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A B S T R A C T

This work proposes a novel framework able to optimise both topology and fibre angle concomitantly to
minimise the compliance of a structure. Two different materials are considered, one with isotropic properties
(nylon) and another one with orthotropic properties (onyx, which is nylon reinforced with chopped carbon
fibres). The framework optimises, in the same particular sub-step, first the topology, and second, the fibre angle
at every element throughout the domain. For the isotropic material, only topology optimisation takes place,
whereas, for the orthotropic solid, both topology and fibre orientation are considered. The objective function
is to minimise compliance, and this is done for three volume fractions of material inside the design domain:
30%, 40%, and 50%. Two classical benchmark cases are considered: 3-point and 4-point bending loading
cases. The optimum topologies are further treated and manufactured using the fused filament fabrication (FFF)
3D printing method. Key results reveal that the absolute stiffness, density-normalised and volume-normalised
stiffness values within each admissible volume are higher for onyx than for nylon, which proves the efficiency
of the proposed concurrent optimisation framework. Moreover, although the objective function was to minimise
compliance, it was also effective to improve the strength of all parts. The excellent quality and geometric
tolerance of the 3D-printed parts are also worth mentioning.

1. Introduction

A fundamental engineering challenge is how to design a structure
to be as light as possible without sacrificing its mechanical perfor-
mance. According to Sigmund and Maute [1], this can be achieved
with topology optimisation (TO). Its basic idea relies on repeated
analysis and design update steps usually guided by a gradient-based
computation. The first attempt on TO was carried out by Bendsøe and
Kikuchi [2] with the aim to propose an alternative method to shape
optimisation approachable to yield both the optimum topology and
the optimal shape of a structure. Later on, Bendsøe [3] introduced
several ways of removing the discrete nature of the problem by intro-
ducing a density function as a continuous design variable within the
optimisation problem. In fact, Bendsøe and Kikuchi [2], Bendsøe [3]
and Rozvany et al. [4] proposed the most disseminated mathematical
approach for TO, the well-known Solid Isotropic Material with Penal-
isation (SIMP) method [5]. This method finds the optimal material
distribution within a particular design domain, load cases, boundary

∗ Corresponding author at: School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK.
E-mail address: humberto.almeida@qub.ac.uk (J.H.S. Almeida Jr.).

conditions, manufacturing constraints, and performance requirements
[6,7]. Other less explored approaches include, for instance, the level set
[8], evolutionary structural optimisation [9], and moving morphable
component methods [10].

In the last 30 years, several TO approaches have been explored,
mostly for isotropic materials [11]. This is mainly due to two reasons:
(i) the high maturity level of approaches for isotropic materials (such
as SIMP) and (ii) well-established manufacturing techniques for com-
plex metallic shapes. However, the continuous demand for lightweight
structures has led to the increased use of anisotropic carbon fibre-
reinforced polymer (CFRP) composites, mainly in high-performance
aerospace, aeronautical, and automotive components [12]. From the
manufacturing point of view, complex CFRP shapes can now be pro-
duced by additive manufacturing (AM) techniques [13,14]. Among
them, fused filament fabrication (FFF) is one of the most disseminated
AM techniques, in which a polymer filament, either reinforced with
fibres or not, is extruded layer-by-layer and deposited on a build plate
[15–17]. According to the systematic review of Sanei and Popescu [18],
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most studies on FFF for CFRP parts were published in the last five
years [19]. For instance, Chen and Ye [20,21] 3D printed composite
parts with carbon fibre and nylon materials using topology optimisation
relying on the classical SIMP method [20] and to 3D print structures
with negative Poisson’s ratio [21]. Sugiyama et al. [22] 3D printed
optimised composites with carbon fibres placed along the principal
stress directions.

However, there is still an open question: how to arrange the rein-
forcing fibres and optimise the part topology? Aiming at taking full
advantage of both material anisotropy and exploiting the powerful
manufacturing capability of FFF method, an adequate answer is by
combining TO to optimise the material distribution with structural
optimisation to adjust the local fibre orientation. On the one hand, the
material distribution can be optimised using SIMP; on the other hand,
the fibre angle can be locally optimised with gradient-based algorithms,
in which the fibre angle can be treated as a design variable [23].

There are a few studies dealing with both topology and fibre angle
optimisations simultaneously. For example, Lee et al. [24] developed
a TO method for optimising both material layout and fibre orien-
tation in functionally graded fibre-reinforced composites, in which
the fibre angle is considered as a discrete variable. Tong et al. [25]
built a sequential optimisation method considering both fibre angle
and topology for constant-stiffness laminated plates using lamination
parameters as design variables. The stiffness for a short cantilever
beam and the flexibility for a compliant inverter increased by 6.5%
and 4.2%, respectively. Jiang et al. [26] proposed a TO approach for
continuous fibre angle optimisation, which computes the best layout
and orientation of fibre reinforcement for AM structures. They report
minimum compliance 63% lower than the baseline by selecting a
different print orientation, in which the fibre orientation follows the
outer contour of the dense material region for each layer. Nomura
et al. [27] developed a TO framework for designing both topology
and orientation distributions of composite materials simultaneously.
However, the optimisation results have some areas which violate the
conditions for tensor invariants. Papapetrou et al. [28] developed an
optimisation framework for both topology and fibre paths to create
variable-stiffness designs. In general, the optimised part is stiffer than
the baseline. Yan et al. [29] proposed a concurrent hierarchical op-
timisation methodology considering the simultaneous optimisation of
structural topology and orthotropic material orientation. They showed
by means of numerical examples that optimising both topology and
fibre angle might decrease compliance. Among these studies, only Jiang
et al. [26] manufactured optimum beams using carbon-fibre-reinforced
polylactic acid (PLA) composites. However, only one type of specimen
and one volume were 3D-printed. Nevertheless, all the other mentioned
studies are merely computational. Chen and Ye [20] developed a proce-
dure combining topological design and fibre placement paths based on
average load transmission trajectories for 3D-printed CFRP parts using
the classical SIMP method for optimising the topology.

After the non-extensive state-of-the-art on research undertaken on
the topic, the following gaps have been identified, which underlie the
realisation of this study:

• there is a need for a framework that can simultaneously optimise
both topology and fibre angle;

• no investigations are considering chopped carbon fibre reinforced
thermoplastic composites; and

• there is a lack of comprehensive investigations considering the
whole design process: from optimisation to manufacturing and
testing.

In this context, this work proposes a robust concurrent topology and
fibre angle optimisation framework for 3D-printed composites using
dedicated algorithms considering the orthotropy of the composite mate-
rials in contrast to the classical SIMP approach. The topology problem
is solved as a constrained problem whereas the fibre angle is treated
as an unconstrained optimisation problem. The design domain is fixed

Fig. 1. Schematic representation of both topology and fibre orientation within a given
domain.

and the optimisation is done for three volume fractions of material:
30%, 40%, and 50%. In all cases, the objective function is to minimise
compliance. Two benchmark cases are considered to evaluate the novel
approach herein developed: (i) three-point bending (3PB), and (ii) four-
point bending (4PB). Two material properties are considered: isotropic
and orthotropic. The isotropic material consists of nylon (Polyamide
6 – nylon), whereas the orthotropic material is chopped carbon-fibre-
filled nylon, called onyx. After the numerical optimisation is finished,
the optimal 3-point and 4-point bending beams are 3D printed, with
both nylon and onyx materials, and tested under the same boundary
conditions (BC) used in the optimisation.

2. The formulation

Let 𝛺 be a domain in R2 with boundary 𝜕𝛺 (Fig. 1). Consider that
the Dirichlet and Neumann boundary conditions are applied on 𝜕𝛺𝑢
and 𝜕𝛺𝑓 , respectively, where

𝜕𝛺 = 𝜕𝛺𝑢𝑖 ∪ 𝜕𝛺𝑓𝑖 ; 𝜕𝛺𝑢𝑖 ∩ 𝜕𝛺𝑓𝑖 = ∅ 𝑖 = 1, 2, (1)

such that

𝑢𝑖 = 𝑢𝑔𝑖 on 𝜕𝛺𝑢𝑖 𝑖 = 1, 2, (2)

where 𝑢𝑖 is the 𝑖−th component of the displacement and 𝑢𝑔𝑖 is known,
and

𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖 on 𝜕𝛺𝑓𝑖 𝑖 = 1, 2, (3)

where 𝝈 is the stress tensor, 𝒏 is a normal unit vector and 𝑡𝑖 is the
boundary traction vector.

We want to find the optimal material distribution that minimises
compliance when subjected to boundary conditions Eqs. (2) and (3).
For this purpose, domain 𝛺 is divided into 𝑛 finite elements, such that

𝛺 =
𝑛
⋃

𝑒=1
𝛺𝑒. (4)

The material properties are considered constant within each ele-
ment, and the variables are its relative density 𝜌𝑒 and its fibre ori-
entation angle 𝜃𝑒. Thus, an element 𝑒 has an elasticity matrix 𝑪𝑒 =
𝑪𝑒

(

𝜌𝑒, 𝜃𝑒
)

. The effect of the relative density on the material properties
is represented by a power-law [11] according to

𝑪𝑒 = 𝜌𝑃𝑒 𝑪
𝒈
𝒆 , (5)

where 𝑪𝑔
𝑒 = 𝑪𝑔

𝑒
(

𝜃𝑒
)

is the elasticity matrix of the base material in a
global coordinate system and 𝑃 is a penalisation factor. We used 𝑃 = 3
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such that intermediate relative densities become unfavourable in the
optimisation procedure. A plane-stress state is adopted, in which the
elasticity tensor is

𝑪 𝑙 =
⎡

⎢

⎢

⎣

𝐶1111 𝐶1122 0
𝐶1122 𝐶2222 0
0 0 𝐶1212

⎤

⎥

⎥

⎦

(6)

in its local coordinate system and this is transformed into the global
coordinate system with

𝑪𝑔
𝑒 = 𝑹𝑇

𝑒 𝑪
𝑙𝑹𝑒, (7)

where 𝑹𝑒 = 𝑹𝑒
(

𝜃𝑒
)

is the rotation matrix for element 𝑒.
A compliance minimisation problem subject to a volume constraint

is addressed here. As well established in classical works dealing with
TO problems [2,3,5,11,30–32], when a compliance optimisation is
considered, the objective function can be calculated as the integral
over a local function dependent on the displacement field and the
design variables, e.g., the strain energy density. The problem consists
of finding the material distribution and the angle of the fibres within
the domain, such that force times displacement is minimised. The
compliance minimisation problem [30,33] can thus be mathematically
stated as
min
𝝆,𝜽

𝑐 = 𝑭 𝑇𝑼

s.t. 𝑉 ≤ 𝑉

𝑲𝑼 = 𝑭

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1.0

(8)

where 𝑐 = 𝑐 (𝝆,𝜽) is herein considered a compliance measure of
the structure, 𝑭 and 𝑼 = 𝑼 (𝝆,𝜽) are the global external force and
displacement vectors, respectively, 𝑲 = 𝑲 (𝝆,𝜽) is the global stiffness
matrix, 𝑉 = 𝑉 (𝝆) is the volume of the structure, 𝑉 is a fixed admissible
volume (upper bound), and 𝜌𝑚𝑖𝑛 is the minimum value adopted for
the relative density, used to avoid numerical issues during both the
optimisation procedure and solving the linear system.

The volume constraint represents a limit on the amount of material
used in the optimisation procedure. The limit is defined as 𝑉 = 𝑉0𝑣𝑓 ,
where 𝑉0 is the volume of the design domain 𝛺 and 𝑣𝑓 is a prescribed
allowable volume. The volume of the structure is constrained only by
the relative densities. Thus, the problem dealing with the fibre angle
optimisation is unconstrained, whereas the topology optimisation is
constrained to the allowable volume.

The optimisation problem stated in Eq. (8) can be written as an
unconstrained problem using the Lagrangian function, leading to

min
𝝆,𝜽

𝐿 = 𝑭 𝑇𝑼 + 𝜆
(

𝑉 − 𝑉
)

s.t. 𝑲𝑼 = 𝑭

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1.0,

(9)

where 𝐿 = 𝐿 (𝝆,𝜽) is the Lagrangian function and 𝜆 is the Kuhn–Tucker
multiplier. The minimum is reached when

∇𝝆,𝜽𝐿 = 𝟎. (10)

The volume constraint is dependent only on 𝜌 (independent of 𝜃).
Thus, the procedure can be separated into a constrained and an un-
constrained problem to be solved sequentially. Differentiating Eq. (10)
with respect to 𝝆, returns

∇𝝆𝐿 = ∇𝝆𝑐 + 𝜆∇𝝆𝑉 = 𝟎. (11)

The relative density associated to the 𝑒−th finite element can be
updated by [30]

𝜌𝑘+1𝑒 = 𝜌𝑘𝑒𝛽
𝜂
𝑒 , (12)

where 𝜂 is a relaxation parameter and 𝛽𝑒 is the update parameter, given
by

𝛽𝑒 =
𝑑𝑐
𝑑𝜌𝑒

𝜆 𝑑𝑉
𝑑𝜌𝑒

. (13)

The derivatives of the compliance and of the volume in relation to
the 𝑒−th relative density are given by

𝑑𝑐
𝑑𝜌𝑒

= 𝒖𝑇𝑒

( 𝑝𝑔
∑

𝑚=1
𝑩𝑇

𝑒
(

𝑃𝜌𝑃−1𝑒
)

𝑪𝑔
𝑒𝑩𝑒𝑊𝑚𝐽𝑚

)

𝒖𝑒 (14)

and
𝑑𝑉
𝑑𝜌𝑒

= 𝑉𝑒, (15)

respectively, where 𝑩𝑒, 𝒖𝑒 and 𝑉𝑒 are, respectively, the
strain–displacement matrix, the local displacement vector and the
volume of the 𝑒−th element, 𝑝𝑔 is the number of Gauss points used for
the numerical integration, 𝑊𝑚 and 𝐽𝑚 are, respectively, the quadrature
weight and determinant of the Jacobian matrix associated to Gauss
point 𝑚.

Now, taking the gradient from Eq. (10) with respect to 𝜽, gives

∇𝜽𝐿 = 𝟎 = ∇𝜽𝑐, (16)

which is an unconstrained problem. The derivative of the compliance
with respect to the angle of the 𝑒th finite element is

𝑑𝑐
𝑑𝜃𝑒

= 𝒖𝑇𝑒

( 𝑝𝑔
∑

𝑚=1
𝑩𝑇

𝑒 𝜌
𝑃
𝑒
𝑑𝑪𝑔

𝑒
𝑑𝜃𝑒

𝑩𝑒𝑊𝑚𝐽𝑚

)

𝒖𝑒 (17)

in which the derivative of the elasticity matrix with respect to 𝜃𝑒 can be
obtained analytically from Eq. (7). The unconstrained problem is solved
using the Steepest Descent method with a Golden section algorithm for
the line search.

Considering that the derivatives represent a local behaviour of the
function, a scheme of moving limits is adopted. These constraints are

𝜌𝑘+1𝑒 ∈
[

𝜌𝑘𝑒 − 𝑑1𝑒 , 𝜌
𝑘
𝑒 + 𝑑1𝑒

]

(18)

for the relative density and

𝜃𝑘+1𝑒 ∈
[

𝜃𝑘𝑒 − 𝑑2𝑒 , 𝜃
𝑘
𝑒 + 𝑑2𝑒

]

, (19)

for the angle of each element, where 𝑑1𝑒 and 𝑑2𝑒 are positive moving
limits for the 𝑒−th relative density, and the 𝑒−th angle, respectively.
The moving limits change at each iteration depending on the behaviour
of the design variable. If the design variable changes monotonically in
three subsequent steps, the moving limit is updated by a factor higher
than 1.0, and if the design variable oscillates in those steps, the moving
limit is updated by a factor lower than 1.0.

In TO problems, two significant issues may occur. The first one
is the appearance of patterns similar to a checkerboard, in which a
region has, alternately, solid and void elements. The second one is the
mesh dependency of the results, in which different results are obtained
for different mesh sizes [31]. Thus, a filtering scheme is adopted to
avoid numerical instabilities in the topology optimisation procedure.
The same filtering scheme is used in the fibre angles to avoid abrupt
changes of orientation during the material optimisation procedure. A
basic sensitivity filtering scheme [31] is used for both relative density
and fibre angle. Consider a region of radius 𝑅 around an element 𝑒,
which is given by

𝑁𝑒 =
{

𝑗, ‖𝑮𝑗 −𝑮𝑒‖ ≤ 𝑅
}

, (20)

where 𝑮𝑗 and 𝑮𝑒 are the centroid of elements 𝑗 and 𝑒, respectively.
The dependency of the design variable of element 𝑒 on its neighbours
is written as

𝜕𝑐
𝜕𝜌𝑒

=

∑

𝑗∈𝑁𝑒
𝑤
(

𝑮𝑗
)

𝜌𝑗
𝜕𝑐
𝜕𝜌𝑗

𝜌𝑒
∑

𝑗∈𝑁𝑒
𝑤
(

𝑮𝑗
)

𝑉𝑗
, (21)

where 𝑤(𝑮𝑗 ) is a weighting function, chosen here as a linear decaying
one.

A flowchart of the whole optimisation procedure is shown in Fig. 2.
All steps are performed with an in-house code written in Julia Language
[34]. The data needed for the optimisation is an input to the algorithm.
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Fig. 2. Flowchart of the optimisation framework.

This includes the geometry, mesh, all the variables for the topology
optimisation, material properties and boundary conditions. The last
step before starting the optimisation procedure is to create two vectors
𝝆1 and 𝜽1 containing the initial estimate for both design variables. The
input data used in all simulations is shown in Appendix.

The optimisation procedure itself is performed sequentially. For
each global optimisation step, topology optimisation is performed first,
followed by material optimisation.

During the topology optimisation, the equilibrium problem for the
current step 𝑛 is solved for 𝜌𝑛 and 𝜃𝑛. Then, the derivatives of the
compliance about the 𝜌𝑛 are obtained with Eq. (14) and used to update
the relative densities to 𝜌𝑛+1 according to Eq. (12) while respecting the
moving limits imposed in Eq. (18).

The material optimisation step is conducted with the variables 𝜌𝑛+1
and 𝜃𝑛 (Fig. 2). First, the derivatives of the compliance about the fibre
angles are evaluated with Eq. (17). Second, the fibre angles are updated
to 𝜃𝑛+1 using the steepest descent algorithm, while respecting the mov-
ing limits imposed in Eq. (19). In both TO and material optimisation,
a sensitivity filtering scheme, Eq. (21), is adopted.

Convergence is reached when the compliance, relative densities,
and fibre angles have a variation inferior to 1% in ten subsequent steps.
If convergence is not satisfied, one assumes 𝑛 = 𝑛+1, and the procedure
returns to the topology optimisation. When convergence is reached,
a plain text file is generated containing the compliance, a vector of
relative densities and a vector of fibre angles. This format is such that
the optimum geometry and fibre orientation can be visualised using the
software Gmsh [35].

3. The optimisation

3.1. Study cases

The optimisation framework is tested on two cases: 3-point bending
and 4-point bending beams, as shown in Fig. 3, given that the loads
and boundary conditions from the optimisations can be experimentally
reproduced. These are classical benchmark cases in TO, allowing us to
compare our results with other approaches available in the literature.
In all cases, the problem is 2D (plane stress state) and the optimisation
domain has a height 𝑎 = 30 mm and a width 𝑏 = 60 mm, see Fig. 3.
Considering that the symmetry line is located at 𝑏 = 0, the supporting
pins are located at 0.9𝑏 for both 3-point and 4-point bending, whereas
the force on the 4-point bending case is applied at 0.1𝑏. The domain
is discretised by 180 × 90 regular bi-linear isoparametric elements
with incompatible modes [36]. An example of the finite element mesh,
alongside the final optimisation topology, is shown in Fig. 4. A filter
radius 𝑅 = 0.5 mm is used in all cases to guarantee that two adjacent
elements are within the filtering radius. For each design case, the
optimisation is conducted for three different final volumes: V = 30%,
40%, and 50% of the initial design domain. An overview of all design
cases under investigation is provided in Table 2.

The optimisation is conducted with two materials, one isotropic and
one orthotropic, to quantify the effect of fibre orientation. The isotropic
solid has the properties of nylon, whereas the orthotropic material has
those of onyx. These two materials are the same as those used in the
experiments presented in Section 4.2. The properties of both materials
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Fig. 3. Design domain, loads, and boundary conditions for (a) 3-point bending and (b)
4-point bending cases.

Fig. 4. The convergence-free finite element mesh used in all optimisation cases.

Fig. 5. Representative convergence analyses for 3pb_30_n and 3pb_30_o cases.

Table 1
Experimentally measured elastic and physical properties for both nylon and onyx
materials.
Nylon (𝑛) Onyx (𝑜)

𝐸 (GPa) 0.98 𝐸1 (GPa) 1.26
𝜈 (–) 0.42 𝐸2 (GPa) 0.33
𝜌 (g/cm3) 1.1 𝐺12 (GPa) 0.37
𝐺 (GPa) 0.35 𝜈12 (–) 0.39

𝜌 (g/cm3) 1.18

are presented in Table 1. The isotropic material, nylon, is characterised
by an elastic modulus 𝐸 = 0.98 GPa and a Poisson’s ratio 𝜈 = 0.42.

On the other hand, Onyx is a composite material in which nylon
is reinforced with chopped carbon fibres. Onyx comes as a filament
(to be used in fused filament fabrication) where the chopped fibres are

Table 2
Nomenclature for the specimens and their parameters.
Case V (𝝆) R (mm) Material

3pb_30_n

30% 0.5

Nylon
3pb_30_o Onyx
4pb_30_n Nylon
4pb_30_o Onyx

3pb_40_n

40% 0.5

Nylon
3pb_40_o Onyx
4pb_40_n Nylon
4pb_40_o Onyx

3pb_50_n

50% 0.5

Nylon
3pb_50_o Onyx
4pb_50_n Nylon
4pb_50_o Onyx

predominantly aligned with the filament direction, which leads to an
orthotropic behaviour. The Onyx filaments have a fibre volume fraction
𝑉𝑓 ≈ 15%, and the carbon fibres have an average diameter 𝜙𝑓 = 6 μm
and length 𝑙𝑓 = 100 μm.

Uniaxial tensile tests have been performed in both Onyx and Nylon
materials to characterise their elastic properties: longitudinal elastic
modulus 𝐸1, transverse elastic modulus 𝐸2, in-plane shear modulus 𝐺12,
and major Poisson’s ratio 𝜈12 for onyx; and 𝐸 and the Poisson’s ratio,
𝜈, for nylon.

For nylon: the recommendations of the ASTM D638–22 standard
for type IV specimen have been followed to determine 𝐸 and 𝜈 using
longitudinal and transverse extensometers to measure both strains. The
samples were printed with a raster angle of 45◦ [37].

For onyx: the ASTMD638–22 standard has been used to determine
𝐸1, 𝐸2, and 𝜈12 using longitudinal and transverse extensometers. In
order to measure 𝐸1 and 𝜈12, the raster/fibre angle of the specimens
is 0◦, whereas for measuring 𝐸2, the raster angle is 90◦. To measure
𝐺12, samples were printed with a fibre angle of ±45◦, which is com-
mon practice for long-fibre-reinforced composites according to ASTM
D3518–18 standard. Here, this adaptation has been made for dog–bone
samples and all specimens failed in the gauge section.

These experimentally-measured values are provided in Table 1. It is
worth noting that 𝐸2 for onyx is one-third of 𝐸 for nylon because to
determine 𝐸2 for onyx, the fibre angle is 90◦ whilst to determine 𝐸 for
nylon, the raster angle is 45◦. Also, the disadvantageous orientation for
onyx samples printed at 90◦ in relation to nylon samples printed at 45◦
relative to the loading direction may promote void-opening at a higher
magnitude/rate for onyx samples [38,39].

3.2. Optimisation results

A convergence analysis of the objective function is shown in Fig. 5
for the 3pb_30_o, and 3pb_30_n optimisation cases. The specimens and
their parameters are given in Table 2. For the orthotropic case, the
compliance is calculated at the end of each global step of the optimisa-
tion procedure, meaning that both topology and material optimisations
are performed to obtain the value of the objective function. For the
isotropic case, there is no material optimisation, thus, the procedure
includes only of the topology optimisation step. All optimisation cases
follow the same convergence behaviour, therefore only one plot is
presented as it is representative of all cases.

As stated earlier, convergence is reached when the objective func-
tion and the design variables do not vary by more than 1% in ten
subsequent global steps. Furthermore, the convergence is monotonic,
which shows the consistency of the implemented algorithm. Finally,
for both isotropic and orthotropic cases, the objective function behaves
akin to the convergence analysis shown in Fig. 5.

The optimal topologies for isotropic and orthotropic materials are
compared in Fig. 6. The topologies for the isotropic and orthotropic
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Fig. 6. Optimum topologies for (a) 3-point bending and (b) 4-point bending beams.

materials differ from each other; there are differences in the reinforce-
ments, especially for 𝑉 = 30%. The nature of the materials themselves
makes it reasonable to expect such differences. In the orthotropic case,
the fibres have a preferential stiffness direction, and the direction of the
fibres is optimised alongside the topology. In this case, the topology op-
timisation step influences the material optimisation step and vice-versa.
Those features are not present in the isotropic case. Moreover, when
the same case with different volume fractions is considered, one can
notice a pattern in the topologies. Basically, the higher the admissible
volume of the structure, the bigger the reinforcements and the larger
the number of reinforcements. Thus, the implemented algorithms show
consistency.

In addition, Fig. 7 shows the optimum fibre distribution for the
orthotropic cases. The fibre angles follow the reinforcements, which can
be seen in detail in the highlighted areas. This is expected since the
material has a longitudinal elastic modulus considerably higher than
the transversal one, and thus the fibres oriented in the span direction
provide a higher stiffness to the structure, reducing its compliance. In
addition, no abrupt changes in the fibre angles are noticed, due to the
filtering scheme used.

It is important to point out that the material properties directly
affect the magnitude and shape of the global optimum. Usually, the
higher the elastic properties of the material, the stiffer the optimised
structures can be. Beams under 3- and 4-point bending are more
dependent on 𝐸1, therefore, this property affects the solution process
to a greater extent.

4. Experimental details

The optimum 3-point and 4-point bending beams were manufac-
tured and tested to verify the efficiency of the optimisation algorithm.
This section details the approach followed to convert the TO output
into an STL file, as well as the 3D printing and testing procedures.

4.1. The STL file generation

Most rapid prototyping techniques and 3D printers require the
geometry to be provided as an STL file [40]. Therefore, we have to
convert the output from TO into a three-dimensional STL file. This is
done using three different tools as depicted on the flowchart in Fig. 8.
First, a rough STL file is created using an in-house algorithm. Second,
the STL mesh is verified and smoothed using MeshLab. Third, Blender
is used to correct minor issues with the mesh, if necessary. The entire
procedure is detailed below.

The first step is performed with an in-house algorithm written in
Julia Language [34]. The input for the algorithm is a plain text file
containing the connectivity of each element of the FE mesh and its
relative density. The optimisation was done on a 2D plane stress model
and using symmetric boundary conditions (see Section 3); therefore,
our algorithm uses extrusion and mirroring to generate the full 3D
geometry. The optimisation process often produces elements with in-
termediate relative densities (0 < 𝜌𝑒 < 1), which cannot be part of
the final geometry. Our algorithm uses a threshold value 𝜌𝑡 such that
elements with relative densities above the threshold are assumed as
solid and those below 𝜌𝑡 are considered voids (see Fig. 1). In all cases, 𝜌𝑡
is selected such that the admissible volume is maintained. Afterwards,
the algorithm generates a crude STL file from optimisation data. For
each face of every element on the FE mesh, a triangle of coordinates is
generated alongside a normal vector. All triangles follow the right-hand
rule and their normals point outward.

Next, we use the mesh processing software MeshLab [41] to verify
and improve the STL model. The STL file created in the first step
contains duplicate faces and vertices for adjacent elements, and we use
MeshLab to remove these duplicate features. Then, the mesh quality is
verified to ensure that it is ‘watertight’, free of holes/gaps, and does not
contain any intersecting/overlapping triangles [42]. If any problems
are detected, then the mesh is corrected manually, and this is done is
two steps. First, the mesh is simplified to a two-dimensional geometry
by deleting elements in the out-of-plane direction. Second, the 2D mesh
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Fig. 7. Optimum fibre angles for (a) 3-point and (b) 4-point bending beams.

is exported and opened with the software Blender, which includes built-
in tools for repairing STL meshes. The main issue encountered in this
work consisted of elements connected by a single vertex as shown in
Fig. 8. After correcting the issues, the geometry is extruded into a 3D
part and re-opened in MeshLab to verify the mesh quality.

Once the quality of the mesh is satisfactory, the last step is to
smooth the geometry to eliminate the pixelated contours caused by the
optimisation. This is done with the Laplacian smoothing method, where
the position of each vertex is adjusted based on the weighted positions
of its neighbours [43]. Finally, a new STL file is generated containing
the quality-checked, smoothed mesh. Then, the fibre orientation of each
element is translated to the 3D printer afterwards.

4.2. Additive manufacturing & testing

All samples were printed using a Mark Two 3D printer (Markforged
Inc., USA), which uses fused filament fabrication. Both printing ma-
terials (nylon and onyx) were stored in a dry storage box to limit
moisture retention prior to printing. The filaments were heated within
the printer’s head and laid layer-by-layer, consolidating under atmo-
spheric conditions. From each simulation, the .stl files are sliced using
the Markforged cloud-based software, Eiger. A layer height of 0.1 mm
and solid infill were selected to provide as accurate detail as possible.
All parts had the same overall dimensions: 120 × 30 × 8 mm3, and were

made up of 80 layers. The fibre angle (Fig. 7) is controlled element-wise
in the STL file and translated to the slicing software.

All samples were tested in 3-point and 4-point bending. The tests
were carried out with a displacement rate of 2 mm/min in an MTS
universal testing machine equipped with a load cell of 30 kN. A span-
to-thickness ratio of 16:1 was used, based on the recommendations of
the ASTM D7264–21 standard.

4.3. Experimental results

The experimental load versus displacement curves for all nylon and
onyx topologies under 3-point bending are shown in Fig. 9 (graphs
with different axis limits for better visualisation of results and curve
shapes). A general observation is that all samples have a fairly ductile
response, which is intrinsically related to the thermoplastic matrix. For
parts under 3-point bending, the structural stiffness increase was 282%,
282% and 165% for onyx parts over nylon ones for admissible volumes
of 30%, 40% and 50%, respectively; whereas for parts under 4-point
bending, stiffness increases of 169%, 62% and 137% were reached
for onyx parts over nylon ones for admissible volumes of 30%, 40%
and 50%, respectively. As expected, the stiffness and strength increase
with increasing volume. This holds true for both materials. Another
remarkable characteristic is the excellent repeatability: each test was
repeated five times and the standard deviation is very low for both
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Fig. 8. Flowchart of the procedure to transform the output from optimisation into a printable STL file.

stiffness and strength. Focusing on the effect of the parent material,
we observe the following:

3-point bending:

• Nylon (Fig. 9(a,c,e)): regardless of the volume, the curves have
a similar shape, with a linear-elastic increase up to a peak force,
followed by a gradual softening due to plastic deformation. In-
creasing the final volume increases the deflection at peak force,
which is mainly due to an increase in structural stiffness and
strength.

• Onyx (Fig. 9(b,d,f)): in general, the responses are similar but
different from those of nylon samples. Firstly, these samples are
significantly stiffer and stronger than nylon ones, which was
expected since they have reinforcing fibres. Nevertheless, even
though the fibres are as small as 100 μm, they have a strong
effect on the structural response of the parts thanks to the great
efficiency of the concurrent optimisation framework herein devel-
oped. Secondly, onyx samples exhibit a sharp load drop after the
peak force, followed later by a gradual softening. No full loss of
structural response is observed for any parts, which is attractive
for structural components since the part can still carry load after
cracking and/or elastic buckling occur.

4-point bending:

• Nylon (Fig. 10(a,c,e)): all responses are similar to those measured
under 3-point bending; there is a linear-elastic regime up to
a peak load. Nonetheless, the post-peak plastic deformation is
slightly different and occurs at a roughly constant load level. This
is attributed to the better load distribution onto the compressive
side of the sample.

• Onyx (Fig. 10(b,d,f)): again, these specimens are significantly
stiffer and stronger than nylon samples. Similarly to nylon speci-
mens, onyx samples display very little or no post-peak softening
under 4-point bending.

5. Discussion

The final deformed shapes, after unloading, for all parts are shown
in Fig. 11. There are no fractured trusses observed on any specimens.
For nylon samples, plastic deformation and local buckling are the
most dominant failure mechanisms. Otherwise, minor cracking and
elastic buckling are the main failure mechanisms for onyx specimens.
Onyx parts also have more pronounced out-of-plane deformation and
intralaminar fracture on the compressive side of the specimens (upper
edge) when compared to nylon samples. It is worth mentioning that
interlaminar failure (delamination) was not observed in any specimens.
We anticipate that delamination would be more prevalent if the poly-
mer was reinforced with continuous fibres, in line with the observations
of Chen and Ye [20].

The structural stiffness 𝐾 is given in Fig. 12(a) and (d) for 3-point
and 4-point bending tests, respectively. As expected, increasing the
admissible volume increases the structural stiffness. In addition, the
structural stiffness of Onyx specimens is considerably higher than that
of nylon samples. This is surprising considering that the properties of
nylon are between the bounds of the onyx properties, i.e., 𝐸2 < 𝐸 <
𝐸1, see Table 1. This improvement in structural stiffness shows the
efficiency and purpose of the present framework.

The density-normalised stiffness is shown in Fig. 12(b,e), whereas
the volume-normalised stiffness is given in Fig. 12(c,f). Both the
density- and volume-normalised stiffness values confirm that onyx
samples are significantly stiffer than their nylon counterparts.
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Fig. 9. Experimental load–deflection curves for 3-point bending beams: (a) 3pb_30_n, (b) 3pb_30_o, (c) 3pb_40_n, (d) 3pb_40_o, (e) 3pb_50_n, (f) 3pb_50_o. A representative
photograph of the part taken at the peak load is shown for each group. Graphs with different axes limits for better visualisation of the curves.
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Fig. 10. Experimental load–deflection curves for 4-point bending beams: (a) 4pb_30_n, (b) 4pb_30_o, (c) 4pb_40_n, (d) 4pb_40_o, (e) 4pb_50_n, (f) 4pb_50_o. A representative
photograph of the part taken at the peak load is shown for each group. Graphs with different axes limits for better visualisation of the curves.
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Fig. 11. Deformed shapes for all 3D printed parts after unloading.

5.1. Comparison between experiments and simulations

The numerical stiffness is evaluated directly through the in-house
code, mimicking the procedure used in experiments. A comparison
between the numerical and experimental results is shown in Table 3.
A good agreement between predictions and experiments is achieved;
in fact, the largest difference is only 13% observed for the 3pb_40_o
case. Additionally, the experimental results slightly overestimate the
numerical results for most of the cases, except for cases 3pb_30_n,
3pb_40_n, and 4pb_30_n. For all cases, the predictions are within the
experimental average ±1 SD, revealing an excellent agreement between
them.

5.2. Parametric analysis

A parametric study highlights the benefits of considering fibre ori-
entation in optimisation and printing. The optimum sample for an
allowable volume of 30% under 3-point bending (3pb) and 4-point
bending (4pb) is selected to evaluate the following scenarios:

Table 3
Experimental and numerical stiffness values.
Sample Numerical (N/mm) Experimental (N/mm) Difference

Average SD

3pb_30_n 70.3 65.9 14.3 6%
3pb_30_o 226.4 252.2 23.0 11%
3pb_40_n 101.0 99.1 8.6 2%
3pb_40_o 285.2 325.4 51.1 13%
3pb_50_n 129.5 148.6 17.6 14%
3pb_50_o 383.0 394.5 19.1 3%
4pb_30_n 27.0 26.1 5.5 3%
4pb_30_o 63.8 70.2 13.5 10%
4pb_40_n 73.0 76.5 4.2 5%
4pb_40_o 118.6 124.0 8.5 4%
4pb_50_n 180.0 193.1 6.7 7%
4pb_50_o 455.6 457.1 33.3 0%

• Scenario_1: The optimum cases 3pb_30_o and 4pb_30_o (Fig. 6)
are 3D-printed with onyx material controlling the fibre angle as
in Fig. 7.
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Fig. 12. Structural stiffness for specimens under (a) 3-point and (b) 4-point bending. Density-normalised stiffness for (c) 3-point and (d) 4-point bending tests. Volume-normalised
stiffness for samples under (e) 3-point and (f) 4-point bending.

• Scenario_2: The optimum topologies 3pb_30_n and 4pb_30_n
(Fig. 6) are 3D-printed with nylon material.

• Scenario_3: The optimum cases 3pb_30_o and 4pb_30_o (Fig. 6)
are 3D-printed with onyx without controlling the fibre angle. The
slicing software automatically determines the nominal fibre angle
of 45◦ throughout the domain.

• Scenario_4: The optimum topologies 3pb_30_n and 4pb_30_n
(Fig. 6) are 3D-printed with onyx material instead of nylon. As
the optimum topologies for the isotropic case do not have fibre
angle information, these parts are 3D-printed with onyx material
with all fibres oriented at 45◦.
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Table 4
Parametric analysis to benchmark optimised structures with both materials and
with/without controlling the fibre orientation.
Scenario Structural stiffness (N/mm)

3pb_30 4pb_30

Scenario_1 252.2 ± 23.0 70.2 ± 13.5
Scenario_2 65.9 ± 14.3 26.1 ± 5.5
Scenario_3 200.1 ± 8.1 43.9 ± 10.0
Scenario_4 95.5 ± 9.8 22.0 ± 7.7
Scenario_5 51.2 ± 12.6 15.9 ± 9.8

• Scenario_5: The optimum topologies 3pb_30_o and 4pb_30_o
(Fig. 6) are 3D-printed with nylon material.

As shown in Table 4, Scenario_1 has the best structural stiffness
over all other scenarios. This is due to the concurrent topology and
material optimisation, which takes advantage of the higher elastic
modulus in a preferential direction. When the same topology is tested
without controlling the fibre orientation (Scenario_3) and using nylon
(Scenario_5), a significant drop in the structural stiffness is observed
compared to Scenario_1. Moreover, note that Scenario_2 has a better
structural response than Scenario_5. As the topology obtained for Sce-
nario_2 is optimum regarding an isotropic material, it is expected that
any other topologies provide an inferior structural response, which is
seen in our results. In Scenario_2, and Scenario_4, the same topologies
are tested using nylon material, and onyx without fibre direction con-
trol, respectively. It is expected that the topology printed with nylon
presents better results, which is observed for the 4pb case. For the 3pb
case, this behaviour is not observed. It might be explained by the fact
that the main reinforcement of the 3pb_30_n topology is mostly oriented
at 45◦, which is the nominal fibre angle throughout the domain, which
is favourable to the overall stiffness of the structure.

6. Conclusions

In this work, a simultaneous topology and fibre orientation opti-
misation framework has been successfully developed and applied to
optimise parts with isotropic and orthotropic material properties. The
objective function for all optimisation cases was to minimise compli-
ance (strain energy) with three distinct volume constraints: 30%, 40%,
and 50% of an initial rectangular domain. Two classical benchmark
cases are considered: 3-point bending, and 4-point bending. The opti-
mised parts were 3D printed using FFF technique and tested to validate
the proposed framework.

The optimisation framework was extremely effective at maximising
the structural stiffness for both nylon (isotropic) and onyx (orthotropic)
parts. Experimental and computational results showed that the stiff-
nesses of onyx parts were higher than those of nylon samples, which
indicates that the concurrent framework was efficient to optimise the
chopped CFRP composite parts at different admissible volumes. Consid-
ering that 𝐸11 (onyx) is 29% higher than 𝐸 (nylon), it is here concluded
that a framework that considers the local fibre angle optimisation
is essential to enhance the structural performance of fibre-reinforced
structures as an additional step to topology/shape optimisation.

An experimental parametric analysis with several scenarios has
been conducted and it was concluded that considering and controlling
the locally optimised fibre angle in the 3D-printed parts provides the
highest possible stiffness amongst all scenarios herein carried out to test
the effectiveness of the framework. Moreover, a comparison between
numerical and experimental stiffnesses shows a good agreement, in
which all predictions are within the experimental error (average ±1
SD). This confirms that the concurrent optimisation approach hereby
developed is efficient from design to manufacturing and testing of
complex 3D-printed parts. Hence, this optimisation procedure may be
used to reliably address both material and fibre angle for orthotropic

materials and the procedure may be expanded to tackle problems with
different design domains, materials, and boundary conditions.

This work represents progress in the state-of-the-art by addressing
the anisotropic behaviour of carbon fibre-reinforced parts in the topol-
ogy optimisation of anisotropic solids by adding a sequential sub-step to
optimise the fibre angle, which is vital to increase performance whilst
decreasing weight.
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Appendix. Input data for the optimisations

This section briefly describes the required input data to perform all
optimisation cases. The function Domain_data() shows the dimensional
parameters and the number of elements used in the analyses. The
function Material_data() depicts the material properties for both Onyx
and Nylon materials.

The function Optimisation_data() describes all parameters used in the
optimisation procedure, including the TO parameters as well as filtering
and moving limits parameters. The boundary conditions are applied
directly to the global arrays of the problem.

function Domain_data()
#
# Input - dimensions and mesh
#
# L - length
# h - height
# nL - number of elements - length
# nh - number of elements - height
# nelem - total number of elements
#
const L = 60.0
const h = 30.0
const nL = 180
const nh = 90
const nelem = nL*nh

return L, h, nL, nh, nelem

end #function
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function Material_data()
#
# Onyx
# E1_o - elastic modulus - fibre direction
# E2_o - elastic modulus - transverse to
# fibre direction
# nu12_o - major poisson’s ratio
# G12_o - in-plane shear modulus
#
# Nylon
# E_n - elastic modulus
# nu_n - poisson’s ratio
#
const E1_o = 1.26E3
const E2_o = 0.33E3
const nu12_o = 0.39
const G12_o = 0.37E3
const E_n = 0.98E3
const nu_n = 0.420

# Into a single array
const props_o = [E1_o, E2_o, nu12_o, G12_o]
const props_n = [E_n, nu_n]

return props_o, props_n

end #function

function Optimisation_data()
#
# Input - Optimisation
#
# simp - penalisation factor
# eta - relaxation factor
# step - allowed step
# tol - tolerance for convergence
# lambda1 - initial bissection parameter for OC
# lambda2 - initial bissection parameter for OC
# frac - allowed volume fraction
# N - allowed number of iterations (for each
# step)
# Rmax - filtering radius
# rho_min - minimum allowed density
# rho_max - maximum allowed density
# theta0 - initial value for the fibre angle
# rho0 - initial value for the density
#

const simp = 3.0
const eta = 0.5
const step = 0.001
const tol = 1E-12
const lambda1 = 0.0
const lambda2 = 1E5
const frac = 0.3
const N = 2000
const Rmax = 0.5
const rho_min = 0.001
const rho_max = 1.0
const theta0 = 0.0
const rho0 = frac

#
# Moving limits and convergency criteria
#
# deltainf - moving limit update percentage (lower)
# deltasup - moving limit update percentage (upper)
# LMinf_theta - minimum allowed moving limit
# (fibre angle)
# LMsup_theta - maximum allowed moving limit
# (fibre angle)
# LMinf_rho - minimum allowed moving limit (density)
# LMsup_rho - maximum allowed moving limit (density)
# stop - percentage of design variables
# variation to assume convergency
# stop_iter - subsequent steps to assume convergency
#

const deltainf = 0.7
const deltasup = 1.2\scriptsize
const LMinf_theta = 0.01
const LMsup_theta = 0.2
const LMinf_rho = 0.01
const LMsup_rho = 0.1
const stop = 0.01

const stop_iter = 10

return simp, eta, step, tol, lambda1, lambda2, frac,
N, deltainf, deltasup, LMinf_theta, LMsup_theta,
LMinf_rho, LMsup_rho, Rmax, nvmax, theta_inicial,
rho_min, rho_max, stop, stop_iter

end #function
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