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Suppression of non-equilibrium quasiparticle transport in flat band superconductors

Ville A. J. Pyykkönen,1 Sebastiano Peotta,1 and Päivi Törmä1, ∗

1Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland

We study non-equilibrium transport through a superconducting flat-band lattice in a two-terminal
setup with the Schwinger-Keldysh method. We find that quasiparticle transport is suppressed
and coherent pair transport dominates. For superconducting leads, the AC supercurrent over-
comes the DC current which relies on multiple Andreev reflections. With normal-normal and
normal-superconducting leads, the Andreev reflection and normal currents vanish. Flat band su-
perconductivity is thus promising not only for high critical temperatures but also for suppressing
unwanted quasiparticle processes.

The destructive interference of waves scattered from a
periodic potential can lead to disorder-free localization,
which manifests as the vanishing of the energy width of a
band in the band structure [1]. Currently, an important
goal is to engineer materials in which these so-called flat
bands occur, as this generally allows to enter a strongly
correlated regime with emerging exotic phases. Well
known instances of this general picture are the fractional
quantum Hall effect and Chern insulators [2, 3], and
more recently twisted bilayer graphene and similar moiré
materials [4–9], which are built by stacking and twisting
atomic layers with various compositions.

The discovery of superconductivity at the “magic” an-
gle in twisted bilayer graphene (TBG) has amplified the
interest in the problem of superconductivity in the flat
band limit and its competition with other phases, such as
correlated insulators [4, 7, 10]. This is a challenging prob-
lem due to strong correlations, nevertheless it has received
a lot of attention [11–29] and even exact results can be
derived for the ground state and excitations under some
conditions [30, 31], moreover, it was shown that supercon-
ductivity in flat bands originates from quantum geometry
and topology [11, 13, 15, 23]. Flat band superconductivity
is particularly promising as a route for higher temperature
superconductivity, as the critical temperature is linearly
proportional to the interaction energy [32–34], while it is
exponentially suppressed for weak-coupling in the case of
a dispersive band [35].

A major open question is the transport properties of a
superconducting state in the flat band limit. Transport in
superconductors and superconductive weak links typically
includes non-dissipative AC and DC supercurrents, as well
as dissipative transport involving fermionic quasiparti-
cles [36]. It has been theoretically shown that equilibrium
DC supercurrents are possible in flat bands [10, 11, 22],
but otherwise little is known about transport. In certain
highly symmetric flat-band systems single particles remain
localized due to local conserved quantities [37], and quasi-
particle excitations have a flat dispersion [31], while pairs
can be mobile. These equilibrium results on infinite bulk
systems hint that flat band transport could show unique
features also in out-of-equilibrium situations, i.e. under
voltage or current bias, and in the presence of interfaces.

In this work, we focus on out of equilibrium transport in a
lattice model with a flat band in which superconductivity
arises due to a local attractive interaction. We find that
the nondissipative supercurrent, the current carried coher-
ently by highly mobile Cooper pairs, dominates over the
dissipative current involving quasiparticles. The absence
of quasiparticle transport and dissipation suggests flat
band superconductors as remarkably promising building
blocks for quantum devices.
We address the non-equilibrium transport properties

by using the two terminal setup depicted in Fig. 1 a),
where also the notation and the model flat band sys-
tem, the sawtooth lattice, are presented. In the setup, a
middle structure (M) is connected via leads to two reser-
voirs, left (L) and right (R), respectively. The leads can be
either normally conducting (N) or superconducting (S) en-
abling three different lead configurations: normal-normal
(NN), normal-superconducting (NS) and superconducting-
superconducting (SS).

The setup is modeled using the following tight-binding
Hamiltonian with an Hubbard interaction term

Ĥ =
∑

αiβj,σ

Tαi,βj ĉ
†
αiσ ĉβjσ+

∑

αi

Uαiĉ
†
αi↑ĉ

†
αi↓ĉαi↓ĉαi↑ , (1)

where Tαi,βj is the single particle Hamiltonian with
α, β ∈ {L,R,M} labeling different parts of the system,
i, j are site indices and σ = {↑, ↓} is the spin index, and
Uαi ≤ 0 is the attractive interaction strength. The graph
in Fig. 1 a) shows the single-particle tight-binding param-
eters of the model. Specifically, the single-particle Hamil-
tonian can be divided as Ĥ0 = ĤL+ĤR+ĤM +Ĥcontact ,
where ĤL, ĤR and ĤM are the Hamiltonians of the left
lead (L), right lead (R), and the middle part (M) in
between the leads, respectively, and Ĥcontact connects
them together. The tight-binding matrices correspond-
ing to the lead Hamiltonians ĤL and ĤR are given by
TL/Ri,L/Rj = −δijµL/R + δj,i±1tL/R , where µL/R are
the chemical potentials of the respective leads and tL/R
are their hopping amplitudes. The tight-binding matrix
related to the middle part Hamiltonian ĤM is given by
TMi,Mj = δij(−Vg + VBδj,edge) + tM,ij where Vg is the
gate potential used to control the filling of the middle part
states, tM,ij is the model-specific hopping matrix given
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Figure 1. The model used in the calculations. a) The two-
terminal setup with a piece of sawtooth lattice (middle part
M) connected to two leads modeled by semi-infinite chains,
labeled left (L) and right (R). The figure also highlights the
sawtooth lattice unit cell which has two sites, labeled A and B,
and the edge sites. The graph corresponds to the tight-binding
model hopping amplitudes. Here U < 0, Vg, VB correspond to
interaction strength, gate potential and boundary potential
in the middle part, and µL,R, ∆L/R, TL/R are the chemical
potential, superconducting order parameter, and temperature
of the left and right leads, respectively. (b) Correspondence
between the sawtooth lattice and the truncated piece. The
flat band states of the infinite system are also present in the
finite size system since the destructive interference remains.
At the edges, the flat band states are changed to edge states,
which we tune to degeneracy with the flat band states by a
boundary potential. The dispersive band corresponds to the
dispersive states.

by the graph in Fig.1 a), and VB is a boundary potential
at the edge sites used to control the edge state energies
[22]. The contact Hamiltonian Ĥcontact corresponds to
TMi,L/Rj = TL/Rj,Mi = tL/R,Mδi,edgeδj,0 , tL/R,M being
the respective hopping amplitudes.

As a specific example of a system with a flat band, we
look at the sawtooth ladder shown in Fig. 1 a). When the
hopping amplitudes satisfy the condition tAB =

√
2tAA,

the upper band becomes flat, as shown in Fig. 1 b), since
it is composed of localized V-shaped states. We look
at a finite segment of the sawtooth ladder with N unit
cells and an additional A site. An earlier study [22] has
shown that flat band equilibrium transport, i.e. the DC
Josephson effect, is possible through a finite segment of
the sawtooth ladder while no current is seen in the flat
band in absence of interactions. As indicated in Fig. 1 b),
the system has N − 1 flat band states, N dispersive band
states and two edge states exponentially localized to the

edges, which result from the edge flat band states due to
the absence of one of the B sites. The edge states can be
made degenerate with the flat band states by setting the
boundary potential at the edge sites to VB = −tAA. This
has also the effect of perfectly localizing the edge states
to the edge A and B sites [22].
We enter the out of equilibrium regime by applying a

chemical potential bias V = µL−µR. The current is com-
puted with the non-equilibrium Green’s functions (NEGF)
[38, 39] method, also known as Schwinger-Keldysh [40, 41]
or Kadanoff-Baym [42] method. We evaluate the current
at the left lead IL = 4Im(tML〈ĉ†M,leftedge↑ĉL,0↑〉), which
takes into account also the down-spin current by an addi-
tional factor of two. The details of the method are given
in the Supplementary material [43]. Similar approaches
have been used to study for instance point contacts [44],
quantum dots [45], magic-angle TBG [46], and many other
systems [47] at a two-terminal setup. The filling of the
middle part states is controlled by the gate potential Vg.
We limit our attention to the stationary state solutions,
where we assume that the initial correlations and the
transient effects have vanished. This results in a time-
independent solution within the NN and NS junctions
and in time-periodic behavior with the SS junctions.

We treat the Hubbard interaction with a self-consistent
mean-field approximation: we take both the supercon-
ducting order parameter and the Hartree potential into
account. The mean-field approximation has been shown
to be an accurate description of flat band superconductiv-
ity at equilibrium in a number of works [12, 13, 24, 25, 30].
The mean-field Hamiltonian is compactly written using
the Nambu spinors d̂αi = (ĉαi↑, ĉ

†
αi↓)

T as

ĤMF (t) =
∑

αi,βj

d̂†αi

(
Tαi,βj + VH,αi(t)δαi,βj ∆αi(t)δαi,βj

∆αi(t)
∗δαi,βj −T ∗αi,βj − VH,αi(t)δαi,βj

)
d̂βj ,

(2)

where ∆αi(t) and VH,αi(t) are the superconducting or-
der parameter and the Hartree potential, respectively,
which are determined self-consistently for the middle
part utilizing the equations ∆αi = Uαi〈ĉαi↓ĉαi↑〉 and
VH,αi = Uαi〈ĉ†αi↑ĉαi↑〉 . The leads are considered with
a constant, uniform order parameter and their respective
Hartree potentials are absorbed into their chemical poten-
tials µL/R. As the notation reminds, the time-independent
Hubbard interaction may result in a time-dependent mean-
field theory at non-equilibrium conditions, which is the
case now for the SS junctions even in the stationary state.
In the time-periodic situation, we include the harmonics
coefficients until they are within the self-consistent accu-
racy. In addition, we make frequency cutoffs to make the
calculation feasible. The self-consistency is determined
using the relative maximum error metric and the accu-
racy we demand is 10−5. The flat band filling is sensitive
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to minute changes in the Hartree potential introducing
difficulty in convergence. However, with suitable methods
(see Supplementary [43]) we obtain convergence.

The chemical potential bias V between the leads in-
duces a particle current through the middle part. The
current-carrying processes can be classified into two cat-
egories within the limits of the mean-field theory: pure
coherent pair transport, and processes involving quasipar-
ticle transport. Incoherent pair transport and processes
involving more complicated n-body states are not included
in our approach. With one or both of the leads being nor-
mal, only the quasiparticle-related processes are possible
but with the superconducting leads also the coherent pair
transport may contribute.
Quasiparticle transport can occur through a channel

by a combination of direct transmissions, branch-crossing
transmissions, reflections, and Andreev reflections (AR)
[48, 49]. The case of normal-normal (NN) reservoir con-
figuration is the simplest, since only direct transmission
and reflection are allowed. Instead, in the case of the NS
and SS junctions, since there are no quasiparticle states
available within the superconducting gap, an AR may
occur [50] where a particle is reflected as a hole of the op-
posite spin. In the process, a Cooper pair is transmitted
to the superconducting reservoir (or removed in the oppo-
site process). In the case of an SS junction, quasiparticle
transport for a bias smaller than the superconducting gaps
is enabled by the multiple AR (MAR), where AR occurs
multiple times between the leads until the quasiparticle
escapes [48, 51]. Also, the branch-crossing transmission
from a quasiparticle into its time-reversed counterpart
on the other side may occur at a bias larger than the
superconducting gap, however, these are not important
in our work.

Coherent Cooper pair transport, that is the Josephson
effect, occurs between superconducting reservoirs with
relative superconducting order parameter phase difference
[36, 52]. Importantly, the order parameter has the time-
dependence ∆ = |∆| exp(i(φ0 + 2EF t)), where EF is the
Fermi energy [49]. Therefore, with a constant bias V ,
the superconducting phase difference φ evolves over time
φ(t) = φ0+2V t , leading to an alternating current, i.e. the
AC Josephson effect. In other words, two superconductors
with a relative bias is an inherently time-dependent system
having no time-independent steady-state solution.
The AC Josephson effect is a coherent and non-

dissipative phenomenon based on Cooper pairs only. The
AR and MAR are coherent processes that involve both
Cooper pairs and quasiparticles, and due to the latter,
are dissipative. For the sake of brevity, in the follow-
ing we refer the AC Josehpson effect as coherent pair
transport/process, and AR/MAR as quasiparticle trans-
port/process.
Firstly, we look at transport through an SS junction

since it provides the clearest connection to the known
equilibrium transport features with a similar setup, pre-

sented in Ref. [22]. It also allows a direct comparison be-
tween the pair and the quasiparticle contributions, namely
the AC Josephson effect and the MAR. As mentioned
above, the stationary solution of an SS junction at a
time-constant bias V is time-periodic with the period of
τ = π/V (in units where ~ = e = 1). Fig. 2 presents
the DC component and the first harmonic AC sine com-
ponent of the current through the sawtooth lattice at
a constant bias V and varying gate potential Vg, which
controls the filling. The two flat band states and the two
edge states lie at the gate potential Vg = −2tAA and the
three dispersive band states are between Vg = 4tAA and
Vg = 0. The states corresponding to the dispersive band
exhibit a finite AC current, where the amplitude variation
shows Fano-resonance type behavior. The DC component,
which corresponds to quasiparticle MAR processes, ex-
hibits current peaks related to the dispersive states. There
are more peaks than the corresponding three dispersive
states: MAR depends on the particular path in energy
a quasiparticle passes [45], resulting in sensitivity to the
gate potential Vg and many local maxima. In general,
the dispersive band acts as a point-contact channel in an
expected manner, and having interactions in the middle
part (U 6= 0) has no qualitative effect. The flat band
states, in contrast, have no current in the zero interaction
case, but the AC sine component has a large amplitude
in presence of interactions (and superconductivity) in the
middle part. Most remarkably, in strong contrast to the
AC component, the flat band DC current vanishes even
at finite interaction. This indicates that the quasiparticle
transport is quenched.
We have also considered the NN and NS lead config-

uration transport through a flat band. The results are
shown in Fig. 3. The dispersive states in the NN case
correspond to clearly defined peaks when their filling is
varied by the gate potential Vg. The Andreev reflection
in the NS case varies less smoothly, with sharper peaks
around the dispersive region. However, the flat band
current is small with both configurations, similarly to
the MAR-dominated DC transport in the SS junction.
The current in the NN and NS cases is related to quasi-
particle current as, in terms of the mean-field theory,
coherent pair current would require a superconducting
order parameter phase gradient. In the case of the NN
junction, the lack of pair transport processes is clear since
it turns out that the self-consistent order parameter at the
sawtooth lattice vanishes. In the NS configuration, the
phase of the order parameter there is found to be uniform
even if the amplitude varies. Thus, there is no coherent
pair current. The small flat band current is caused by
the Hartree potential inhomogeneity, which affects the
destructive interference that causes localization, thereby
enabling a quasiparticle current. It is remarkable that this
Hartree-potential-induced quasiparticle current remains
small, even at non-equilibrium.

Incoherent pair transport is not included in our mean-
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Figure 2. Left lead current IL through the sawtooth lattice
with three unit cells and an additional site between two super-
conducting leads at a varying gate potential Vg with a con-
stant bias V . The parameters are U = −0.3tAA, V = 0.5tAA,
tLS = tRS = 5.3tAA, ∆L/R = −tAA, TL/R = 0, and the leads
are in the wide-band limit with tL = 30tAA. The DC cur-
rent is dominated by the quasiparticle MAR processes, which
are finite around the dispersive states located at gate poten-
tial −4 < Vg/tAA < 0, where there are current peaks. The
quasiparticle current around the flat band, located around
Vg/tAA = 2, vanishes. In strong contrast, the AC Josephson
current, that is, the AC sine component of the current at the
Josephson frequency 2V has in addition to the peaks at the
dispersive states a prominent peak corresponding to the flat
band states.

field theory approach. However, based on standard knowl-
edge of superconducting junctions, it should be small.
In a usual SS junction with a barrier between the su-
perconductors characterized by a tunneling coupling t,
the coherent pair transport (Josephson effect) is propor-
tional to t2 while incoherent pair-tunneling is a process
of the order t4, which for t < 1 is suppressed [53]. In our
case, the inverse of the pair mass in the middle flat band
region gives effectively the tunneling coupling between
the superconducting leads. By the analogy, it is then
justified to first consider only the coherent pair transport.
However, as flat bands have shown many surprises, it is
worthwhile to study in the future whether incoherent pair
transport could be relevant, against expectations. Even if
it is, the suppression of fermionic quasiparticle transport
discovered here will have consequences to transport and
device properties.

The system of Fig. 1 can be realized in ultracold gas
two-terminal setups [22]. Our predictions can be tested
there once low enough temperatures are reached to make
the middle part superconducting, in addition to the leads
[54, 55]. One could also amend other ultracold gas plat-
forms that demonstrated the Josephson effect [56–58].
In TBG devices, Josephson junctions can be defined by

4 3 2 1 0 1 2 3
Vg/tAA

0.00

0.02

0.04

0.06

0.08

0.10

0.12

I L
/t
A
A

NN, U = -0.3tAA
NS, U = -0.3tAA
NN, U = 0

NS, U = 0

Dispersive states

Flat band

Figure 3. Left lead current IL through the sawtooth lattice
with three unit cells and an additional site in an NN and
NS lead configuration at a varying gate potential Vg with a
constant bias V . The dispersive states correspond to peaks
in the current. Flat band states correspond to only very
small peaks, in presence of interactions, in both cases. The
parameters are otherwise the same as in Fig. 2 but the order
parameters are zero for the normal leads. Coherent pair
transport does not contribute to the transport: in the NS
configuration, the Andreev reflection is the only means for
transport since the bias V is smaller than the supercondcuting
order parameter amplitude ∆R, whereas in the NN case the
usual transmission and reflection govern the transport. Even
though the middle part acquires a finite order parameter due to
proximity effect, the superconducting order parameter phase is
constant at the flat band energy and thus there is no coherent
pair current. The small flat band current contribution is due
to the Hartree potential inhomogeneity.

gate configurations on a single graphene bilayer [59–61].
For instance SIS, SS’S, and SIS’IS junctions have been
realized, where "S" is one type of superconductor and
”S” ’ another, and ”I” denotes an insulating state. Close
to our scenario are the two last ones where S would be a
superconductor in a part of the band that is maximally
dispersive, and S’ an area where the Fermi level is gated
to match the flattest part of the band. One could also
realize the desired junction by TBG material between
superconducting leads.
In summary, we have shown by non-equilibrium self-

consistent mean-field theory that coherent pair transport,
i.e. the AC Josephson effect, largely dominates the flat
band transport in a saw-tooth ladder connected to super-
conducting leads. The transport in the dispersive band
shows the usual behaviour: AC Josephson current, as well
as DC current realized via MAR. In contrast, quasiparti-
cle transport is prominently absent in the flat band case.
With the leads in the NN and NS configurations, there
is no current through the flat band, even when a small
proximity-induced order parameter exists in the middle
part. Again, this means that quasiparticle processes such
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as Andreev reflection are suppressed in the flat band.
Equilibrium studies suggested quasiparticle localization
for uniform systems of high symmetry [31, 37]. It is re-
markable that this is the case also in a non-equilibrium
setting, with interfaces that could lead to complex pro-
cesses akin to AR and MAR, and in a lattice where Hartree
effects combined with reduced symmetry may also induce
transport.
So far, the main motivations of flat band supercon-

ductivity studies have been high critical temperatures
and strong correlations. Our results highlight that their
unique transport properties make flat band superconduc-
tors promising for quantum devices. In usual supercon-
ductors, there is always dissipation associated with AC
currents at finite temperature due to quasiparticle current,
termed as normal current in two-fluid models [62]. This
dissipation is present even at low frequencies and grows as
frequency squared, limiting high-frequency operation. An
intriguing prospect, which our results promote, is that a
flat band superconductor where quasiparticle transport is
quenched could enable ultra-low dissipation (low-power),
high-frequency superconducting AC devices. Flat band
superconductors might offer a “cure for quasiparticle poi-
soning”; quasiparticles, numerous at non-equilibrium even
at low temperatures, limit the coherence of quantum
bits based on Josephson junctions [63, 64] and Majorana
nanowires [65, 66], and lower the sensitivity of kinetic
inductance detectors [67]. Our results suggest that a
flat-band-superconductor part in a device would block
the transport of quasiparticles, even at a non-equilibrium
situation, while letting supercurrent through.
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I. DETAILS OF THE MODEL

A. Mean-field Hamiltonian for the two-terminal setup

We consider the two-terminal device, illustrated in the main text Fig. 1, with two leads connected to a lattice
structure described by the mean-field Hamiltonian

Ĥ = ĤL + ĤR + ĤM + Ĥcontact , (1)

where the terms are Hamiltonians on left lead, right lead, middle structure and the hopping between the leads and the
structure, respectively. They are defined by

ĤL =
∑

ijσ

(−µLδij + tLδj,i±1)ĉ†L,iσ ĉL,jσ +
∑

i

(
∆Lĉ

†
L,i↑ĉ

†
L,i↓ + h.c.

)
, (2)

ĤR =
∑

ijσ

(−µRδij + tRδj,i±1)ĉ†R,iσ ĉR,jσ +
∑

i

(
∆Rĉ

†
R,i↑ĉ

†
R,i↓ + h.c.

)
, (3)

where µL/R are the chemical potentials, tL/R are the hopping amplitudes and ∆L/R are the superconducting order
parameters of the leads. The Hamiltonian of the middle structure is given by

ĤM =
∑

ij,σ

([−Vg + VH,iσ + VBδi,edge]δij + tM,ij)ĉ
†
M,iσ ĉM,jσ

+
∑

i

(
∆M,iĉ

†
R,i↑ĉ

†
R,i↓ + h.c.

)
,

(4)

where Vg is the gate potential, VB is the boundary potential utilized to tune the edge states, tM,ij is the hopping matrix
determining the lattice geometry. Furthermore, VH ,∆M,i are self-consistent Hartree potential and superconducting
order parameter, respectively, solved conjointly with the equations VH,iσ = U〈ĉ†M,iσ̄ ĉM,iσ̄〉, where σ̄ denotes the
opposite spin to σ, and ∆M,i = U〈ĉM,i↓ĉM,i↑〉. Finally, the contact Hamiltonian is

Ĥcontact =
∑

σ

(
tLS ĉ

†
L,0σ ĉM,cLσ + tRS ĉ

†
R,0σ ĉM,cRσ + h.c.

)
, (5)
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where tL/R,S are the hopping amplitudes between the leads and the system and cL/R labels the contact point of the
leads on the middle structure.
Despite its appearance, the mean-field solution is not time-independent. For bulk superconductors, such as the

leads, it holds that ∆ = |∆| exp(i2µt), where µ is its chemical potential [1]. It directly follows that at a two-terminal
system with two superconducting leads, the difference in the frequencies, 2V ≡ 2µL − 2µR introduces time-periodicity
to the Hamiltonian. To simplify the calculations, we make a canonical transformation into a basis where the chemical
potential is zero but the hoppings are time-dependent. In other words, the local energy is measured with respect to
the local chemical potential. This is obtained by defining |ψ′〉 = exp(i

∑
i µin̂i) |ψ〉 . As an effect, in the new basis we

have time-independent ∆ but the hoppings becomes tij(t) = tij exp(−i[µi − µj ]t), since in the hoppings one needs
to take into account the different reference energies in different parts of the system. We assume that the chemical
potential is the same within the middle part M and the right lead R, equal to µR, but different in the left lead µL.
Thus, tLM (t) = tLM exp(−i[µL − µR]t), similarly for the other direction, and time-independent elsewhere.

II. NON-EQUILIBRIUM GREEN’S FUNCTIONS (NEGFS)

The chemical potential bias V that we impose in the two-terminal setup induces a current through the system. We
calculate the current, taking into account the effects of the interaction, by using the non-equilibrium Green’s functions
(NEGF) method. Clear and thorough textbook treatments of the topic are given, to name a few, with standard
second-quantized formalism by Refs. [2–4] and with path integrals by Ref. [5]. Historical roots of the method are
in the works of Schwinger [6], Kadanoff and Baym [7] and Keldysh [8]. The particular approach we take to model
the two-terminal setup is inspired by the ’Hamiltonian approach’ to superconducting point-contact and quantum dot
junctions considered in Refs. [9, 10], but generalized to handle a tight-binding structure in between.

A. Green’s functions and Dyson’s equations for a time-periodic system

The two-time Green’s functions we are using in this work are defined in the Nambu block form

GRij(t, t
′) = −iθ(t− t′)

(
〈[ĉi↑(t), ĉ†j↑(t′)]〉 〈[ĉi↑(t), ĉj↓(t′)]〉
〈[ĉ†i↓(t), ĉ

†
j↑(t
′)]〉 〈[ĉ†i↓(t), ĉj↓(t′)]〉

)
, (6)

GAij(t, t
′) = iθ(t′ − t)

(
〈[ĉi↑(t), ĉ†j↑(t′)]〉 〈[ĉi↑(t), ĉj↓(t′)]〉
〈[ĉ†i↓(t), ĉ

†
j↑(t
′)]〉 〈[ĉ†i↓(t), ĉj↓(t′)]〉

)
(7)

and

G<ij(t, t
′) = i

(
〈ĉ†j↑(t′)ĉi↑(t)〉 〈ĉj↓(t′)ĉi↑(t)〉
〈ĉ†j↑(t′)ĉ

†
i↓(t)〉 〈ĉj↓(t′)ĉ

†
i↓(t)〉

)
(8)

which are known respectively as the retarded, the advanced and the lesser Green’s function, respectively. It holds
GR(t, t′)† = GA(t′, t) and G<(t, t′)† = −G<(t′, t).
Due to the time-periodicity of the Hamiltonian with the fundamental frequency ω0 = V , which is the frequency of

the time-dependent hopping between the left lead and the middle system tML(t) = tML exp(iV t), the solution of the
Green’s functions is simplified by using the Fourier transform on the time argument, which is defined as F (ω, ω′) =∫ ∫

dtdt′F (t, t′) exp(i[ωt − ω′t′]), while the inverse transformation is F (t, t′) = 1
4π2

∫ ∫
dω dω′F (ω, ω′) exp(−i[ωt −

ω′t′]). Since we assume that the state of the system is also time-periodic, we make the ansatz for the Green’s functions
(omitting the specific type since this is general)

G(t, t′) =
∑

n

Gn(t− t′) exp(inω0t) , (9)

where Gn(t− t′) are Fourier components, which are defined by this expression. Note that here we denote the total
matrix corresponding to Nambu blocks Gij when we omit the indices. However, the consideration is general for any
two-time Green’s function. Doing the double-time Fourier transform leads to

G(ω, ω′) =
∑

n

Gn(ω)2πδ(ω′ − ω − nω0) , (10)
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where the time-periodicity is evident in the connection between the two frequencies. We obtain simple forms for the
Green’s functions by defining the matrix components

Gnm(ω) ≡ Gm−n(ω + nω0), (11)

where now each component nm corresponds to a block of 2N × 2N , where N is the number of sites in the system. In
other words, each block corresponds to a Nambu Green’s function.
By introducing the self-energies Σ<(t, t′),ΣR/A(t, t′) and the unperturbed Green’s functions gR/A(t, t′), g<(t, t′)

(obtained with Σ = 0), we have the Dyson’s equation for the retarded and advanced components in the combined
harmonic and Nambu block matrix form

GR/A(ω) = gR/A(ω) + gR/A(ω)ΣR/A(ω)GR/A(ω) = gR/A(ω) +GR/A(ω)ΣR/A(ω)gR/A(ω) , (12)

and the Kadanoff-Baym kinetic equation for the lesser component

G<(ω) =
[
I +GR(ω)ΣR(ω)

]
g<(ω)

[
I + ΣA(ω)GA(ω)

]
+GR(ω)Σ<(ω)GA(ω) . (13)

The matrix product corresponds to summing over the intermediate Nambu and harmonic indices of the matrices.
Accordingly, I is the combined unit matrix in the harmonic and Nambu index. These equations can be used to obtain
the frequency components of the lesser Green’s function when the unperturbed Green’s functions and the self-energy is
known.
In this work, we need only the equal time lesser Green’s function, which is given in terms of its Fourier series

components by

G<n (t, t) =

∫ ω0

0

dωTrnG
<(ω) , (14)

where Trn denotes a partial trace, where the Nambu Green’s function matrices corresponding to the harmonic indices
m,m+ n are summed over m, resulting in a 2N × 2N matrix corresponding to G<n (ω).

B. NEGF treatment of the two-terminal setup

We introduce the effect of the finite bias in the calculation by starting from the non-perturbed equilibrium problem of
non-interacting particles and with the leads disconnected from the middle system, and considering the connection to the
leads and the interactions as perturbations. In other words, we have to amend the Hartree self-energy by the contact
Hamiltonian to obtain ΣR/A(t, t′) = Ĥcontact(t)δ(t−t′)+Σ

R/A
Hartree(t, t′), where Σ

R/A
ij,Hartree(t, t′) = −iδijδ(t−t′)UiG<ij(t, t).

Also, we have that Σ<(t, t′) = 0. Here G<ij(t, t) is the lesser Nambu Green’s function. It is important for transport
calculations that the approximation fulfills the conservation laws. This self-energy fulfills the Kadanoff-Baym criterion
for fulfilling the conservation laws (and possible gauge invariance) if the Green’s function G<ij(t, t) is determined
self-consistently [11, 12].

We work with the basis where superconducting order parameters in the leads are time-independent and Hcontact(t)
is periodically dependent on time. We assume in this work that the unperturbed middle part is in equilibrium with
the right lead, that is, they have the same chemical potential. In other words, the bias is between the left lead and the
middle part. Thus, the time-period corresponds to the fundamental frequency ω0 = V .

Now that we have the equations of motion, that is, the Dyson’s equations (12), (13) and we have a way to determine
the self-energy ΣR/A, the remaining task is to determine the non-perturbed Green’s functions. Since the non-perturbed
system is assumed to be at equilibrium, an important tool for the purpose is the fluctuation-dissipation theorem, which
states that, for fermions at the zero chemical potential µ = 0,

g<nn(ω) = fFD(ω + nω0)(gAnn(ω)− gRnn(ω)) , (15)

where fFD is the Fermi-Dirac distribution. This result can be understood based on the fact that A(ω) = gA(ω)− gR(ω)
is the spectral function, which tells the density of states of the system and g<(ω) tells the observable density expectation
values: at equilibrium the states are filled according to Fermi-Dirac statistics, giving the densities. Using the fluctuation-
dissipation theorem, it is sufficient to determine the retarded and advanced components in order to obtain the lesser
Green’s function. Note that at equilibrium, the non-diagonal components (in the harmonic index n) of the Green’s
functions are zero.

For the middle system, we have

g
R/A
MM,nn(ω) = ((ω + nω0 ± iη)I − TMM )

−1
, (16)
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where TMM is the tight-binding matrix of the middle part written in the Nambu basis and ±iη is a small regularization
parameter to ensure convergence to the proper Green’s function in the inverse Fourier transform. For the superconducting
leads we assume the wide-band limit where we have [9]

g
R/A
LL/RR,nn(ω) =

1

tL/R
√
|∆L/R|2 − (ω + nω0 ± iη)2

(−(ω + nω0 ± iη) −∆L/R

−∆∗L/R −(ω + nω0 ± iη)

)
.

(17)

It can be checked that this has the typical density of states. For the normal leads, which we consider as linear chains,
we have

g
R/A
LL/RR,nn(ω) =

1

2tL/R

(
exp(∓iφ) 0

0 exp(∓iφ)

)
, (18)

where φ = arccos(ω + nω0). Note that the fluctuation-dissipation theorem at a finite chemical potential would give the
lesser Green’s function as

g<LL/RR,nn(ω) =
1

tL/R

(
fFD(ω + nω0 − µL/R) sin(φ) 0

0 fFD(ω + nω0 + µL/R) sin(φ)

)
, (19)

where we note that the particles and holes have the chemical potential with opposite signs. In the wide-band limit
tL/R � ω+nω0, where ω+nω0 includes the energies of interest, the Green’s function is given by gR/ALL/RR,nn(ω) = ∓i 1

tL/R
.

The normal lead Green’s function formulas, especially for the finite chemical potential, are important if one wants to
formulate the NN and NS junctions in the picture where the lead-system hoppings are time-independent and the
chemical potentials appear as usual.

Finally, we need the observables of interest in terms of the Green’s functions. For self-consistent determination, we
require the particle number and the superconducting order parameter, which are given by

〈ni↑(t)〉 = Im(G<0,i↑,i↑) +
∞∑

n=1

(
2Im(G<n,i↑,i↑) cos(nV t) + 2Re(G<n,i↑,i↑) sin(nV t)

)
, (20)

which also gives the down spin particle number due to our assumption assumption 〈ni↑〉 = 〈ni↓〉, and

〈∆i(t)〉 =

∞∑

n=−∞
−iG<n,i↑,i↓ exp(inV t) . (21)

Assuming that the hopping tij(t) between sites i and j oscillates in time with the frequency pω0, that is, its Fourier
component tp,ij is finite others being zero, the current is given by

Iij(t) = −4Re(tp,ijG
<
−p,j↑,i↑)−

∞∑

n=1

(
4Re(tp,ijG

<
n−p,j↑,i↑ − t−p,jiG<n+p,i↑,j↑) cos(nV t)

− 4Im(tp,ijG
<
n−p,j↑,i↑ − t−p,jiG<n+p,j↑,i↑) sin(nV t)

)
.

(22)

C. Numerical details

We obtain the real-time Green’s functions from the solved non-equilibrium Green’s functions in Fourier space by
using the inverse Fourier transform formula Eq. (14) and the Fourier series ansatz Eq. (9). Firstly, we note that
the harmonic-Nambu basis is, in principle, infinite due to the infinite size of the system and the infinite amount of
harmonics of the basic frequency ω0 = V . In order to make the harmonic part numerically tractable, we introduce
frequency cutoffs from above and below, ωu, ωd, respectively. The number of the harmonic block indices is then
ωu − ωd)/V . The cutoffs have to be chosen so that the states in the middle structure are within them. Furthermore,
the regularization parameter iη in the retarded and advanced Green’s functions spread the spectral densities. An
important thing to note is that with the SS junction at the zero temperature, one cannot cut the energies above the
Fermi energies: the MAR couple to frequencies up to the superconducting order parameter and also slightly above
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since the AR probability does not go to zero immediately above gap. One has to test numerically, which are suitable
limits. We found that the interval [−8|tAA|, 3|tAA|] was suitable for the sawtooth lattice. Its total bandwidth is around
6|tAA|.
Also, the system itself is infinite and therefore the Green’s functions in the single-particle basis would be infinite.

However, it turns out we do not need to solve for all the sites of the system explicitly. By looking at the Dyson’s
equations, it is clear that a closed system of equations are formed for the Green’s functions Gij with indices i, j
corresponding to finite self-energies in the sense that Σ·,i,Σi,·,Σ·,j , or Σj,·, where · corresponds to any index, is finite.
Other Green’s functions can be calculated from this closed set, if needed. Thus, in order to limit the size of the Nambu
site basis, we consider the subsystem with the contact sites at the leads and the middle part.
We note that in general the integrand in the inverse Fourier transform, needed to obtain the real-time Green’s

functions, can be strongly peaked around certain values of frequency, especially in the case of flat bands. Thus,
standard trapezoid rule is not sufficient for determining the integral accurately with reasonable effort. In order to
have an accurate determination of the integral with relatively few function evaluations, which are expensive for large
systems, we utilize the doubly adaptive quadrature algorithm [13, 14] to evaluate the integral. The relative accuracy
of 10−7 is demanded in the numerical calculations, which is usually achieved with evaluating the frequency Green’s
function at a couple of hundred to a thousand frequency values. The frequency cutoffs were introduced to allow
computations at finite times. However, we tested that they do not introduce qualitative difference.

We solve the problem self-consistently by the standard iteration techniques but including, on top of the time-averaged
components, the finite harmonics of the base frequency ω0 of the Hartree potential and the superconducting order
parameter up to a cutoff. According to our knowledge, the alternative method for getting the self-consistent solution
based on minizing a functional, e.g. free energy, is not available at non-equilibrium conditions. We note that the
direct fixed-point iteration does not always converge. We utilize mixing, in the particular the Anderson’s method and
Broyden’s method [15–17] to allow and boost the covergence of the algorithm. In the numerical calculations shown in
this work, we determined the sufficient number of Fourier components until the higher contributions were found to
be lesser than 10−4 relative to the largest components. This demands keeping at most four finite harmonics. The
self-consistency was tested based on the maximum metric, that is, taking the maximum component-wise relative error
in the self-consistent parameters. Accuracy of 10−5 was required for the solutions.

We note that for the case of flat bands, obtaining the solution is usually difficult due to the Hartree potential varying
quickly with the gate potential that controls the filling. Thus, small error in the Hartree potential can introduce a
large difference in the filling, which makes the determination less stable against numerical error than is usually the
case. However, we have been able to obtain self-consistency.

In this work, we assume that the bias drops at the junction between the middle part and the left lead. If one looks
at the Josephson voltage-phase relation dφ

dt = 2V , it follows that the AC Josephson current is finite where the chemical
potential varies. In the time-periodic ansatz we have, we assume that all the sites at the middle part vary in time
in harmonics of ω0 = 2V . This does not allow for a more continuous distribution of voltage drop in the junction
with a superconducting junction. In the normal state, this would not matter. Assuming this is the case also for
superconductors, we have put the voltage drop at the edge since a more detailed approach would lead to too large
computation times while keeping the algorithm otherwise the same. The effect of this approximation is to focus the
AC Josephson effect to the edge.
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