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ABSTRACT Usably secure ad-hoc device pairing fosters connectivity with hardware which is difficult to
access (e.g., implanted) and grants convenience for ad-hoc short-term on-off pairing patterns (e.g. shared
public domain). Examples are medical devices or fitness equipment. We present CardiolD, an approach to
extract features from heart rate variability for secure pairing keys that change with the randomness inherited
in heart operation. Our processing chain is compatible with electrocardiogram (ECG, voltage), as well
as ballistocardiogram (BCG, acceleration) type signals. Dissimilarities in locally generated sequences are
accounted for using fuzzy cryptography exploiting Bose—Chaudhuri-Hocquenghem (BCH) codes. We pro-
pose a quantization to derive secure keys for cross BCG-ECG device pairing from heart-rate variability
and analyze the performance in (inter- and intra-subject) BCG-to-ECG pairing. A secure communication
protocol for Body Area Networks (BAN) is discussed. The attack surface of the protocol is analyzed, and
we conduct a video-based attack study. In addition, two case studies with 5 (laboratory) and 20 (controlled
in-field) subjects were conducted.

INDEX TERMS Ballistocardiogram (BCG), bioinformatic, body area network, devices pairing, electrocar-

diogram (ECQ), healthcare, usable security.

I. INTRODUCTION

An electrocardiogram (ECG) is a diagnostic test to evaluate
the heart’s rthythm and electrical activity (i.e. voltage over
time). ECG sensors are commonly found in medical and
fitness equipment. On the other hand, common acceleration
sensors may also obtain information on the heart’s func-
tioning when placed on the skin by measuring the body’s
response to ballistic forces related to cardiac contraction
and ejection of blood into the vasculature (ballistocardiog-
raphy (BCG), acceleration over time). Together, the num-
ber of devices capable of ECG or BCG is large, such as
watches (wrist, ECG/BCG), glasses (temple, BCG), fitness
chest straps (chest, ECG/BCG), hearing aids (ear, BCG),
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pacemakers (heart, ECG), implantable cardioverter defibril-
lators (heart, ECG) or ventricular assist devices (heart, ECG).
Connecting these devices is often complicated, with impaired
security, or even impossible due to limited accessibility or
interfaces.

Prospective applications comprise pairing with devices
that are interface-less or difficult to access, such as med-
ical equipment (e.g. pacemaker, hearing aid, implantable
cardioverter defibrillators, ventricular assist devices). In the
fitness domain, an example is the pairing of chest-strap,
smartwatches or smartphones with ECG-monitoring workout
machines, such as treadmills, cycling, rowing, arc trainers,
etc. (cf. Figure 1). This opens new usably secure application
domains since de-authentication is automatic (when access
to the BCG or ECG signal is interrupted) so that pairing lasts
only for the context of use.

VOLUME 10, 2022


https://orcid.org/0000-0002-1418-8919
https://orcid.org/0000-0001-6118-3355
https://orcid.org/0000-0002-4373-953X
https://orcid.org/0000-0003-2517-3103

S. Zuo et al.: CardiolD: Secure ECG-BCG Agnostic Interaction-Free Device Pairing

IEEE Access

obtain signals from
BCG and ECG sensors

("clean" the BCG / ECG signals )

(detect key points of heartbeats)

‘compute features from key points
(time interval, heart-rate variability,

amplitude distance)

transform features into
=] Gray encoded fingerprints

compute secure pairing keys
via fuzzy cryptography

FIGURE 1. Exemplary scenario for ad-hoc device pairing from ECG and
BCG readings. Right: operational principle.

Interaction-free device pairing generates body-implicit
secure keys that exploit the randomness in the heart’s oper-
ation (ECG or BCG signals). CardiolD is the first algorith-
mic solution to compute implicit secure pairing keys across
boundaries of sensing modalities (here: ECG-BCG), hence
widening the application range for attention-free authentica-
tion. Meanwhile, Simon et al.’s work [1] shows that while
cross-context attacks on ECG are less easy compared to
eye movements, mouse movements, and touchscreen input,
attacks are still more likely to succeed using more recent data.
The introduction of BCG signals decreases the probability of
successful attacks.

In contrast to traditional explicit pairing mechanisms, such
as Bluetooth Secure Simple Pairing which requires compari-
son of PIN codes, CardioID does not expect explicit interac-
tion and pairing will be maintained only for the context of use
and does not require explicit de-authentication [2]. Compared
to biometric authentication, CardioID does not have known
issues (e.g., theft of biometric data, accumulation of evidence
to extract secret biometric features over a longer observation
period; etc.) [3]. Instead, it exploits the spontaneous ran-
domness of the heart operation at the moment of pairing,
thus taking advantage of the rich transient variability that is
perceived as noise by biometric authentication schemes.

We collected both laboratory BCG and ECG data (from
5 healthy subjects) as well as noisy in-field data (from
20 healthy subjects) and used heart-rate variability for device
pairing. The main research questions addressed regard:

Multi-modality implicit pairing: we identify features that
support cross modality implicit key generation in
secure device pairing from voltage or acceleration
(section III).

Cross-modality usably secure pairing: with CardiolD we
present the first ECG-BCG capable implicit ad-hoc
secure pairing scheme (section III).
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FIGURE 2. ECG and BCG data. Left: raw data. Right: ECG and BCG signals
describing a heartbeat. The five key points in the ECG: P, Q, R, S, T and
BCG: H, I, J, K, L. For ECG and BCG data from the same person, the R-R’
and J-J¥ time interval durations are correlated. We utilize the time interval
and amplitude related features for pairing.

Communication protocol: we present a secure communica-
tion protocol based on CardiolD (section III).

Sourcecode and Datasets: we verify CardiolD on two
ECG/BCG datasets. The sources and the data are
made available (section I'V).

Entropy of ECG and BCG pairing keys: we report on
the randomness contained in heart-rate variability
based fingerprint sequences (section V).

Robustness against attacks of various strength: in our
security analysis, we discuss the robustness of the
protocol against attackers with different capabili-
ties and resources, including spoofing as well as
real-time video processing (section VII).

Il. RELATED WORK
The cardiac cycle, i.e. the activity of the heart over a single
heartbeat, can be divided into a systolic phase when the heart
contracts and causes the blood to flow out, and a diastolic
phase when the heart relaxes and refills with blood [4].
Likewise, ballistocardiography (BCG) measures the body’s
response to ballistic forces related to cardiac contraction and
ejection of blood into the vasculature (cf. Figure 2) [5].
From Figure 2(a), observe that ECG is a graph of voltage
over time, while BCG is measured by accelerometers.
Distinguishing individual heartbeats from BCG and ECG
is an active research topic [6], [7], [8], [9]. Detect-
ing heartbeats from ECG exploits the Q-R-S complex
(cf. Figure 2) [10]. In [6], an R-peak detector based on
the Shannon energy envelope preprocessing and automated
peak-finding is proposed. Due to the rapid development of
Machine Learning, some neural network models have also
been applied to denoise the ECG data and to obtain accurate
Q-R-S complexes [11]. Gupta et al. [12] applied chaos theory
for an accurate analysis of different ECG databases and uses
the Short-time Fourier transform (STFT) to detect the R-peak.
An adaptive threshold is used to detect the peak points of a
BCG sequence in [13] and, similarly, after data filtering and
transformation between time and frequency domains, basic
peak detection is used [14]. In contrast, Liu et al. [9] filtered

128683



IEEE Access

S. Zuo et al.: CardiolD: Secure ECG-BCG Agnostic Interaction-Free Device Pairing

amplitude

amplitude

|||
iy
-250 0 250 -250 0 250

frequency frequency

(b) Subject b

[ -
[ A

(a) Subject a

amplitude
amplitude

o
frequency frequency

(c) Subject ¢ (d) Subjectd

FIGURE 3. Frequency domain data from four subjects. For each subfigure,
data between the red dashed lines is considered to contain both
heartbeat and noise signals. The rest of the data is considered to be
noise.

out the interval of the normal heartbeat range to obtain an
accurate interval.

ECG measurement with medical equipment is reliable and
accurate, but the need for disposable wet electrodes and
device cost render medical measurement equipment unsuited
for private continuous use. However, true ECG measurement
capability has recently debuted in consumer smart watch
equipment such as in smartwatch products from Apple, Fitbit,
Samsung or Withings. Alternatively, ballistic forces caused
by the contraction and expanding of the heart muscle as well
as the pulse wave sent through the vascular system by this
operation, can be used to obtain information on the function-
ing of the hearts from acceleration sensors on the body surface
(ballistocardiography - BCG) [15], [16].

Traditionally, device pairing requires explicit input, for
instance, by confirming or providing several integer dig-
its [17]. Recently, implicit pairing schemes have been pro-
posed, e.g. based on acceleration [3], [18], [19], [20], [21],
audio [22], [23], magnetometer [24], or RF features [25].
Such schemes rely on similar patterns detected across these
modalities for devices co-present in the same context to
establish secure secrets. An example is gait-based pairing of
devices that are jointly carried by a human subject [26], [27],
[28]. These approaches exploit the correlation in acceleration
signals when devices are worn on the same body [29], [30] or
shaken together [18], [19], [20], [31].

Most related to our work are approaches that exploit signals
obtained from the heart’s functioning. Lin et al. [32] proposed
a secure device pairing method based on the skin vibrations
caused by heartbeat. The data is measured by piezo vibration
sensors and the authors exploit the variation between con-
secutive J-peaks as their shared source of secrecy. However,
the method can not establish a secure pairing between a
pair of devices since the measured peak interval is shared
between devices for comparison. In our protocol, there is no
need to exchange information during the stage of fingerprint
generation. We further exploit the noise in the decimal place
of Gray encoded peak-to-peak time interval information.

Another related work is [33], which proposes a
fuzzy-cryptography based device pairing for ECG data. How-
ever, the protocol is limited to ECG capable devices. In con-
trast, we derive features that allow cross-modality BCG-ECG
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pairing, which greatly increases the number of compatible
device pairing combinations. In particular, smart watches
and smart glasses usually possess acceleration sensors, while
ECG sensing capability is not yet widely spread. Likewise,
many fitness machines, such as treadmills, cycling, rowing,
arc trainers, feature ECG sensors, but seldom other means to
measure the heart operation.

Ill. RATIONALE AND METHODOLOGY

CardiolD is a mechanism to pair previously non-acquainted
devices without explicit user-device interaction. Instead,
secure keys are generated from sensor readings of a jointly
observed stimuli. In particular, CardiolD extracts information
about the variation in the operation of the heart muscle from
ECG or BCG signals. The randomness (cf. section V) in the
operation of the heart is exploited to generate a pattern which
serves as the seed of a secure secret in a PAKE protocol
(cf. section III-E). Since the BCG and ECG stimuli measured
at various body positions are generated by the same process
(the operation of the heart), BCG peaks experience a con-
stant lag to ECG peaks and both signals can be used inter-
changeably with respect to the heart-rate variability. Through
fuzzy cryptography, devices are capable of independently
generating identical secrets from these similar, correlated
ECG/BCG heart-rate variability patterns, by mapping these
sequences into the key space of an error correcting code
to correct errors with respect to the codes’ legitimate code-
words (cf. section III-D). In order to obtain the heart-rate
variability, first, heartbeats are detected (section III-C) from
pre-processed (section III-B) ECG and BCG data obtained
through contact to the skin of the same subject (section I1I-A).

A. STIMULI OBTAINED FROM ECG AND BCG

An electrocardiogram (ECG) represents a signal of voltage
over time of the electrical activity of the heart. It is measured
using electrodes placed on the skin. In contrast, a ballis-
tocardiogram (BCG) measures ballistic forces generated by
the contraction of the heart muscle, captured by acceleration
sensors in direct contact to the skin [34].

Conceptual ECG and BCG signals are shown in Figure 2.
The ECG signal features five key points which can be found
in every heartbeat. These are the P, Q, R, S and T [10]. ABCG
measurement, on the other side, features different signal key
points, which are referred to as H, I, J, K and L the in figure.

During the heart’s operation, the electric stimulation
(ECG) occurs first, closely followed by the muscle contrac-
tion (BCG). Consequently, the captured peaks from ECG
and BCG signals do not occur in parallel, but BCG will be
observed with several milliseconds delay.

However, the inter-peak intervals (e.g. the JJ intervals and
RR intervals in Figure 2) experience small random variation
over time, which are identical across BCG and ECG for a sin-
gle heart-beat pair. We exploit the inherent randomness (the
heart-rate variability) of BCG and ECG for cross-modality
generation of secure keys for ad-hoc spontaneous device
pairing.
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FIGURE 4. Data pre-processing. The raw BCG signal is normalized to zero means and unit variance, before band-pass filters and differencing are
applied. The last row shows data from sternum (orange) and cardiac apex (blue) after synchronization.

B. DATA PREPROCESSING

We conducted two experiments to test CardiolD. In partic-
ular, we collected data from 5 heart-healthy subjects under
controlled laboratory conditions to be able to derive stable
and robust features and further evaluated the approach on data
collected during an in-field study from 29 heart-healthy sub-
jects (cf. section IV). An issue we faced on the first day of the
in-field measurements was a problem with the ECG hardware
sensors, which resulted in various artifacts, such as ’noise-
only’ or ’signal absence’, that rendered the data of 9 subjects
unusable. After removing these measurements, we conducted
all further processing with the remaining 20 subjects.

Figure 3(c) and 3(d) depict the noisy recordings. In these
figures, the signals have a wider frequency range and the
signal-plus-noise-to-noise ratio is smaller.

To address the oversampling in our data, we then resampled
the data to the de facto sampling frequency of about 1750Hz.

The further processing is detailed in Figure 4 for cardiac
apex (blue) and sternum (orange) data. In particular, the data
was normalized with zero mean and unit variance (2nd row
in Figure 4), band-filtered to disregard both low and high fre-
quency noise with a third-order Butterworth bandpass filter
with cutoff frequencies at 7 and 40Hz, as suggested by [36],
[37], and [38].

To stabilize the mean of the data, we applied differencing
which removes changes in the level of the data, thereby
eliminating (or reducing) trend and seasonality (3rd row in
Figure 4). Since the data is recorded from different body
locations, it might show delay. Therefore, in the final step,
we synchronized the data based on the public prototype-
pattern-based alignment approach proposed in [38] and fast
dynamic time warping (DTW) [39] (4th row in Figure 4).
In particular, we utilize a pre-defined, few seconds long
fingerprint sequence (we utilize a characteristic, synthetic
sequence) which is not actually extracted from ECG/BCG
data, compute (via DTW) and share the time-offset to the
best match with the local sequence with the remote device,
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where the same procedure is conducted. While the synthetic
sequence is not extracted from the observed sequences, its
best match is with high probability identical for sequences
that are related, such as the ECG or BCG sequences computed
by the remote devices. By shifting the fingerprint sequences
according to the observed best match from the DTW with
the synthetic sequence, the data from the remote devices is
brought into agreement without the need to exchange actual
information on the ECG or BCG data. It takes around 0.8 sec-
onds for preprocessing data with a length of 30 seconds
(CPU: 11th Gen Intel(R) Core(TM) i5-1135G7@2.40GHz
1.38 GHz; RAM: 16.0 GB).

After synchronization, fingerprints are computed from JJ
and RR peaks after the end of the sequence that has been
used for the synchronization on the respective devices (cf.
section III-D).

C. HEARTBEAT DETECTION

Both BCG and ECG signals feature a recognizable wave-

form with distinctive peaks and valleys [34]. Considering

the properties of heartbeat and peak points from previous

research [40], [41], [42], we set up the rules for peak point

filtering. Specifically, the detection of BCG key points starts

from the detection of J peaks [43], [44]. Local minima and

maxima (candidate peak points) are filtered:

Distinctive peak rule The maximum is located between
two minima, which is considered to be one of the
peaks J.

Appropriate timing rule (1) The time interval of the selected
two minima is within 0.06 to 0.12 seconds.

For all J peaks found, we detect and remove outliers based
on Hampel filter [45]. The filter calculates the median time
over a JJ peak interval and its six surrounding intervals, three
on each side. A peak that differs from the median absolute
deviation by more than three standard deviations is replaced.

In our case, for each pair of adjacent J peaks, if the time
interval exceeds 1.6 times the average, a new peak J is
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FIGURE 5. R peak detection performance. Points in green represent the peak detected by CardiolD; dashed red lines represent peaks

detected by Pan-Tompkins algorithm.

inserted (by detecting a new local maximum from the clip
sequence as a peak). On the other hand, for time intervals
0.4 times below the average, the peak J is removed.

Peak H and peak L are found as:

Peak order rule (1) For each heartbeat, the index of the peak
H is in front of the index of peak L.

Appropriate timing rule (2) Time interval of corresponding
peaks H and J is within 0.12 to 0.20 seconds. The
selected values are based on the previous work of
other researchers and can be applied on any sub-
jects.

Peak order rule (2) For each heartbeat, the index of the peak
L will be larger than the index of valley K.

Appropriate timing rule (3) The time interval of peak L and
valley I is within 0.35 to 0.43 seconds. Similarly,
the selected values are based on the previous work
of other researchers and can be applied on any
subjects.

ECG peak detection works analogously. Figure 5 shows
examples of detected R peaks in BCG and ECG data.
Compared to state-of-the-art ECG peak detection [46],
we achieved a root-mean-square error (RMSE) in the range
of 0.0303 sec to 0.1621 sec which confirms that our key point
detection is satisfactory.!

After obtaining the key points, the time interval features
are computed from these key points. Given the peaks J and R,
lists of time intervals are obtained as ;s —¢; and g — g, Where
J and J’ (as well as R and R’) are adjacent peaks, and ¢ is
the corresponding timestamp. After computing time interval
lists Tpcg = {timervalo’ Lintervaly s « - - » tintervaln} and Tecg =
{tintervaly» tintervaty s - - - » tintervat, }» We are able to encode the
features.

D. PAIRING BASED ON ECG AND BCG SIGNALS
To generate fingerprints for device pairing based on ECG and
BCG signals, we exploit the inherently random variance in JJ
and RR peak intervals (heart-rate variability).

We use variation in the second last digit of its hexadeci-
mal encoding, while throwing away higher order digits (low

1Pan-Tompkins algorithm is considered as a reference and is not error-
free. It is infeasible to acquire an error-free ground truth through BCG or
ECG measurement.
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FIGURE 6. The procedure for encoding the time interval for pairing: the
green boxes show an example of the procedure.

variance) and lower order digits (noise). This value is then
encoded to give a 4-digit binary representation of each RR
or JJ interval (Gray Coded) and a fingerprint f constitutes a
concatenation from 8 consecutive intervals (32 bits). The pro-
cedure of encoding the time interval for pairing is shown in
Figure 6. The transformation to hexadecimal representation
is necessary to ensure that all bits in the 4-bit Gray encoding
are equally likely in the resulting key sequence.

After independent generation of the fingerprints f, f’ on
two devices, pairing is achieved via fuzzy cryptography.
In particular, the fingerprint (concatenation of 8 gray-encoded
4-digit sequences from two consecutive J (R) peaks) can
be mapped into the code space C of a BCH error correct-
ing code. Since the timing of BCG and ECG signals are
identical but shifted (BCG is triggered by the ECG pulse),
both BCG and ECG timings can be used interchangeably.
To apply the error correction, one device chooses a codeword
¢ € C as anchor point and derives the distance d between
¢ and its fingerprint f in the codespace C. d is a vector
to transform f into ¢ = f @ d. d is then shared with the
second device, which may be overheard by an adversary.
Any device with access to a fingerprint f/ of sufficient sim-
ilarity to f (distance in the codespace smaller than the error
correction distance § of the employed BCH error correcting
code) will achieve DEC(c’) = DEC(c) = DEC(f'Pd)
(e.g. simultaneous ECG/BCG measurements from the same
subject). Fingerprints f” with distance to f larger than §, yield
DEC(c") = DEC(f" € d) with DEC(c") # DEC(c). A sep-
aration between inter- and intra-person pairings is therefore
possible with CardiolD.

2We chose hex encoding to ensure that, after transforming to gray-coded
4 digit binary representation, all binary sequences are equally likely.

VOLUME 10, 2022
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E. PAIRING PROTOCOL

Various key agreement protocols are compatible with Car-
dioID. We suggest the use of a protocol which reduces
the adversary to a one-shot man-in-the-middle attacker in a
two-party adversarial model, for instance, by constraining
the attacker to only one try by extending a Diffie-Hellman
key exchange. Possible implementations include a hash com-
mitment before revealing public values (cf. Vaudenay [47]).
Similarly, Password Authenticated Key Exchanges (PAKE)
restrict the success probability of an attacker on the interac-
tion during protocol execution (e.g. Bluetooth Secure Simple
Pairing (SSP), IPSec, and ZRTP [48], [49], [50]). Since either
device may initiate the protocol, a ““balanced” PAKE should
be used. We assume a two-party adversarial model. A mod-
ern PAKE provides resilience to dictionary attacks, replay
attacks, unknown Key-Share attack, and Denning—Sacco
attacks [51] and provides mutual authentication, key control,
known-key security and forward secrecy. Note that CardiolD
does not require passkey secrecy of a previous authentication
attempt, since an attacker is not able to exhaust the key-space
via multiple repeated attacks, because the key changes with
each attempt (cf. section V). Previously learned parts are not
reused as the protocol prevents the use of heart-rate variability
data from the same RR or JJ interval in different pairing
attempts. In particular, we forbid parallel protocol runs so
that an attacker may not boost her success probability by
pretending to be multiple devices.

For the integration of CardiolD into real-world applica-
tions, we suggest an integration of an additional Out-of-Band
mode besides NFC, providing the Bluetooth passkey. This is
considered secure under the PE(i) model in [17].

As sketched in Fig. 7, CardiolD utilizes fuzzy cryptogra-
phy, which shortens the extracted bit sequence so that the final
key length is smaller. Threat models, such as [17], choose
a relatively high key length of 24. Bluetooth (and ZRTP)
have a similar margin of 20 identical bits for PIN (word)
comparison. Since the key is generated automatically, we can
keep a tighter margin and propose a target a bit size of 16 for
a one-shot success probability of 2716,

IV. EXPERIMENTAL EVALUATION

In this section, we present the results for both laboratory
and in-field studies. The data collection plan was evaluated
and approved by the ethics committee at our university. All
participants were informed about the nature of the study, how
data was anonymized and stored, and about the possibility to
withdraw their written consent at any time.

For the laboratory experiment, we used the Movesense
motion sensor as the acceleration sensor and a four-lead
Shimmer3 ECG Unit as ECG sensor.* The subjects were
asked to lie still with stable breath and to avoid any body
movement. For each subject, we took 5 measurements and
each measurement lasted 3 minutes. The acceleration sensor

3

3 https://www.movesense.com/specifications/
4http://www.shimmerse:nsing.com/
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FIGURE 7. CardiolD pairing protocol for devices A and B with access to
ECG or BCG signals from the same body.

was placed on position B with a belt (as shown in Fig. 1) while
the ECG data was collected simultaneously with electrode
pads at positions R, L, N, F as shown in Figure 8. In a real-
world implementation, wireless sensors (or wearable) will be
chosen for both BCG and ECG data collection (cf., Fig. 1).

For the in-field study, we used the KX122-1037
acceleration sensors (sensitivity: 16-6384 counts/g, noise:
0.75mg@50Hz). As ECG sensor, we employed a 6-channel
ECG OLIMEX shield with 3 electrodes and 10-bit data
resolution for each channel.

The measurement started with an initial assessment includ-
ing a 12-Channel rest and exercise ECG and a questionnaire
to check heart healthiness. We excluded participants with cur-
rent or former diseases or surgeries. Two setups with different
sensor positions are used. For the first, sensors are placed
at the BCG positions on the sternum, the apex of the heart
and the spine (see Figure 8(a) positions A-C). For the second
setup, two BCG positions are selected on larger vessels on
the temple and wrist with an additional BCG position on the
sternum (see Figure 8(a) positions B, D, E).

Data was collected via a Xilinx Zyng-7020 system-on-
chip (SoC) that combines a dual-core ARM processor with
a Virtex 7 FPGA. For synchronous parallel data readout of
the four sensors (3x accelerometers and a 6-Channel-ECG),
all SPI controllers use a common clock and each sample is
hardware-timestamped.

A. ECG AND BCG SIGNAL PAIRING

For each sensor position, consecutive eight R-R (J-J) inter-
vals are gray encoded into fingerprints of 32 bits and to obtain
identical keys across devices, we utilize fuzzy cryptography
(described in section III-D). In a nutshell, fingerprints can be
mapped to their closest key in the key space of a BCH error
correcting code so that similar fingerprints map to the same
(identical) key. The aim for two devices on the same body is
to independently generate key sequences from ECG and BCG
data which have a high bit similarity.
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FIGURE 8. Measurement setup in a gym during the user study.

1) PAIRING — CONTROLLED LABORATORY STUDY

Figure 10(a) depicts the percentage of bit errors between pairs
of fingerprints from the 5 subjects. The average scores are
above 0.6 and some exceed 0.85. Note that a similarity of
0.5 represents the expected similarity to a random binary
sequence, for instance, in an uninformed attack. A higher
similarity translates to a higher robustness to separate match-
ing keys from non-matching ones via fuzzy cryptography.
In particular, the similarity for same-subject BCG-ECG fin-
gerprints needs to be higher than for inter-subject finger-
prints so that matching keys can be created for same-subject
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pairings via fuzzy cryptography while for inter-subject pair-
ing, the generated keys differ.

2) PAIRING - IN-FIELD STUDY

We test the robustness of CardiolD on the more noisy data
collected in the in-field study. Figure 10(b) shows the similar-
ity score over all 20 subjects. The values shown in red are the
median of the similarity score. For 19 subjects, the average
similarity scores are higher than 0.5.

For both case, most of the subjects achieve acceptable
scores for pairing. Based on these scores, we are able to set a
threshold to evaluate whether the pairing successes or not.

In particular, we report the average difference in the
heart-rate variability across J-J and R-R intervals in Table 1.
For subject 17 and subject 19, the distances are highest, which
explains their low similarity score. This indicates that it would
be possible to detect device combinations with low pairing
success probability, and hence could help to assist a wearer
of the devices in adjusting misalignment of sensors.
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FIGURE 9. Examples of same-subject (red) and inter-subject (blue) similarity score on data from noisy measurements.
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FIGURE 10. Same-subject similarity of the laboratory dataset (left, 5 subjects) and the data from noisy measurement (right, 20 subjects): the
values shown in red represent the median of similarity scores of subjects. In laboratory dataset, the average similarity scores of all subjects
are higher than 0.5 and in the meanwhile with a rather small variance. For data from noisy measurement, 95% of the subjects achieved
average similarity scores higher than 0.5. The scores of subject 2, 15 and 16 have higher variance.
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FIGURE 11. Similarity score of fingerprints generated from different times of the same subject for both BCG and ECG signals. The scores are computed
for 25 subjects (5 from controlled laboratory study and 20 from in-field study). The similarity scores that around 0.5 (random guess) shows that
spoofing can not be successful since the method exploits the randomness of the heart operation over time.

TABLE 2. FP, TP, FN, and TN rates for different thresholds.

Similarity THR FPR TPR FNR TNR
0.5 0.421 0.894  0.106  0.571
0.6 0.133 0565 0435  0.866
0.7 0.026 0312 0.688 0973
0.8 0.002  0.173  0.827  0.997

Exemplary inter-subject similarity scores are depicted in
Figure 9. The red box represents the similarity score of the
same-subject case (BCG and ECG from same subject), while
the blue boxes show the score of inter-subject (BCG and
ECG from different subjects). In most cases, same-subject
similarity exceeds inter-subject similarity, which satisfies our
requirements for secure pairing. Since outliers are seldom for
inter-subject cases, for continuous pairing, pairing attempts
which are not from same-body worn devices can be detected
after a few iterations. For subjects 17 and 19, same-subject
similarity is not sufficient so that pairing will fail.

We compute the False Positive Rate (FPR), True Positive
Rate (TPR), False Negative Rate (FNR) and True Negative
Rate (TNR) in table 2 when given different values for the
threshold of similarity score.

We also compute the similarity score of fingerprints gener-
ated from measurements taken at different times of the same
subject. Figure 11(a) and 11(b) show the scores of 25 subjects
(5 from the controlled laboratory study and 20 from the
in-field study) for both ECG and BCG. For most subjects,
the similarity scores are around 0.5 (random guess). This
shows that spoofing can not be successful since the method
exploits the randomness of the heart operation over time
(cf. section VII-B).

B. COMPARISON TO OTHER PAIRING SCHEMES

We compare CardiolD with state-of-the-art implicit secure
pairing schemes on both datasets. In particular, we imple-
mented IPI pairing (acceleration gait/BCG) [32], [52], BAN-
DANA (acceleration gait) [3] and SAPHE (acceleration) [20].
The IPI protocol utilizes a random offset by which indi-
vidual heartbeats deviate from the mean heartbeat cycle in
time domain. In BANDANA, the generated fingerprints are
based on the difference between the mean and instantaneous
acceleration of the heartbeat data. In SAPHE, the generated
fingerprints are based on the comparison of random points
and corresponding data points.
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FIGURE 12. BCG-to-ECG subject similarity on laboratory data.

FIGURE 13. BCG-to-ECG subject similarity on noisy measurements, from
30, 50, 80 sec. of data.
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For a fair comparison, and since some schemes were orig-
inally developed with different input data in mind, we pre-
processed the BCG and ECG data identically for all schemes
and only applied the quantization part of the protocols to
obtain fingerprints from the ECG and BCG inputs. The per-
formance of each scheme is depicted in Figures 12(a), 12(b),
13(a) and 13(b). Based on the performance in Figures 13(a),
we can see that longer pairing time does not improve the simi-
larity score. It also means that 30 seconds is already sufficient
for the implicit pairing, without any human interaction.

These figures show the comparison results between Car-
dioID and other quantization schemes in both same-subject
and inter-subject cases. They indicate that although affected
by outliers, CardiolD achieves a higher similarity score in
all datasets. In laboratory data, CardiolD achieves a similar-
ity of 0.651. BANDANA features the lowest average score
(0.423). Also, for noisy measurements, the fingerprint pairs
generated by CardiolD are most similar in all cases with
0.716 (0.639, 0.624) similarity for 30 (50, 80) seconds of
BCG/ECG data. BANDANA achieves the lowest average
score (0.491, 0.493,0.509). Figures 12(b) and 13(b) show
the inter-subject similarity score, which is centered around
0.5 (i.e., the similarity expected when compared to random
binary fingerprints) for all approaches. The variance is small-
est for IPI and SAPHE.

Summarizing, CardiolD outperforms the state-of-the-art
implicit secure pairing schemes for cardiograph data.
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FIGURE 14. Analysis on 4-bit key component.

V. RANDOMNESS OF THE KEYS

We investigated whether keys generated by CardiolD, IPI,
BANDANA and SAPHE protocols are sufficiently unpre-
dictable, to withstand computationally reasonable attacks
from an adversary. We analyze the randomness of keys and
present results from the DieHarder suite of statistical tests,
as well as from the ENT Pseudorandom Number Sequence
Test.

A. BIT DISTRIBUTION
To describe the randomness of keys, we look at every single
bit of the key component (4 bits). Figure 14 shows the bits’
behavior of keys generated from BCG and ECG signals.
Figure 14(a) and 14(b) show that an individual bit is not
behaving exactly like a uniformly distributed random vari-
able, but still, the probabilities of bits are roughly around 0.5.
We also compared the randomness of keys generated by
different protocols by visualizing the structure of random
walks on a Galton board. Plotting a sufficient number of truly
random key sequences will eventually show a binomial dis-
tribution. Figure 15 shows heatmaps of random walks corre-
sponding to the sequences generated by different approaches
(0— left (—1), 1— right (41)). While their spread over the
probability space differs, the spread follows the expected dis-
tribution in all cases. Based on the last row of each heatmap,
Figure 16 depicts the cumulative sum distribution.
Summarizing, SAPHE and CardioID exhibit reasonable
randomness, while BANDANA and IPI show biases.

B. STATISTICAL TESTS

To evaluate the schemes against bias in the random keys pro-
duced, we ran the DieHarder set of statistical tests. Figure 17
shows the p-values computed from 20 runs of the tests. Note
that, for purely random sequences, the p-value distribution
resembles a normal distribution with mean around 0.5. For
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TABLE 3. Frequency of special characters.

max width=

Encoded sequence

Sequence size 73354
Optimum compression rate 14%
Chi square distribution 112409.32
Arithmetic mean (random=0.5) 0.2825

Monte Carlo Pi value 4
Serial correlation coefficient (uncorrelated=0) 0.000379

IPI and BANDANA, we notice weaknesses for several tests
where the mean significantly deviates from 0.5 and the spread
of values is too concentrated around the mean, while SAPHE
suffers especially regarding the “count the 1s stream” test
(9). CardioID shows no clear bias.

C. PSEUDORANDOM NUMBER TEST

For the sequences generated by CardiolD, we further ran
the ENT Pseudorandom Number Sequence Test Program.” Tt
computes the information density of bit sequences, reduction
through optimal compression, chi-square distribution, arith-
metic mean value of data bytes as well as serial correlation
coefficient (shown in Table 3). For instance, a lower compres-
sion rate is better and for the serial correlation, values close
to 1 or -1 indicate a problem. For the arithmetic mean, a value
of 0.5 is desired.

D. ENTROPY ANALYSIS

We extracted more than 4000 key components originating
from 20 subjects’ BCG and ECG data, and analyzed them for
their average Shannon Entropy 18. On average, one person’s
BCG key components - which are 4 bits long - exhibit a
Shannon Entropy of 3.04 bits, outperforming Lin et al.’s

5 https://www.fourmilab.ch/random/
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approach in a similar setting, with a reported entropy value
of 2.9 [32]. This entropy value means that an average 4 bit
long BCG key contains the randomness of 3.04 completely
random bits. We consider this an acceptable value. In analogy
to passwords, even imperfect passwords are fine if they are
long enough. By chaining multiple 4 bit sequences, a more
robust key can be formed.

VI. CardiolD IN A COMMUNICATION PROTOCOL

We envision the key generation from CardiolD within a
communication protocol for medical devices in a local Body
Area Network. Considering trends towards wearable devices
and wireless communication between medical devices, this
is a realistic scenario. We consider a BCG and ECG-based
implicit secure communication protocol, exploring ways to
use CardiolD’s cryptographically robust fingerprints and
their 4-bit components. It uses them not just for confiden-
tiality - i.e. encryption - but also as a means to provide data
integrity and continuous authentication, leading devices to
“unpair” once they are not anymore on the same body, i.e.,
observing the same BCG or ECG signal [53].

In contrast to similar proposals for such a communication
protocol, we do not require asymmetric cryptography to be
set up, thus do not require a central trusted authority. This
reduces the exposure of any data that was exchanged. In that
sense, the protocol is decentral and suitable for the medical
domain, where privacy is of great concern.

A. CONFIDENTIALITY

Assume two devices, Bob and Alice. Placed on the same
person’s body and registering a corresponding signal, e.g.,
BCG or ECG, Bob uses CardiolD to retrieve a cryptographic
fingerprint f,, extracting binary key components from heart-
rate variability. Alice is also capable of using CardiolD to
derive a matching fingerprint f;. To establish secure commu-
nication only with devices co-present on the same body, Bob
generates a random challenge (e.g., 12 — 8) and concatenates
it to a "Hello’ message, encrypted using fp, and wirelessly
broadcast. After receiving Bob’s message, Alice decrypts it
using f, and broadcasts her encrypted 'Hello’ concatenated
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with the solution to Bob’s challenge. Alice now uses f, as
a symmetric encryption key for future communication with
Bob. Bob receives Alice’s message and successfully decrypts
it using fp. Bob verifies that the response from Alice was
correct and remembers f;, as a symmetric encryption key.

1) CASE ANALYSIS: BENEFITS FROM CONFIDENTIALITY

The wireless communication between the patient’s medical
devices and the doctor’s reader is shielded against brute-force
or dictionary attacks, intended to guess the cryptographic
keys that are used, providing security. This is critical, since
doctors hold a moral and often legal obligation to protect their
patients’ medical data from exposure.

In addition, the randomness of the keys prevents the doc-
tor’s wrist reader from re-identifying a person. This holds
even if the device was to be physically hijacked by a malicious
third party. Devices in our scheme are ‘“‘memory-less”, i.e.,
even if the same patient visits her office multiple times there
is no way for the wrist reader to tell, strengthening privacy.
A specific ASIC which only allows a device to read random
bits in the BCG or ECG signal, thus providing guaranteed
privacy even if the device were physically compromised,
could be envisioned.

In a situation where a doctor only needs temporary read
access to that data, exposure is kept to a minimum.

B. INTEGRITY
To prevent data tampering, the protocol further integrates
sequence numbers and digital signatures.

Bob concatenates any message msg that he sends via the
secure channel with a sequence number segNr and signs it
with the common secret fingerprint f. The resulting signature
s is appended to the message. Knowing f, Alice is able
to verify the signature s and discards the message in case
the signature is incorrect. Missing messages trigger a resend
request, messages with already received segNr are discarded.

1) CASE ANALYSIS: BENEFITS FROM INTEGRITY MEASURES
The protocol’s integrity measures shield communication
against blind manipulation or replay attacks, since a device
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FIGURE 18. BCG and ECG entropy in 4-bit key components.

is able to tell whether a message has been tampered with
by verifying that message’s digital signature. This includes
transmission errors. A doctor may appreciate this, since it
lowers the risk of a faulty diagnosis as a result of faulty data.

C. CONTINUOUS AUTHENTICATION
After having established a secure communication channel,
Bob and Alice confirm their co-presence at repeated intervals
by retrieving and exchanging authentication requests includ-
ing time-sensitive key components kcp and kc, from the body
signal. In the case of BCG or ECG signals, these key com-
ponents correspond to the most recent heart beat. These 4-bit
key components are significantly shorter than the fingerprints
from CardiolD, making continuous authentication energy-
efficient.

The communication is closed by either side if kc;, or kc,
can not be confirmed with a sufficiently low error rate.

Building in large part on top of CardiolD, the proposed
protocol inherits its desirable properties. The randomness in
individual fingerprints implies that while at a given point
of time, devices on different bodies can be told apart, over
time, the devices are not able to identify persons, preserving
their privacy by design. In other words, each new session
when a device is worn restarts its memory and identification
capabilities. The proposed protocol can thus be considered
an implicit, robust and secure communication protocol, that
is also privacy-preserving, allowing for anonymous usage.

1) CASE ANALYSIS: BENEFITS FROM CONTINUOUS
AUTHENTICATION

The continuous authentication mechanism allows the doctor
to implicitly switch her wrist reader between patients. When it
is moved to a new patient, the change in the BCG or ECG sig-
nal is detected, triggering a new pairing attempt with devices
that observe the same BCG or ECG signal. This mechanism
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FIGURE 19. Conceptual view of our ECG/BCG-based pairing with attack
vectors.

also serves to avoid gathering faulty data, implicitly cutting
communication with devices off once they are perceived not
to be on the same body anymore.

VII. SECURITY ANALYSIS
Figure 19 sketches the conceptual design of our ECG/BCG-
based pairing scheme and potential attack vectors, following
the conceptual approach proposed in [29] and [55]. Both
ECG/BCG devices sample the signal, pre-process the sam-
pled sequence, apply error correction and agree on a key.
Protection against MitM attacks can only be achieved if
all parts of the system are resilient. The discussed attacks
are associated with the attack vectors A-E in Figure 19.
As perfect security does not exist and every system can be
broken if only the effort is sufficiently high, we attempt to
report feasible attacks for each attack vector. For the clas-
sification of the severity of these attacks, we refer to [55]
(Section 4: Classifying adversary models), which distin-
guishes zero effort, minimal effort, advanced effort and
guaranteed success cases. Their classification scheme dis-
tinguishes these attack cases by the capabilities (Cl:user,
C2:developer, C3:manufacturer) of the attacker and by her
resources (El:individual, E2:organization, E3:nation state).
A possible attack surface is introduced by the sensors (A),
for instance, because an adversary could force incorrect
ECG/BCG readings by playing back recorded audio of an
ECG at sufficient loudness, as detailed in [56] (C2.El,
advanced effort). Furthermore, data acquisition could be
bypassed (B) by an adversary capable of injecting histori-
cal data into the device (C2,E2, advanced effort). In addi-
tion, a potential bias in the preprocessing (e.g., filtering,
fingerprint generation), which had not been identified dur-
ing protocol design, could allow a naive brute force attack
(C) (C2,El, advanced effort). The protocol also shares the
distance é during the fuzzy cryptography part and before the
actual key agreement (cf. section III-D). A vulnerability of
fuzzy cryptography, not known as of today, might exploit
this to potentially leak information (D) (C2,E3, guaranteed
success). Additionally, a key agreement that is weak or based
on false assumptions could open the attack windows for an
adversary (C2,E2, advanced effort). This is especially the
case if the agreement is not based on established standards (E)
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(we suggest utilizing a PAKE based protocol). Finally, as for
any security protocol, a compromised device poses a signifi-
cant threat (C3,E2, guaranteed success).

A. IMPACTS OF USING ERROR CORRECTION

In any biometric authentication system, noise of the bio-
metric information is an intrinsic property (here: heart-rate
variability extracted from ECG/BCG measurements). Fuzzy
cryptography has been proposed to employ error correcting
codes to mitigate such noise. Error correcting codes encode
messages from a message space m € M into codewords of
the (larger) codespace ¢ € C introducing redundancies. This
process allows correcting errors introduced to ¢ by decoding
it back to m. In fuzzy cryptography, the biometric information
contains noise or errors that can be corrected after mapping
into C. The redundancy introduced in the encoding process,
however, dictates that an adversary also does not have to
guess all bits in the fingerprint correctly, but can be sloppy.
For instance, assume a key length of K and an error correcting
code able to correct a fraction of u bits from the total finger-
print length N. This means that the success probability of a
single randomly drawn fingerprint is not 2V, but instead only

) (N> v - Zholoim) GEiz) (M

k N
k=0 2

since up to u errors are allowed at an arbitrary position in
the fingerprint. Careful choice of the parameters is therefore
demanded to limit the advantage gained by an adversary
through fuzzy cryptography. For instance, in our case, using
BCH codes capable of correcting 8 bits, the actual length of
the binary sequence after decoding it into M is 16 bits.

B. ONE-SHOT SUCCESS PROBABILITY (E)
Without additional knowledge about the victim’s ECG or
BCG signal, an attacker may decide to exhaust the key space
C of all keys k to execute a MitM or impersonation attack (E).
However, the proposed method is based on the heart rate
variability that changes over time. The changes also affect
the generated fingerprints as well as the mapping to the code
space. For each pairing attempt, a completely new authen-
tication process (new k independent from the previous one)
is started. Thus, it is impossible to exhaust C, making this a
one-shot attack. For instance, assume a length of 16 bit for k
(after error correction (cf. section VII-A)). Note that 16 bits
provide sufficient entropy since we suggest implementing a
PAKE protocol as in [57], which prevents offline attacks and
can thus provide a sufficiently large security margin even with
short key lengths K.

C. PRE-PROCESSING-SPECIFIC ATTACKS (C)

An attacker with insight to preprocessing might be able to
exploit this knowledge to boost her one-shot success proba-
bility. This is especially critical if the preprocessing should be
biased. Our analysis of the fingerprints after preprocessing in
section V did not reveal any such biases.
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D. SPOOFING ATTACK (D)

A spoofing attack is a situation in which a person or program
successfully identifies as another by falsifying data, to gain
an illegitimate advantage [58].

As shown in Figure 14(c) and 14(d), the overall distribution
of values is fairly even. The best guess among the BCG
samples (the most frequent value 5 in figure 14(c)) only has
a chance of approximately 9% of being correct. The optimal
probability for all values would be 6.25%, corresponding to a
uniform distribution amongst 16 values. For a key comprised
of, e.g., 32 key components (i.e., 128 bits long), the chance
of guessing it using a dictionary-based method would thus be
0.09% < 4.10734.

Figure 11 shows that although the fingerprint is obtained
from BCG or ECG of the same person but at different time,
the similarity is around 0.5. Hence, spoofing is not possible.

E. VIDEO CAPTURING PHYSIOLOGICAL STIMULI (E)
Cameras are omnipresent in these days, for instance,
as CCTV systems, personal camcorders, or mobile phones,
or through remote meetings. The quality of the captured
videos is often sufficient to discriminate subtle movements.
It has been shown in [59] that it is possible to extract
atrial fibrillation from video. Consequently, an adversary with
camera-support might therefore be advantaged in extracting
instantaneous pairing keys with the help of such recorded
video (E). In the best case, impersonation from video might
potentially be possible when the adversary would succeed
in extracting accurate BCG information from the video with
low delay (< 1 sec) since the keys are based on instanta-
neous heart-rate variability. Such attack would require the
capabilities of a developer and involve access to sufficient
quality video footage, for instance, through the access of an
organization’s CCTV installation, or from a remote video
meeting with the victim (C2,E2, advanced effort). For this
attacking strategy, one potential approach is pulse extraction
from the variation of skin tone [60].° The hue channel values
of pixels in skin regions are filtered through a 3rd-order But-
terworth band-pass filter of 0.8-3Hz to retain the frequency
range of heartbeats. The resulting signal is in the form of
photoplethysmography (PPG) signals, as shown in Figure 20.
Another method with a more complicated set-up is imaging-
BCG [61], [62]. It uses the Lucas-Kanade tracker to estimate
the trajectories of facial features. Based on these trajectories,
BCG can be reconstructed. Video-based attacks may reveal
heart-related signals, however, are computationally demand-
ing in real-time.

F. SUMMARY OF SECURITY ANALYSIS

CardiolD is resilient to the most usual threats of non-targeted
(zero effort: e.g., random success or brute-force attacks) or
non-sophisticated (minimal effort: e.g. targeted attack from
peers with non-developer capabilities) attacks. CardiolD is
though not able to withstand advanced effort or guaranteed

6 https://github.com/habom?2310/Heart-rate-measurement-using-camera
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FIGURE 20. Photoplethysmography (PPG) from video.

success level attacks that involve developer, manufacturer,
operator or owner capabilities as well as resources available
to organizations or nation states. Furthermore, being able to
place a malicious sensor on the subjects body unnoticed poses
a significant threat against the system. However, this is a
property that is shared by all on-body implicit device pairing
protocols, such as SAPHE, IPI or BANDANA and in general
a trade-off that comes with pairing schemes that do not rely
on explicit attention for their key input.

VIIl. LIMITATIONS

In contrast to other pairing mechanisms, CardioID requires
some seconds to observe the operation of the heart in order
to extract a fingerprint and secure key with sufficient entropy.
We found that 30 seconds are sufficient.

During our experiments, we noticed that the noise in
the acceleration sensing is increasing with body movement.
While static states provide sufficient quality measurements,
for BCG and ECG signals recorded during movement or
at remote positions on the body, it is possible that noise
significantly degrades the signal quality.

A further limitation of CardiolD is posed by an attacker
capable to place a device physically on the body of the
victim. In this Trojan horse attack, CardioIlD provides no
protection against the spontaneous pairing with the device of
the attacker.

IX. DISCUSSION

We have exploited sequences of peak intervals (J-J’ and
R-R’ intervals) to compose fingerprints. As described in
section III-D, we arrive at ad-hoc pairing keys by applying
fuzzy cryptography on these fingerprints.

Alternative encodings may inherit greater robustness and
we propose a specific BCG encoding. The construction of a
matching ECG encoding is straightforward.

The features include two types: time interval and the
amplitude distance. Based on previous research, the effec-
tive time interval features extracted from BCG are shown in
Figure 2, Table 4. The proposed features (amplitude distance)
are shown in Table 5.

We propose to employ the shape of the BCG signal. Each
sub-curve is represented by 4 digits, so that a heartbeat
described by 4 sub-curves is encoded into 16 digits out
of [-4, -3, -2, -1, 1, 2, 3, 4]. First, we sort amplitude dis-
tance features. The largest absolute amplitude distance value
is assigned “4” or “-4”; the smallest is assigned “1” or
“-1”. If the sampled value is smaller than zero, a negative
sign will be assigned to the subcurve, otherwise a positive.
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TABLE 4. Time interval features from detected key points.

Extracted Time Interval Features
1. | Xg — X 2.1 X1 — Xy 3.1 X5 — Xk
4| X —Xr| | 5.1 Xg —Xy] | 6.]X1 — XK
7.1X7— XL| 8.1 Xy — Xr] | 9. XJ—Xf,|

TABLE 5. Amplitude features from detected key points.

Extracted Amplitude Distance Features
L.Yg — Y 2Yr—Yy
3.Y; —Yg 4. Y - YL

(a) Similarity: 0.75 (b) Similarity: 0.875  (c) Similarity: 0.1875

FIGURE 21. Examples of heartbeat encoding results. The signal shapes in
(a) and (b) are similar, resulting in a higher similarity score. In (c), the
different shapes result in lower similarity.

For example, in Figure 2, the subcurve JK will be encoded
by “4”.

The absolute value of the time interval determines how
often an encoded value is repeated (0 to 3). For example,
as shown in Figure 2, the smallest absolute time interval is
| X7 — Xk |. Therefore, this value (’4”) will repeat O times. The
curve JK will therefore be represented by /4, 0, 0, 0].

Non-zero values represent amplitude distance features
while the repetition count represents the time interval.

Iterating the previous steps for every sub-curve, the heart-
beat will be encoded into a sequence with 16 digits out of [-4,
-3,-2,-1, 1,2, 3, 4].

We test our coding approach on BCG data from 16 healthy
subjects in a resting position. Given two encoding sequences,
the similarity is computed by:

# of identical encodings

milarity — 2
smisarisy # of all encodings )

Example encodings are shown in Figures 21(a), 21(b)
and 21(c). In the former two figures, the heartbeat extracted
from the BCG data looks similar and the encoding accuracy
is higher than 0.7. Figure 21(c) exemplifies a negative exam-
ple in which heartbeat shapes differ, which results in a low
similarity score.

X. CONCLUSION

In this paper, we proposed CardiolD, a secure device pair-
ing method based on ECG and BCG data, and evaluated
the performance of CardiolD based on the similarity score.
We compared CardiolD with other quantization schemes,
including IPI, BANDANA and SAPHE on both laboratory
data and data from noisy measurements. The results show
that CardiolD clearly outperforms the state-of-the-art implicit
secure pairing schemes for cardiograph data. In terms of
security, we discuss a secure communication system based on
CardiolD and potential attacks on it. We introduce improved
fingerprints from ECG and BCG, which encodes the heart-
beat with both time interval and amplitude distance.
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In our future work, we will first focus on the quality
extraction of heartbeat from the BCG data. We will try to filter
the BCG data from different subjects differently, based on the
data itself. Besides, more features will be added for encoding
heartbeat. Currently, we only used the heart-rate variability,
time interval and amplitude distance from the peak points of
heartbeat. There are still other statistical features and features
in frequency domain. These information also contributes to
the uniqueness of heartbeat.
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