top-mounted
Kinect camera. While the camera itself has quite small inaccu-
racy, we noticed that the system dynamics are not fully deter-
ministic; executing the same trajectory with the same starting
puck position (up to a margin of manual positioning error) may
produce different results with the standard deviation in position
around 5–10 cm, depending on the trajectory and the puck
used. We use the same trajectory generation approach as in the
FetchSlide experiments, with the trajectories being generated in
joint space instead of Cartesian space.

1) Hockeypuck Simulation Experiments: The simulated
setup was constructed in MuJoCo [30], based on the physical
setup. In order to generate training data from a wide variety
of conditions, we randomized the friction between the hockey
puck and the whiteboard surface, as well as the mass of the
puck. To account for slight misalignments between the physical
and simulated setups, we additionally randomized the starting
position of the puck. We added random noise in a similar fashion
to FetchSlide, with noise variance sampled fromσ2

s ∼ U(0, 0.5).
These randomizations make up for a much wider range of system
dynamics than tested in FetchSlide, and match the configurations
presented in [5].

We also compare the performance to model adaptation with
MAML [8]. Due to the gradient update rule in MAML being
batched, as opposed to recurrent architectures, we test MAML
models trained with different amounts of environment rollouts
used per update step, where smaller batch sizes allow the model
to adapt with fewer samples, but the updates are less accurate.
The network used for MAML consists of 4 fully connected layers
with 128 neurons each. We performed up to 3 adaptation steps
with MAML during training, as more steps led to instability
during training and adaptation. The gradient update step size α
is learned during training.

Fig. 7. Performance in HockeyPuck (simulation), averaged over all test con-
ditions (a), shown separately for different simulated conditions (b), and for each
noise level (c).

The results of the evaluation in simulation, as expressed by
distance between the predicted and true position in meters, are
shown in Fig. 7. We can see that, in a scenario where both models
were trained and evaluated on data from simulation (which
falls within the task distribution seen during training), there
is no significant change in performance between the proposed
architecture and LSTM; both methods perform the same with
similar error margins (the shaded areas indicate the standard
deviation of prediction errors).

In this benchmark, both recurrent methods also outperform
MAML [8], as shown in Fig. 7. In Fig. 7(a), we observe that
performing MAML updates with 1 sample per update achieves
comparable performance improvements at first, but due to noise
converges to a large average error of over 20 cm. Perform-
ing more “stable” MAML updates with 8 samples per update
achieves comparable, but slightly worse, final performance, yet
performs much worse when only a few samples are available.

In Fig. 7(b), we detail the adaptation error for a selection of
different conditions: low, medium and high isotropic frictions in
the low sample regime. We can observe that the adaptation error
is the highest in the low friction case. Fig. 7(c) shows the error for
each method in various noise conditions. We again observe that
both the LSTM and Kalman methods outperform MAML, with
the Kalman approach providing slightly better performance. We
also observe that, as expected, the difference between noisy and
noiseless conditions for MAML is more pronounced when the
update batch size is small.

2) Physical Experiments: In order to test the suitability of our
method for sim-to-real transfer, we generated random trajecto-
ries using the generative model, executed them on the physical
setup, recorded the resulting puck positions, and evaluated each
method on the resulting data. In the real world evaluation, no
additional noise is added—thus, step 7 of Algorithm 1 is skipped.
The results are shown in Fig. 8.
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Fig. 8. Performance in real conditions averaged over two pucks (a), zoomed
in (b), and detailed for each puck in (c).

In Fig. 8(a), we observe that both recurrent methods outper-
form MAML in the low sample area. Analyzing the performance
of various model-based MAML updates, we observe that, simi-
larly to simulation, updating with one sample achieves the best
performance at first, but converges to a fairly large error. With 4
samples per update, MAML is able to match the performance of
recurrent after about 20 samples (around 3 times more). We can
also observe that the Kalman filter-based method outperforms
the blackbox LSTM architecture in the low-sample regime, as
highlighted in Fig. 8(b). We observe that the Kalman filter-based
approach is able reach error below 14 cm with 8 samples, while
the LSTM approach requires 12 (50% more). We believe that,
due to inaccuracies between simulated and real conditions, the
real-world data lies a bit out of the training distribution of
the model, especially in terms of the noise distribution; thus,
having the inference procedure embedded in the graph, can
improve generalization to out-of-task distributions. In [29], it
was observed that enforcing the inner-loop update to gradient
descent improves generalization to classification tasks with data
coming from outside the training domain, in comparison to
learned update rules; this is because, even for out-of-domain
data, gradient descent still constitutes a sensible update rule. In
a similar fashion, based on our results, we can state that the
Kalman filter update rules provide better handling of out-of-
domain data distributions in comparison to learned update rules,
as is the case with LSTM.

In Fig. 8(c), we show the estimation error for each method
for the two hockeypucks we used for the evaluation, zoomed in
to the low sample area. We observe that both recurrent meth-
ods outperform MAML, with the proposed Kalman filter-based
approach outperforming LSTM for both pucks.

We also compare our results to the results obtained in [5],
where a reinforcement learning policy was trained in simulation
for the same setup and task. In that work, the average position
error for the red puck was 14.4 cm after observing 16 real-world
samples; with the model-based adaptation approach, we achieve
a comparable error (14.2 cm) after observing only 7 samples.
Similarly, for the blue puck the average error after observing 16
samples was 27.7 cm, while the proposed method achieves the
same performance with only 3 samples, reaching the average

Fig. 9. PCA analysis of hidden states in Hockeypuck for Kalman filter-based
adaptation, showing real and simulated domains after observing 20 samples.

TABLE II
RANDOMIZATION PARAMETERS

prediction error of 13.3 cm with 16 samples. After 64 observa-
tions, the average error in [5] was 13.8 cm; with the proposed
method, we were able to reach this value with only 7 samples.
Thus, the trained dynamics model could be used to optimize a
much better policy (e.g. by backpropagating through the learned
environment model or by training an inverse model) than the
policy trained in [5], and, if data is scarce, noticeably better than
backpropagating through the LSTM model.

In Fig. 9, we visualize the state space of the Kalman filter
using PCA, similarly to previous FetchSlide analysis. We can
also see that the real conditions we used for testing (blue and red)
actually lie very close to each other, between medium and low
friction (green and black), in the direction of anisotropic friction
with lower value along y (pink). Based on this, we can say that
the randomization range used in the simulator for generating
the training data was excessive. We also suspect that the shift
towards anisotropic effects is a result of unmodeled phenomena,
such as the hockey blade slightly bending during the hit. This
analysis can be used to search for a range of randomization
parameters that encapsulate the real conditions with a much
smaller margin of error (by adjusting the parameters given in
Table II) Similarly, comparing cluster sizes between real and
simulated conditions with varying amounts of noise can provide
a more accurate measure about the noise level in the real domain.
Such an analysis would provide a more accurate state prior for
the dynamics model and could be used to train a model which
achieves even smaller error in the low sample regime with the
same training method.

We also observe that the hidden state space has learned friction
representations which disentangle the magnitude and direction
of friction—the low friction domain lies to the left, with the
friction increasing along the first PC. Based on the position of
the anisotropic friction domains, we can state that the second
PC encodes the direction of friction—the domain with lower
friction alongx lies above the isotropic medium friction domain,
while the domain with lower y friction lies below it. Thus, we
observe that the method learns interpretable and useful dynamics
representations.
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V. CONCLUSION

In this letter, we have have presented a novel, uncertainty-
aware meta learning algorithm and demonstrated that its
performance on a model adaptation in the context of sim-to-real
transfer. The proposed method, which directly takes into account
uncertainty, performs better than both an LSTM-based approach
(where the optimal way of handling uncertainty is learned) and
than MAML (where the uncertainty information is discarded,
and only the mean is taken into account). The difference
between the proposed approach and the LSTM-based learner is
visible mainly in the sim-to-real scenario, where both the data
and the noise distribution does not exactly match what was seen
during training, showing that the KF update rule is more robust
to out-of-domain adaptation than the learned update rule of
an LSTM. We also show that model adaptation, as opposed to
policy adaptation, is a more data efficient approach—compared
to a previous approach [5], all model-based methods offer
superior performance. We also demonstrated how the proposed
method learns an interpretable, disentangled space of dynamics
representations.

We hypothesize that the additional benefit of using a Kalman
filter-based approach lies in the way the uncertainty is explicitly
handled in the inner loop update; the method used in the Kalman
filter (which is Bayes-optimal for Gaussian noise) generalizes
to non-Gaussian distributions better than the blackbox approach
learned by the LSTM.

In our experiments, we assumed that the whole trajectory can
be generated in advance and passed to the robot for execution.
For some complex problems, however, it is necessary to use
a feedback policy, which adds time complexity to the system.
While the general idea behind our method would also be applica-
ble to such problems, we leave the performance to be evaluated
in the future.

Additionally, removing time complexity and using genera-
tive trajectory models gives us a natural way of exploring the
environment through sampling from the latent distribution of
trajectories. While we showed that this simple method can be
sufficient, it is likely that a more informed search strategy (for
example based on uncertainty information) would provide more
informative samples, and thus adapt to real conditions with fewer
samples. Finding proper search strategies is especially crucial
in order to generalize the method for feedback policies, where
there is no latent space of safe trajectories to sample from.

It is also interesting to see how uncertainty awareness trans-
lates into more general few-shot function estimation, e.g., in
classification tasks involving label ambiguity.
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