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Abstract—In this presentation we explain how reflectarrays
can be made “perfect”, in the sense that no power is scattered
into unwanted directions. In particular, we present examples of
impenetrable metasurfaces for anomalous reflection and beam
splitting. We show that passive perfectly performing anomalous
reflectors must be non-local and that this property can be realized
by proper engineering the reactive impedance of the metasurface.

I. INTRODUCTION

The planar configuration of reflectarrays [|I] and possibil-
ities to use low-cost manusfacturing techniques make them
attractive for many applications, especially in communication
systems. Recently, the reflectarray principle has been widely
used in the design of reflective metasurfaces, motivated by the
formulation of the generalized Snell’s law [2]]. However, the
conventional synthesis methods of reflectarrays and reflective
metasurfaces do not ensure the perfect performance of devices
due to inevitable parasitic reflections into undesired direc-
tions. This problem of conventionally designed reflectarrays
[1] and reflecting metasurfaces [2f, [3] has been recently
recognized [4]]-[6] specially for steep reflection angles. In
this paper we explain how the fundamental deficiency of all
conventional reflectarrays can be overcome on the examples
of two different perfect reflectors: a gradient metasurface for
reflecting an incident plane wave into an arbitrary desirable di-
rection (anomalous reflector) and a metasurface which equally
splits normally incident power into two different directions (
50 : 0 : 50 splitter). These two devices are schematically
represented in Fig. [l We call the performance “perfect” if
the power efficiency n is 100%, that is, all incident power is
fully channelled into one (anomalous reflector) or two (splitter)
plane waves.

II. RESULTS

For simplicity, we consider metasurfaces illuminated by a
normally incident plane wave with TE polarization. If we
want to reflect the wave into a certain direction, we fix the
propagation direction of reflected waves, +6;, selecting the
period of the metasurface D, = A/sinf,, where A is the
wavelength. The tangential electric field of propagating modes
at the metasurface plane (z = 0) can be expressed as

Ey(2,0) = B + Epe?™ 90 4 Bpem/bertits 1)

where k, = ksin6, is the tangential wavenumber of the
reflected waves; FE;, E,1, and FE., are the amplitudes of
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Fig. 1. Schemtatic representation of the desired performance of perfect re-
flective metasurfaces when 6; = 0°. (a) Anomalous reflection. (b) 50 : 0 : 50
splitter.

the incident and two reflected waves, respectively; and ¢,
and ¢, are additional phases of the reflected waves. The
corresponding tangential magnetic field reads
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where 7 is the impedance of the background medium.

The conventional design approach is based on ensuring that
the incident power is fully reflected at every point of the
reflector, that is, the absolute value of the reflection coefficient
is unity. Furthermore, the phase of the reflection coefficient is
modulated linearly [[1], [2], so that the waves reflected from
every point interfere constructively in the desired direction.
However, in this case the desired field structure (I), (Z) is
not realized, because the corresponding surface impedance
Zs(x) = E¢(z,0)/H(x,0) is a complex number while the
metasurface is assumed to be lossless at every point (R(Zs) =
0).

A. Perfect anomalous reflection

Let us assume that we want to realize perfect anomalous
reflection into only one plane wave (E,; = 0). For simplicity,
we set ¢; = ¢o = 0. In this scenario, in order to satisfy the
power conservation at every point of the reflective surface, the
amplitude of the reflected plane wave has to be Eo = E, =
E;/+/cos 0, [4]. By introducing this amplitude into Egs. ||
and (2), the surface impedance can be written as
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This impedance is a complex number whose real part takes
positive and negative values. When the real part (surface
resistance) takes positive values, it represents energy absorp-
tion (loss) and when it is negative, it represents radiation
(gain). The average of the normal component of the Poynting
vector over one period is zero. Figure 2(a)] shows the real and
imaginary parts of the surface impedance when 6, = 70°.

B. Beam splitter

Our second example is a 3-port perfect splitter which
distributes the incident power into two reflected plane waves
(50 : 0 : 50) , so that £,y = E.o = E.. From the power
conservation condition, the amplitude of the reflected waves
reads F, = F;/v/2cos6,. As an example, we choose ¢ = 0
and ¢o = 7. Following the same approach that in the previous
example, the impedance which models the metasurface is

Zu(z) = 10 V/cos by + jV/2 sin (k,)
T Vecos, 1 — jv/2cos0; sin (kyx)

Figure [2(b) represents the surface impedance for the perfect
splitter when 6, = 70°. As in the previous case, we can see
that the impedance is a complex number with a similar “lossy-
active” behaviour.
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Fig. 2. Required surface impedance of metasurfaces when 6, = 70°. (a)
Anomalous reflection. (b) Beam splitter

C. Energy channeling along lossless metasurfaces

In paper [7]], we proposed to realize such effectively gain-
loss property by designing the metasurface as an inhomoge-
neous, non-local leaky-wave waveguide, which would receive
energy in the “lossy” regions, guide it along the surface, and
radiate back into space in the “active” regions. We realize the
desired response by designing an array of metal patches over
a ground plane. Here, a combination of evanescent (surface
waves) and propagating waves forms a required periodically
modulated channel for energy transport along the reflector
surface.

Figures and [3(d)] represent the views of both meta-
surfaces implemented with ten metal patches per period.
Figures [3(a)] and [3(b)| represent the numerical verification of
both designs. In the case of the anomalous reflector we see how
a perfect plane wave is propagating in the desired direction.
On the other hand, in Fig. 3(b)] we can see the interference
pattern generated by the two plane waves reflected from the
perfect splitter.
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Fig. 3. Numerical simulations of lossless metasurfaces when 6, = 70°:
(a) perfect anomalous reflection and (b) 3-port splitter. Schematic view of
the metasurface implemented with ten elements per period: (c) anomalous
reflector and (d) 3-port splitter.

III. CONCLUSIONS

In this work we have shown that it is possible to over-
come the fundamental limitation of reflectarrays and reflecting
metasurfaces with two examples of perfect reflectarrays. Here,
parasitic reflections are completely eliminated and the perfect
power balance between the incident and reflected waves is
ensured. Experimental results will be shown in the conference
presentation.
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