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Quantum Hall effects

Integer and fractional quantum Hall effects (IQHE 
and FQHE) in ultrahigh-mobility GaAs/AlGaAs in 
two dimensional electrons gas
H. L. Stormer, Rev. Mod. Phys. 71, 875 (1999)

● IQHE: topological band insulator
● FQHE: phase of matter with topological order
A. Bernevig and T. Neupert, arXiv:1506.05805



  

Band structure invariants
Topological band insulators are characterized by band structure invariants 
obtained from the wave functions of a noninteracting Hamiltonian

Discrete translational invariance → Bloch plane waves

Periodic Bloch functions lattice vectors

“Gauge” transformation

Band structure invariants = invariant under gauge transformations

Berry connection not an invariant

transforms as the EM vector potential 



  

Berry curvature and Chern number
Berry connection

Berry curvature

not an invariant

The Chern number C is always an integer!
Topological invariant proportional to the Hall conductance (IQHE)

Similar to a vector potential
Berry phase
Similar to a magnetic flux

The integral is over the 
Brillouin zone (B.Z.)Similar to a magnetic field  along 

the z-axis (2D)

Chern number

D. Thouless, M. Kohmoto, M. 
Nightingale, and M. den Nijs, 
PRL 49 405, (1982)

Kubo-Chern formula



  

Quantum geometric tensor

Quantum Geometric Tensor
J. P. Provost and G. Vallee, Commun. Math. Phys. 76, 289 (1980)

A more comprehensive band structure invariant is the 

Berry curvature



  

Applications of the quantum metric

● Mobility gap in the integer quantum Hall effect (localization length): J. Bellissard, A. van 
Elst and H. Schulz- Baldes, J. Math. Phys. 35, 5373 (1994), R. Resta, Eur. Phys. J. B 79, 121 (2011)

● Localization functional for Wannier functions: N. Marzari et al., Rev. Mod. Phys. 84, 1419 (2012); 
Marzari, N., and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

● Superfluidity in flat band systems: SP and P. Törmä, Nat. Comm. 6, 8944 (2015); P. Törmä, SP and 
B. A. Bernevig, Nat. Rev. Phys. 4, 528 (2022)

● Orbital magnetic susceptibility: Y. Gao et al., Phys. Rev. B 91, 214405 (2015); F. Piéchon et al., 
Phys. Rev. B 94, 134423 (2016)

● Current noise: T. Neupert, C. Chamon, and C. Mudry, Phys. Rev. B 87, 245103 (2013)

● Fractional Chern insulators: R. Roy, Phys. Rev. B 90, 165139 (2014); T. S. Jackson et al., Nat. 
Commun. 6, 8629 (2015); Z. Liu and E. Bergholtz, arXiv:2208.08449

● …….

For an introduction see: Ran Cheng, arXiv:1012.1337 

The quantum metric has found applications in many different contexts:



  

What about disorder?
Disorder is essential to explain the Hall conductance plateaus in the quantum Hall effects

The Kubo-Chern formula can be extended to the disordered case in the framework of 
noncommutative geometry J. Bellissard, A. van Elst and H. Schulz- Baldes, J. Math. Phys. 35, 5373 (1994)

Fourier (Bloch-Floquet-Zak) transform

The noncommutative Chern number Cn.c. is quantized 
if the localization length is finite (mobility gap)

Localization length squared



  

Density of states and mobility gap

Extended states = diverging localization length

Localized states = finite localization length

Figure from B. Jeckelmann and B. Jeanneret, Rep. 
Prog. Phys. 64, 1603 (2001)  



  

2) Flat bands and high-temperature 
superconductivity



  

The flat band of the Lieb lattice

S. Taie et al., Science Advances 1, e1500854 (2015)

H. Ozawa et al., PRL 118, 175301 (2017)
S. Taie et al., Nat. Comm. 11, 257 (2020)

Composite lattice with three orbitals per unit cell 
allows to realize a perfect flat band

The flat band is topologically trivial C=0, but 
geometrically nontrivial (nonzero quantum metric)

The Lieb lattice is the lattice of the copper-oxide 
planes of cuprates



  

Realization of the Harper Hamiltonian in ultracold gases

[1] Aidelsburger et al., PRL 111, 185301 (2013)
[2] Miyake et al., PRL 111, 185302 (2013)

Figure from Ref. 1

Flux quanta per unit cell

✔ Time-reversal symmetry is preserved
✔ Lowest bands are quasi-flat (Landau levels)
✔ Non-zero (spin) Chern number



  

Superconductivity in MA-TBG
MA-TBG: Magic Angle-Twisted Bilayer Graphene
Twisiting graphene layers produces quasi-flat bands and (unconventional) superconductivity 

Two graphene layers aligned 
with a small twist angle 

From Cao et al., Nature 556, 43 (2018)



  

Flat bands and high-temperature superconductivity
Flat bandDispersive band

W bandwidth, U interaction strength 

Critical temperature vs. 
Fermi temperature in some 
superconducting materials
Cao et al., Nature 556, 43 (2018)

 Kopnin, Heikkilä, Volovik, PRB 83, 220503(R) (2011)



  

3) The geometric contribution to the 
superfluid weight



  

In a flat band noninteracting particles are 
localized (as in an Anderson insulator)

How (superfluid) transport is possible?

Simple answer: two-body problem in a flat band 
P. Törmä, L. Liang and SP, PRB 98, 220511(R) (2018)

P. Törmä, SP and B. A. Bernevig, Nat. Rev. Phys. 4, 528 (2022)  



  

Superfluid density and superfluid weight
Nonzero pairing potential does not 
guarantee superconductivity

Example of a flat band composed of 
localized Wannier functions

Definition of superfluid density and superfluid weight 

Cooper pair velocity

Cooper pair momentum

Supercurrent density
Magnetic (or London) 
penetration depth



  

Superfluid weight: conventional and geometric 
Superfluid weight from free energy

Geometric contribution 
present only in the multiband/multiorbital caseConventional contribution 

present in the single band case

Proportional to the effective mass 
tensor

Depends essentially on the wavefunctions

For periodic systems, the Bloch function and their 
derivatives

See also K. Moon et al., PRB 51, 5138 (1995)

SP and P. Törmä, Nature Communications 6, 8944 (2015)
P. Törmä, SP and B. A. Bernevig, Nat. Rev. Phys. 4, 528 (2022) 



  

Superfluid weight in a flat band
SP and P. Törmä, Nature Communications 6, 8944 (2015)

bandwidthIsolated flat-band
approximation

band gap

flat band isolated band

Quantum metric of the flat bandOnly the geometric contribution 
survives in the flat band limit



  

Superfluid weight and Chern number
Superfluid weight in the isolated flat band limit 

Complex positive 
semidefinite matrix

Chern number

In two dimensions



  

We have shown that:

1) Superfluidity in a flat band has a geometric 
origin (quantum metric)

2) The flat band superfluid weight is bounded from 
below by the Chern number

 
SP, P. Törmä, Nature Communications 6, 8944 (2015)



  

Lieb lattice: superfluid weight

The superfluid of the flat band:
● depends strongly on U
● is nonzero and large even if 
C=0

For the dispersive bands it 
depends weakly on U

A. Julku, SP, T. Vanhala, D.-H. Kim, P. Törmä, Phys. Rev. Lett. 117, 045303 (2016)

Zero temperature
ν is the filling (1<ν<2 for the flat band)



  

Lieb lattice: superfluid weight geometric contribution
The large superfluid weight and its strong dependence on U within the flat band is 
explained by the geometric superfluid weight contribution 

Half-filled flat band  (ν = 1.5) Half-filled upper band (ν = 2.5)

A. Julku, SP, T. Vanhala, D.-H. Kim, P. Törmä, Phys. Rev. Lett. 117, 045303 (2016)



  

The geometric contribution in twisted bilayer graphene
MA-TBG: Magic Angle-Twisted Bilayer Graphene
Twisiting graphene layers produces quasi-flat bands and 
(unconventional) superconductivity 

It has been shown that the geometric 
contribution is important in MA-TBG
1) A. Julku, T. Peltonen, L. Liang, T. Heikkilä, P. Törmä, 
Phys. Rev. B 101, 060505 (2020)

2) X. Hu, T. Hyart, D. I. Pikulin, E. Rossi, 
Phys. Rev. Lett. 123, 237002 (2019)

3)F. Xie, Z. Song, B. Lian, and B. A. Bernevig,
Phys. Rev. Lett. 124, 167002 (2020)

See also recent reviews: E. Rossi, Current Opinion in Solid 
State and Materials Science 25, 100952 (2021); P. Törmä, 
SP and B. A. Bernevig, Nat. Rev. Phys. 4, 528 (2022) 

From Refs. 1 and  2



  

Perturbative approach: Schrieffer-Wolff transformation 
M. Tovmasyan, SP, P. Törmä, S. Huber, Phys. Rev. B 94, 245149 (2016)

Projector on the flat 
band subspace

BCS wave function is an exact ground state of the projected interaction Hamiltonian

Pair creation operator

Wannier w.f. Bloch w.f.

BCS wave function



  

Effective spin Hamiltonian
M. Tovmasyan, SP, P. Törmä, S. Huber, Phys. Rev. B 94, 245149 (2016)

Pseudospin operators: create/annihilate a Cooper pair in a Wannier function  

Exchange coupling: overlap of the flat band Wannier functions 

The projected Hamiltonian becomes approximately a ferromagnetic spin Hamiltonian 



  

4) Some open questions



  

● The BCS wave function is an exact ground states in the flat band limit. 
Is it unique? Is the relation between superfluid weight and quantum 
metric exact as well? How about excited states?

● Inequalities between quantum metric and topological invariants are 
known in few cases (Chern number, 1D winding number, Euler class). 
Can we find similar inequalities for other topological invariants?

● How about disorder? A. Lau, SP, D. I. Pikulin, E. Rossi, and T. Hyart, 
arXiv:2203.01058, to appear in Scipost 
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