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A B S T R A C T   

The prevention of crowding inside buses, trams and trains is an important component of on-board passenger comfort and is central to the provision 
of good public transport services. In light of the COVID-19 pandemic and the associated significant reduction in public transport patronage and, 
more importantly, in passenger confidence, the avoidance of crowds by passengers and operators alike becomes even more critical. This is where the 
provision of information on on-board comfort becomes a necessity. The present study, therefore, proposes a new Kalman filter based estimation 
scheme for on-board comfort levels, employing historical and current (same-day) non-exhaustive Automatic Passenger Counting data, as well as 
Automatic Vehicle Locating measurements. The accuracy and reliability of the estimation is, then, evaluated through application to the tramway 
network of the French city of Nantes. The results suggest that the proposed method is able to deliver good estimation accuracy, both in terms of 
absolute passenger numbers, but also, more crucially, in terms of on-board comfort Levels of Service.   

1. Introduction 

The number of passengers on board a public transport vehicle is a prominent constituent factor of on-board passenger comfort and 
is, therefore, critical for both operators and passengers. It plays an important role in implementing control strategies and improving 
schedule adherence and is also a key determinant of the quality of service. In addition, knowledge about current and anticipated on- 
board volumes is key to preventing crowding and ensuring effective observation of social distancing in the post-COVID-19 reality. 
Indeed, keeping a social distance of 1 or 2 m at stops and stations, and, more crucially, on-board public transport vehicles, is likely to 
remain desirable by passengers, regardless of whether it is a legal or advisory requirement. Early evidence on public transport oc
cupancy levels from cities around the world from the onset of the COVID-19 pandemic, unfortunately, shows that travellers’ confi
dence towards public transport may have been significantly dented (Transport Focus, 2021). And while it can be expected that mass 
vaccination and the decreasing virulence of the disease over time will restore some of this confidence in the long-run, it looks likely that 
much of the damage may be irreparable in the short- to medium-term, and that it may be a long time until passengers feel again 
comfortable travelling on public transport systems operating at or near capacity (Przybylowski et al., 2021). 

As a result of the effects of the COVID-19 pandemic, hence, obtaining information on on-board passenger comfort is now no longer 
just a desirable feature for operators and passengers (Zhang et al., 2017), but actually a necessary-one that can provide additional 
confidence to travellers and can, consequently, make a direct positive contribution to the economic viability and sustainability of 
public transport services (Transport Focus, 2021; Gkiotsalitis and Cats, 2021). Up until recently, due to the absence of the relevant 
enabling technology, the only way of obtaining the relevant data was through the conduct of exhaustive manual passenger counts. 
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These would be carried out infrequently and would provide data of questionable accuracy, as they would only give a snapshot of the 
condition at the time of the survey. As a result, the key issue of estimating on-board comfort in real-time, which has now risen to 
prominence due to the COVID-19 effects, has received only little attention in the literature. 

Nevertheless, technological advances in data acquisition, transmission and storage have accelerated the development and 
implementation of automated data collection systems (Koutsopoulos et al., 2017; Koutsopoulos et al., 2019), with Automatic Passenger 
Counting (APC) being a prominent example. APC systems make use of a standard system architecture of sensors on-board the public 
transport vehicle, thus providing much more accurate estimates of the vehicle on-board loads. As such, APC allows operators to gain an 
insight into the number of passengers boarding and alighting at each station, and therefore helps them in long-term planning, but can 
also, more crucially, assist them in real-time operations. APC systems are therefore increasingly being installed on public transport 
vehicles in various cities around the world. However, the cost of each APC installation and maintenance is high, and as a result only a 
small subset of the vehicles can usually be equipped. The common practice of public transport operators in France, for example, is that 
roughly 10–20 % of the total fleet is equipped, especially when legacy vehicles are considered. This means that only partial knowledge 
on the loadings can be obtained, which makes real-time loading predictions a particularly complex problem. 

The aim of the present study is, hence, to propose an estimation method of on-board passenger loads, based on non-exhaustive 
(incomplete) APC datasets, in conjunction with Automatic Vehicle Locating (AVL) data, which is an Intelligent Transport Systems 
(ITS) feature that is installed almost as standard on public transport systems worldwide (Koutsopoulos et al., 2017; Koutsopoulos et al., 
2019). The estimation is to be achieved per vehicle run, line stop, and time interval of a typical working day, in order to be suitable for 
use as input by operators in planning and management processes, particularly as concerns the provision of real-time crowding in
formation to passengers in the post-COVID-19 era. The proposed method is then tested and validated using actual APC and AVL 
datasets from the tramway network of the French city of Nantes, covering a period of three months. 

The rest of the paper is structured as follows. Section 2 reviews the background of the study, as reported in the available scientific 
literature in the related fields of passenger comfort measurement and quantification and public transport passenger loading forecasting 
and estimation methods. Section 3, then, presents the new on-board passenger load estimation method, including the formal problem 
definition, models for boarding and alighting passengers, and the resulting Kalman filter based approach used for the estimation. 
Section 4 provides a description of the study area and datasets, defines the evaluation metrics and processes, and reports and discusses 
the results obtained. Section 5 presents the numerical results produced with the proposed estimation method, considering various 
performance metrics. Section 6, finally, concludes the paper and identifies areas of further work. 

2. Background 

In order to establish the background of the present study, the relevant scientific literature is reviewed. This includes the topics of 
passenger comfort measurement and quantification, and passenger loading forecasting and estimation methods. These, then, lead to 
the identification of the research gap that the study addresses. 

2.1. Passenger comfort measurement and quantification 

With the increase of public transport patronage in the years prior to the COVID-19 pandemic, passenger comfort had already 
become a major issue in scheduling and operating public transport services, as it was seen as being related to significant welfare costs 
(Haywood et al., 2017). Comfort evaluation is, actually, a multi-criteria assessment problem, as defined by European Standard 
EN13816 (European Committee for Standardization, 2002). According to Mohammadi et al. (2020), the comfort level on-board public 
transport vehicles can be broken down to five critical factors: thermal, vibration, noise, lighting and air quality. Furthermore, the level 
of comfort can vary with respect to the volume of on-board passengers, where in-vehicle comfort and crowding have a significant 
impact on passenger (and, hence, customer) satisfaction (Cox et al., 2006), which is subjectively evaluated. 

Consequently, the measurement of in-vehicle crowding can be performed using both subjective (perception-based) and objective 
(actually measured) metrics (Turner et al., 2005), and both have advantages and drawbacks. Subjective metrics, for instance, give a 
much more accurate idea of how passengers really perceive and rate their on-board experience. However, they are typically backed by 
very limited empirical evidence, and are also heavily influenced by external factors, such as geographical and cultural differences, 
which makes them difficult to assess, use, and generalise from (Li and Hensher, 2013). Objective metrics, on the other hand, may be 
much more difficult to relate to real passenger perceptions, but they can be much more easily measured and used as a common 
standard of what would constitute good or bad on-board comfort by most passengers. For example, Tirachini et al. (2012) evaluated a 
number of objective metrics, such as the density of standing passengers and the proportion of seats occupied on-board, and found that 
they represented a good approximation of what passengers actually experienced. 

Looking at some examples of past studies on the topic, Kroes et al. (2013) conducted qualitative and quantitative surveys in order to 
quantify and measure in-vehicle comfort in the Paris metro. The study provided a typology of passengers with respect to their attitude 
towards travel time and comfort, which was obtained from stated preference survey models exploring the willingness to wait for a next, 
less crowded, train in relation to relative crowding levels. On the other hand, Haywood and Koning (2013) looked at the relationship 
between in and vehicle comfort and seating availability, and by carrying out surveys with public transport users in Paris, found that 
passenger inconvenience increased with decreasing in-vehicle comfort, and that there was a non-linear trade-off rate between 
“comfortable” and “uncomfortable” travel time. They also concluded that passengers are less keen on trading-off travel time for greater 
comfort in the morning peak hour, likely due to the constraints of morning commuting trips (e.g. punctual arrival at the workplace). 
Similarly, Batarce et al. (2015) evaluated in-vehicle comfort on the basis of mixed stated and revealed preference data in Santiago, 
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Chile, using discrete choice models, and found a twofold increase of the marginal disutility between a “low” density of 1 passenger/m2 

and a “higher” density of 6 passengers/m2, linearly related with the travel time. Tirachini et al. (2017) built on that research to identify 
relationships between the crowding level, perceived comfort and security. This body of research motivates the definition of levels of in- 
vehicle comfort. For example, the US Transit Capacity and Quality of Service Manual (TCQSM) defines specific levels of on-board 
crowding from A to F, where the latter represents “crushing” loading levels (i.e., more than 5 standing passengers/m2) (US Trans
portation Research Board, 2013). 

On-board comfort, naturally, has direct implications on passenger demand and public transport operations. De Palma et al. (2015) 
discussed the necessity of distinguishing seating and standing as two different states of comfort and provided an analytical expression 
of the discomfort that can be employed in order to derive optimal timetables and tariffs. Several demand models followed the 
distinction of the two passenger states and provided specific algorithms to address the difference between them. For instance, Leurent 
and co-authors (Leurent and Liu, 2009; Leurent et al., 2013) built on previous models to formulate an integrated framework of transit 
assignment that considers comfort-related factors, such as train line capacity, vehicle passenger capacity and in-vehicle comfort. Trozzi 
et al. (2013) also provided a dynamic user equilibrium model for bus networks, considering capacity constraints at the vehicle level. 

In light of COVID-19 and the associated changes in passenger habits and comfort thresholds, some of the assumptions behind 
several of these studies will likely need to be revisited. The principles, however, remain the same and highlight the need for a reliable 
way of estimating crowding levels on-board public transport vehicles. 

2.2. Passenger loading forecasting and estimation methods 

Several decades’ worth of research have extensively explored the topic of travel demand estimation and forecasting. A considerable 
body of literature has focused on vehicle traffic; this is comprehensively appraised by Vlahogianni and co-authors (Vlahogianni et al., 
2004; Vlahogianni et al., 2014), with methods typically being categorised into parametric and non-parametric ones. More recent 
research has attempted to transfer several of these methods onto the public transport domain in order to estimate or forecast passenger 
demand in the short-term. Examples of approaches adopted in this respect include autoregressive integrated moving average (ARIMA) 
and generalised autoregressive conditional heteroscedasticity (GARCH) (Ding et al., 2018), neural networks (Tsai et al., 2009; Jia 
et al., 2019); Kalman filtering (Guo et al., 2014; Gong et al., 2014), random forests (Cheng et al., 2019), and deep belief networks (Bai 
et al., 2017). A related problem that has also received considerable attention has been the estimation and prediction of Origin- 
Destination (OD) flows and matrices for public transport, usually on the basis of passenger counts or Automatic Fare Collection 
(AFC) systems. Methods adopted include optimisation (Gur and Ben-Shabat, 1997; Liu et al., 2021), elasticity (van Oort et al., 2015), 
trip chaining (Wang et al., 2011; Li et al., 2011), Iterative Proportional Fitting (IPF) (Ji et al., 2015), clustering (Huang et al., 2020), 
Bayesian inference (Sun et al., 2021), as well as data fusion and Kalman filtering (Tao and Tang, 2019). Some research has also 
explored the nature and patterns of prediction and forecasting errors and has created inferential statistics models aiming to address 
them (Jung and Casello, 2020). 

The problem of estimating real-time on-board passenger loading, and consequently also passenger comfort, has received much less 
attention in the literature, however, primarily due to the lack of reliable data sources to date. Some research used manual passenger 
counts, such as for example, He et al. (2018), who developed a scheme employing Monte Carlo simulation, neural networks and 
Markov chains in order to more efficiently control bus air-conditioning systems in Beijing on the basis of the anticipated loading. Other 
research attempted to estimate on-board occupancy using WiFi, but with rather limited success, mostly due to the inability of probes to 
exclude WiFi-enabled devices outside the vehicle and to count passengers without WiFi-enabled devices on-board (Mikkelsen et al., 
2016; Oransirikul et al., 2014). 

More successful attempts have been carried out using a combination of AFC and AVL data. For instance, the method by Zhang et al. 
(2017) first estimated the on-board load of buses on the basis of trip chaining analysis and a probability model, and then predicted it 
using an extended Kalman filter, with promising results in terms of prediction accuracy when applied to the bus network of the city of 
Shenzhen. The approach of Noursalehi (2017), on the other hand, made use of random forests and gradient boosting for predicting 
passenger arrivals and their destinations on the London Underground network, along with an online simulation performing transit 
assignment. Random forests and gradient boosting, along with some other supervised learning methods (namely neural networks and 
k-Nearest-Neighbours), were also compared in the study by Heydenrijk-Ottens et al. (2018) for the prediction of both long- and short- 
term on-board loading of trams in the Hague, with, again, promising results. 

Nevertheless, the main disadvantage of AFC is that in rail systems passengers are usually required to scan their smartcard at station 
entries and exits rather than on-board the vehicle, while in bus and tram systems they are usually only required to scan it when they 
board and not when they alight. As a result, a considerable amount of inference is needed in order to estimate on-board loads, which 
can make the process overly complex and can compromise accuracy. Sun et al. (2021) used vehicle dwell measured through AVL data 
to relate passenger flows to passenger activity and then formulate a Bayesian inference model to predict boarding and alighting flows, 
as well as passenger loads. APC systems can also make a difference, and several studies have made use of them recently. For example, 
Khomchuk et al. (2018) used a Bayesian estimation approach to predict train loads on the basis of real-time APC and historical data, 
which they validated on a simulated network, while Pasini et al. (2020) and Hu et al. (2020) both used neural networks to predict train 
loads in suburban Paris and the San Francisco Bay Area respectively based on temporal features and recent (same-day) previous 
measurements. Jung and Casello (2020) used AVL and APC data to examine transit ridership errors. Pasini et al. (2019) additionally 
experimented with time-series modelling and machine learning methods (specifically random forests and gradient boosting trees) and 
found that they were able to adequately consider the temporal irregularity of train services. Wang et al. (2021), on the other hand, 
developed a two-stage prediction process of bus passenger on-board loads, whereby an initial short-term prediction is effectuated using 
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an adaptive Kalman filter, and a further prediction is made using support vector regression; the performance of the method was then 
evaluated on the bus network of the city of Suzhou. Finally, Jenelius (2020) used a number of methods (stepwise regression, lasso 
regression and boosted tree ensembles) in order to predict real-time car-specific on-board crowding on the Stockholm metro network 
on the basis of APC (on-board passenger counts estimated through weight measurements of the train cars) and AVL data and found that 
when considering real-time data, the prediction accuracy improved. 

APC systems, however, have two main limitations. The first limitation is that, due to the dynamic nature of the phenomenon 
observed (passengers entering and exiting buses, trams or trains), many of the enabling technologies (such as weight/pressure, optical 
or radar sensors) are unable to deliver high precision, which means that APC systems are often prone to downtime as well as mea
surement errors. The second limitation is that, as mentioned already, due to their high cost, APC systems would typically have very low 
penetration rates in a public transport fleet, and as such, they would only be able to deliver partial information. Several of the studies 
carried out so far have sufficiently addressed the first limitation (malfunctions), but have generally not dealt with the second one (the 
partial availability), having usually explicitly or implicitly assumed complete data availability. A notable exception to this has been the 
work of Jenelius (2019), who, extending their previous work (Jenelius, 2020), used their developed lasso regression approach to 
predict real-time on-board crowding on buses in Stockholm, taking into account the fact that only 20 % of the vehicles were equipped. 
The results suggested that run-specific load prediction improved as the target run approached the departure time from the station. 
While this approach is capable of delivering sufficiently accurate estimates, however, it requires a fairly extensive training and 
calibration phase every time it is applied on a new case study. 

2.3. Summary 

Consequently, from the review of the available literature, two research gaps can be identified. The first one is that, despite real-time 
and short-term passenger comfort information having been identified as an important factor of passenger mode choice, particularly 
post-COVID-19, and even though several passenger comfort quantification models have been developed, a link with on-board loading 
estimation has not been made to date. The second is that the majority of studies having attempted to estimate or predict on-board 
loading on the basis of APC have assumed access to complete datasets, which, however, is unrealistic in practice. Therefore, the 
present study addresses these gaps by developing a Kalman filter based on-board passenger comfort estimation method. An advantage 
of the approach is that it is largely off-the-shelf: as opposed to data-driven methods, it does not require a substantial amount of 
preparatory work to be carried out (such as data collection, data processing, model fitting, etc.), and is capable of producing estimates 
as soon as the first measurement point becomes available and of subsequently improving the accuracy of these estimates as more data 
become available. The approach is described in the next section. 

3. On-board passenger load estimation methodology 

This section presents the new estimation method of real-time in-vehicle comfort, as expressed by on-board passenger numbers, 
proposed by the present study. The overall estimation framework is described first, followed by the mathematical notation used and an 
outline of the modelling assumptions and conventions adopted. Dynamic models for representing boarding and alighting passengers 
are, then, formulated, and the observability of the proposed systems is analysed and assessed. The section is, then, concluded with the 
formulation of the proposed Kalman filter based estimation method. 

3.1. Overall estimation framework 

The aim of the proposed framework is the estimation the on-board comfort. “Estimation” here refers to the computation of the on- 
board comfort level at the current station and time. This is different to “prediction”, which refers to the establishment of the on-board 
comfort level at a later station and/or at a future time point, and which lies beyond the scope of the present study. 

The proposed estimation method aims at taking advantage of the available measurements in terms of vehicle location and pas
sengers. In particular, measurements originate from:  

• AVL systems, installed in all vehicles, providing the position of a vehicle in real-time (including the time when a vehicle stops at 
each station); and  

• APC systems, installed on a limited number of vehicles, providing the number of passengers on-board, as well as the numbers of 
boarding and alighting passengers at each station. 

This results in a situation where full passenger information is available for some vehicles, but no passenger information is available 
for the remaining vehicles, which should therefore be estimated. However, this setting is not desirable for developing a vehicle-based 
estimation method, i.e., a method that directly processes vehicle-based measurements to calculate vehicle-based estimates, since no 
meaningful relation can be assumed between the passenger load of a vehicle and that of preceding (or subsequent) vehicles; this does 
not allow relating the available APC measurements to the quantities that are to be estimated. 

On the other hand, a more reasonable way is to perform vehicle-based estimation by first estimating station-based quantities and 
then derive the vehicle-based quantities that are of interest. In fact, such “indirect” estimation is preferable, since, by casting the 
problem into an estimation problem of station-based quantities, partial passenger loading information is available for every station, i. 
e., provided when a vehicle with APC is at the station. Moreover, this allows formulating analytical (data-driven) models for station- 
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based passenger dynamics, which have a clear physical meaning and are based on reasonable assumptions, resulting in a more rigorous 
estimation problem. For instance, it is reasonable to assume that the number of passengers arriving at a station does not exhibit strong 
fluctuations at a given time of the day and, except in exceptional circumstances, is not affected by a variation in the public transport 
schedule, such as, for example, a minor train delay. On the other hand, an unexpected change of a vehicle headway may strongly affect 
the number of passengers boarding a vehicle and will likely affect also all successive runs. 

There are multiple ways of modelling the passenger arrival, boarding, and alighting processes at a station. The very nature of the 
problem can result in some complex models characterised by several parameters, whose calibration will likely require the availability 
of vast quantities of data (e.g., Gur and Ben-Shabat, 1997; Liu et al., 2021; van Oort et al., 2015; Wang et al., 2011; Li et al., 2011; Ji 
et al., 2015; Huang et al., 2020; Sun et al., 2021; Tao and Tang, 2019). Here, simplified models are developed and employed. These are 
characterised by linear dynamics, which allow to represent the boarding and alighting processes at each station according to 
simplified, yet reasonable assumptions. These are, then, complemented by linear measurement models, which allow the incorporation 
of APC measurements, reformulated as station-based quantities, as well as historical information, obtained, for example, by pre- 
processing AVL and APC data from preceding days. The resulting models are therefore capable of assimilating real-time data, as 
well as historical data, resulting in a data fusion approach, which can be tailored to the data availability in order to achieve the best 
possible estimation performance. 

Based on the developed models, the estimation is performed by employing a Kalman filter (KF) (Kalman and Bucy, 1961; Anderson 
and Moore, 1979), which is an effective methodology for state estimation of linear systems in the presence of limited and/or noisy 
measurements. The KF is an optimal state estimator applied to a dynamic system that involves random noise and includes a limited 
amount of noisy real-time measurements. In particular, the KF and its variants have been successfully applied in several domains, 
including transport (see, e.g., Szeto and Gazis, 1972; Wang and Papageorgiou, 2005; Bekiaris-Liberis et al., 2016; Roncoli et al., 2016; 
Bekiaris-Liberis et al., 2016; Antoniou et al., 2010; Achar et al., 2020). 

To summarise, the proposed approach consists of the following basic components:  

1. a station-based data-driven model for boarding passengers;  
2. a station-based data-driven model for alighting passengers, formulated in terms of alighting rates;  
3. the utilisation of vehicle position information and vehicle-based passenger measurements, where the latter are provided by a 

limited amount of vehicles equipped with APC systems;  
4. the use of a KF for the real-time estimation of station-based boarding passengers and station-based alighting rates; and  
5. a conservation-of-passengers equation for calculating the vehicle-based passenger load for each operating vehicle. 

The different components are described in detail in the next sub-sections. 

3.2. Problem notation, conventions, and assumptions 

A public transport network is modelled by a set of stations I and a set of lines L, whereby an individual station is indexed by i ∈ I and 
a specific line is indexed by l ∈ L. A single run of a public transport vehicle (train, tram or bus) along a certain line l is denoted j ∈ Jl, 
where Jl is the set of all runs along line l over an observation period, which is assumed being one full operational day. Here, dynamic 
models are considered, which are defined in the discrete-time domain, introducing a step size T (e.g. of the order of 30–120 s), where 
time is indexed by k, such that actual time t = kT. 

The following variables are defined: 
pj(k) number of passengers on-board run j at time.k 
br

j(k) number of passengers boarding run j during.(k −1,k]

ar
j(k) number of passengers alighting from run j during.(k −1,k]

γr
j(k) alighting rate of run j during.(k −1,k]

wi,l(k) number of passengers on the platform at station i waiting to board a vehicle of line l at time.k 
ei,l(k) number of passengers entering station i platform to board a vehicle of line l during.(k −1,k]

bs
i,l(k) number of passengers boarding a vehicle of line l at station i during.(k −1,k]

as
i,l(k) number of passengers alighting from a vehicle of line l at station i during.(k −1,k]

γs
i,l(k) alighting rate of vehicles of line l at station i during.(k −1,k]

ηr
i,j(k) binary variable indicating if run j is at (or departs from) station i during.(k −1,k]

ηs
i,l(k) binary variable indicating if a line l vehicle is at (or departs from) station i during.(k −1,k]

βr
j binary variable indicating if run j is equipped with APC providing passenger load information. 

βs
i,l(k) binary variable indicating if a run of line l departing from station i during (k −1, k] is equipped with APC, providing passenger 

load information. 
φ binary variable indicating if historical data is used for estimation. 
Also, for any variable ω, its measured value is denoted ω, its value calculated on the basis of “historical” observations is denoted ω̃, 

and its estimated value on the basis of the proposed method is denoted ω̂. 
The objective of the proposed method is to estimate the number of on-board passengers pj(k) for all runs over a certain period, by 

employing combined AVL and APC information, which is available from both historical and real-time data. It is assumed that the 
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estimation algorithm runs on a daily basis, considering an “operational” day, which typically starts in the morning of a calendar day 
(usually at 4 or 5 AM) and finishes in the early hours of the next calendar day (usually at 1 or 2 AM). Therefore, historical data comprise 
any data originating from previous “operational” days (which have been appropriately aggregated and pre-processed – an example of 
such pre-processing is documented in Section 4.3), while real-time data are received and processed whenever available, assuming no 
communication delays. 

In developing the proposed estimation method, the following measurements are assumed to be available at any time k :

• Real-time AVL information for all runs and at all stations, providing ηr
i,j(k), ∀i ∈ I, j ∈ Jl, l ∈ L.  

• Real-time APC data for a limited number of runs Jl⊂Jl, providing br
j(k), ar

j(k), and pj(k), for j ∈ Jl, ∀l ∈ L. This allows to assign βr
j = 1 

if j ∈ Jl and βr
j = 0 otherwise.  

• Historical information obtained by processing AVL and APC data available for the previous days, providing ̃ei,l(k) and ̃γs
i,l(k),∀i ∈ I,

l ∈ L.

Before proceeding to formulate station-based models, a correspondence between station-based quantities and vehicle-based 
quantities is formulated by first introducing two assumptions, which are, in general, trivially satisfied for public transport net
works, considering a reasonably sized time-step T (e.g., of the order of 30 s to 2 min), depending on the resolution of the data and the 
public transport mode considered. For example, tram systems tend to exhibit longer headways and could accommodate a larger time 
step compared to urban bus systems that would require a shorter step size. In the test case provided in the following sections, the time- 
step is set 60 s to match the resolution of the data used. Specifically: 

Assumption 1. There is only one run j operating on line l that departs from station i during time interval (k −1,k], i.e. 

∑

j∈Jl

ηr
i,j(k) = ηs

i,l(k), ∀i ∈ I, k. (1)  

Assumption 2. A run j can depart from only one station during a time interval (k −1,k], i.e. 

∑

i∈I
ηr

i,j(k) = 1, ∀j ∈ Jl, l ∈ L, k. (2) 

These assumptions allow introducing the following relations for boarding and alighting passengers: 

br
j(k) =

∑

i∈I
ηr

i,j(k)bs
i,l(k), ∀l ∈ L, j ∈ Jl, k (3)  

ar
j(k) =

∑

i∈I
ηr

i,j(k)as
i,l(k), ∀l ∈ L, j ∈ Jl, k. (4) 

These imply that by estimating station-based quantities bs
i,l(k) and as

i,l(k), vehicle-based quantities br
j(k) and ar

j(k) can then be 
directly calculated. Hence, in the following sub-sections, models for estimating the former quantities are presented. 

3.3. Dynamic model for boarding passengers 

In order to estimate the number of passengers boarding a vehicle of line l at station i, bs
i,l(k), a dynamic model is introduced for the 

number of passengers on the platform at a stop waiting to board a run of a specific line. This evolves according to the following 
dynamics: 

wi,l(k + 1) = wi,l(k) + ei,l(k) − bs
i,l(k). (5) 

The following assumption is, then, introduced: 

Assumption 3. At the time that any vehicle operating on line l departs from station i, all passengers waiting on the platform to travel on line l 
at time k will board the vehicle during (k −1,k], i.e., 

bs
i,l(k) = ηs

i,l(k) ⋅ wi,l(k) + ξb
i,l(k), (6)  

where ξb
i,l(k) is an unknown modelling error, which can be, for example, described by zero-mean Gaussian noise. Describing random 

variables as zero-mean Gaussian is a typical approach in filtering design, as this allows specifying such stochastic process solely by its 
mean and variance, which, despite not matching exactly the process modelled, are deemed sufficient statistics for filtering purposes. In 
this case, a KF is employed, which has been rigorously proven optimal under the assumptions of a linear model and Gaussian noise. 
Still, it has been shown that one can successfully use KF even when the noise is not Gaussian (as almost always the case in real life), and 
that makes KF the best linear filter (Simon, 2006). 

It should be noted that Assumption 3 is typically satisfied in public transport networks, where there are no passengers left behind. 
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However, situations of extreme passenger congestion can occur in practice in some public transport networks during peak times, and in 
such cases the assumption does not hold. This, however, is not a limitation of the proposed model, but rather an inherent limitation of 
APC as a measurement technology. This is because APC is capable of capturing only the passengers that board a vehicle but is unable to 
provide any information on the actual demand of passengers (and/or any left-behind passengers). 

Substituting (6) into (5) leads to: 

wi,l(k + 1) =
[
1 − ηs

i,l(k)
]

⋅ wi,l(k) + ei,l(k) + ξb
i,l(k). (7) 

Since there is no available information on the number of passengers entering the platforms to board vehicles, ei,l(k) is treated as 
constant (or, effectively, slowly varying), being characterised by random walk dynamics,1 i.e. 

ei,l(k + 1) = ei,l(k) + ξe
i,l(k), (8)  

where ξe
i,l(k) is, for example, zero-mean Gaussian noise. Although this may seem a crude approach, such simplified dynamic model is 

widely used for model-based estimation in the absence of a descriptive dynamic model (e.g., Wang and Papageorgiou, 2005; Bekiaris- 
Liberis et al., 2016). 

The overall (deterministic part of) system (7)-(8) is next written in a compact state-space form by defining the state vector of the 
system as 

xb
i,l =

[
wi,l
ei,l

]

, (9)  

whose dynamics evolve according to 

xb
i,l(k + 1) = Ab(k) ⋅ xb

i,l(k), (10)  

where 

Ab(k) = Ab
(

ηs
i,l(k)

)
=

[
1 − ηs

i,l(k) 1
0 1

]

. (11) 

System (10)-(11) is a linear-parameter-varying (LPV) system, where parameter ηs
i,l(k) is assumed to be known (measured), as stated 

in Section 3.2. 
Available real-time measurements for system (10)-(11) are obtained from APC measurements, which are, however, available only 

when a run equipped with APC is leaving the station, i.e., when βs
i,l(k) = 1, where βs

i,l(k) is calculated from measured quantities as 

βs
i,l(k) =

∑

j∈Jl

βr
j ⋅ ηi,j(k). (12) 

Following the rationale of Assumption 3 and (12), when an APC equipped vehicle of line l is at station i, we can treat the available 
measurement for bs

i,l(k) as a (noisy) measurement for wi,l(k); this is formulated as 

zw
i,l(k) = βs

i,l(k) ⋅ wi,l(k) + ψw
i,l(k), (13) 

where ψw
i,l(k) is a measurement error in the form of zero-mean Gaussian noise. 

Nevertheless, as real-time data are available only at specific times, i.e., when a vehicle with APC is at or departs from a station 
(βs

i,l(k) = 1), there could be long periods for which no measurements are available. This may cause issues due to, for example, daily 
recurrent fluctuations of passenger arrivals, demand peaks, etc., which, if not “observed” via a measurement, may cause a deterioration 
of the estimation performance. In order to overcome this issue, it is proposed to employ also historical data to feed the estimator when 
real-time information is not available. In particular, availability of historical data is assumed in terms of the number of passengers 
entering the platform of a station to board a specific line ̃ei,l(k), which can be obtained by processing AVL and APC data from previous 
days. The resulting measurement model reads: 

ze
i,l(k) = φ

(
1 − βr

i,l(k)
)

⋅ ẽi,l(k) + ψe
i,l(k), (14)  

where ψe
i,l(k) is the measurement error associated with historical data in the form of a zero-mean Gaussian noise and φ is a binary 

parameter indicating whether historical data are used (φ = 1) or not (φ = 0). 
To summarise, system (10)-(11) is complemented by associating an output vector zb

i,l, described by the following (deterministic part 
of the) measurement model: 

1 A random walk is an approach for modelling a stochastic process composed of a series of random variables through time. A Gaussian random 
walk is used in this study, in which the time series data are assumed to be generated based on a normal distribution. 
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zb
i,l(k) =

[
zw

i,l(k)

ze
i,l(k)

]

= Cb(k) ⋅ xb
i,l(k), (15)  

where Cb(k) is obtained by known (measured) parameters as 

Cb(k) = Cb
(

βs
i,l(k), φ

)
=

⎡

⎣
βs

i,l(k) 0

0 φ
(

1 − βs
i,l(k)

)

⎤

⎦ (16) 

The noisy (measured) version of zb
i,l(k), which holds the passenger measurements that are available for estimation, either from real- 

time APC data or from historical data, is: 

zb
i,l(k) =

[
wi,l(k)

ẽi,l(k)

]

, (17)  

where wi,l(k) is obtained from measured quantities available at any time step k as 

wi,l(k) =
∑

j∈Jl

ηr
i,j(k) ⋅ br

j (k). (18)  

3.4. Dynamic model for alighting passengers 

A second model for estimating the number of passengers alighting at any station of a line is now formulated. In this case, instead of 
modelling directly the number of alighting passengers, a relationship between the number of passengers on-board a vehicle and the 
number of passengers alighting at a station is introduced, namely: 

γr
j(k) =

ar
j(k)

pj(k)
, ∀l ∈ L, j ∈ Jl, k. (19) 

As previously stated, real-time estimation of vehicle-based variables is challenging, since any small disturbances in the schedules or 
passenger patterns may create an estimation bias that would be difficult to identify and correct. For this reason, the alighting rate is re- 
defined as a station-based variable, denoted by γs

i,l(k), as (from Assumption 2): 

γs
i,l(k) =

∑

j∈Jl

ηr
i,j(k)γr

j (k), ∀i ∈ I, l ∈ L, k. (20) 

Variable γs
i,l(k) represents the percentage of passengers on-board any vehicle operating on line l that alights at station i. Under the 

reasonable assumption that such value does not feature strong fluctuations in time (i.e. can be considered as slowly-varying), and in 
absence of a descriptive dynamic model, its dynamics is modelled as constant via a random walk, i.e. 

γs
i,l(k + 1) = γs

i,l(k) + ξγ
i,l(k), (21)  

where ξγ
i,l(k) is, for example, zero-mean Gaussian noise. It should be noted that the deterministic part of system (21) is a linear time- 

invariant (LTI) system. 
Real-time measurements for system (21) are again assumed to be available when an APC-equipped vehicle of line l is at station i; 

this results in the following measurement equation: 

zi,l
γ(k) = βs

i,l(k) ⋅ γs
i,l(k) + ψi,l

γ(k), (22)  

where ψ i,l
γ(k) is the measurement error associated with real-time data in the form of a zero-mean Gaussian noise. Similarly as for the 

boarding passenger model, since real-time data are available only at specific times, i.e. when a vehicle with APC is at or departs from a 
station (βs

i,l(k) = 1), the measurement data may be complemented by historical information that is fed to the estimator when there is no 
real-time information available. In this case, availability of historical data on the alighting rate γ̃s

i,l(k) is assumed, which can be 
extracted by processing AVL and APC data from previous days. The resulting measurement model reads: 

zi,l
γ̃(k) = φ

(
1 − βs

i,l(k)
)

⋅ γ̃s
i,l(k) + ψi,l

γ̃(k), (23)  

where ψ i,l
γ̃(k) is the measurement error associated with historical data in the form of a zero-mean Gaussian noise. Therefore, to 

complete model (21), defined for passenger alighting rate, the output vector zγ
i,l is introduced, described by the following (deterministic 

part of the) measurement model: 

zγ
i,l(k) = Cγ(k) ⋅ γs

i,l(k), (24) 
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where Cγ(k) is obtained from measured quantities available at any time step k as: 

Cγ(k) = Cγ
(

βs
i,l(k), φ

)
=

⎡

⎣
βs

i,l(k)

φ
(

1 − βs
i,l(k)

)

⎤

⎦ (25) 

The noisy (measured) version of zγ
i,l(k), which holds all the passenger measurements that are available for estimation, either from 

real-time APC data or from historical data, is: 

zγ
i,l(k) =

⎡

⎣
γs

i,l(k)

γ̃s
i,l(k)

⎤

⎦, (26)  

where γs
i,l(k) is obtained from measured quantities available at any time step k as: 

γs
i,l(k) =

∑

j∈Jl

ηr
i,j(k) ⋅

ar
j(k)

pj(k)
. (27)  

3.5. Observability of the proposed systems 

Before proceeding to design estimators for boarding and alighting passengers, the observability of the systems formulated in the 
previous sections is investigated. In order to support readers that may not be familiar with the concept of observability, some physical 
implications of the formal definitions of observability are provided first (e.g., Antsaklis and Michel, 2006; Liu et al., 2013). In simple 
terms, the observability property of a system guarantees that the dynamic evolution of its internal states (i.e., the states that are not 
directly measured) may be determined (observed) by measuring only some specific states (or, more generally, some outputs of the 
system). In particular, while dealing with real-time state estimation, observability is a property that guarantees that the state of a 
system, such as the boarding passengers or alighting rates, can be reproduced, in real-time in an unbiased way from the available 
(partial) measurements by use of an estimator, such as a KF. 

The observability of a system is usually studied employing certain algebraic conditions (see, e.g., Antsaklis and Michel, 2006), 
related in particular to the A and C matrices characterising the system. However, for time-varying or parameter-varying systems (as in 
the case of the models considered in this study), it may not be trivial to formally check and guarantee these conditions, since the 
parameters affect the system’s matrices in real-time. For this reason, an alternative graph-theoretic approach is employed, which 
allows studying the observability property of a system by looking into its structure, defined by the zero and non-zero elements of the A 
and C matrices (see, e.g., Liu et al., 2013; Lin, 1974; Reissig et al., 2014). Moreover, the study of the structural observability properties 
of a system is useful in order to determine under which measurement configurations a system is actually observable. 

It should be noted that structural observability is a necessary condition for observability, as it provides an intuitive way to the study 
of observability which, in practice, typically implies, indeed, system observability. However, the loss of observability of a structurally 
observable system may happen for some time intervals as a consequence of a combination of parameters that cause the elements of the 
A and C matrices to satisfy some specific conditions (e.g., Liu et al., 2013; Lin, 1974; Reissig et al., 2014). On the other hand, if no 
combinations of parameters guaranteeing (structural) observability exist, no estimator would be able to reconstruct the system state 
from the measured outputs. Thus, in practice, as it is also suggested from the estimation results in Section 5, structural observability 
implies a proper operation of an estimation scheme as the one presented here, even though the system may not always be formally 
completely observable at any time. 

In order to study the structural observability for the proposed systems, the structure matrices A and C are introduced, representing 
the patterns of zero and non-zero elements of system matrices A and C, respectively. A useful representation of such patterns is via the 
construction of graphs G

(
A T, C

T)
, which are shown in Fig. 1 for both the boarding passenger model, considering (10) and (15), and 

the alighting rate model, considering (21) and (24). 
The following condition for structural observability is considered (as per, for example, Liu et al., 2013; Lin, 1974): 
Condition 1: A linear system (A,C) is structurally observable if and only if: i) The graph G

(
A T, C

T)
contains no non-accessible 

vertex; and ii) the graph G
(
A T , C

T)
contains no dilation. 

Considering the definition stated above, it can be established that both systems generally satisfy the conditions for structural 
observability, that is that there exist combinations of parameters that guarantee observability. This can be demonstrated by assuming 
βs

i,l = 1 (or, more generally, non-zero) and observing that, for both systems, all vertices can be accessed, while no dilation exists in the 
graphs. 

In addition, Condition 1 allows determining for which combination of parameter values the system is observable or when it may 
temporarily lose observability; this can be investigated by looking at the resulting graphs when some of the dashed edges are removed. 
In particular, the following claims are established:  

1. If historical data are utilised for the boarding passenger model (φ = 1), when βs
i,l(k) = 0 the system is temporally only partially 

observable due to the non-accessibility of vertex wi,l, while vertex ei,l remains always accessible. 
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2. If historical data are not utilised for the boarding passenger model (φ = 0), the system is temporally not observable when βs
i,l(k) = 0 

due to the non-accessibility of both vertices.  
3. For both previous cases related to the boarding passenger model, observability is fully restored when βs

i,l(k) = 1 (i.e., when a vehicle 
operating on line l equipped with APC stops at station i).  

4. If historical data are utilised for the alighting rate model (φ = 1), the system is always observable, since, irrespectively of the value 
βs

i,l(k), one of the two dashed edges is present.  
5. If historical data are not utilised for the alighting rate model (φ = 0), the system is temporally not observable when βs

i,l(k) = 0, 
since no dashed lines are present. 

Thus, in practice, as will also be shown by the estimation results in Section 5, apart from the cases described above, in which 
observability conditions are not met (partially, i.e., only for some states, or completely, i.e. for all states), the structural observability 
property holds and implies, as a general rule, the proper operation of an estimation scheme like the one proposed by the present study. 
In fact, since the cases in which observability is lost are only temporary occurrences, at the time when observability is restored the 
estimation capabilities of the proposed scheme are again guaranteed. Finally, it is noted that, if neither historical nor real-time data are 
available at any time, the system would be unobservable. 

3.6. Estimation method 

The KF algorithm that is employed to estimate boarding passengers and alighting rates using the models previously described is 
introduced here. The estimation equations for a KF are given by: 

x̂−
(k) = A(k − 1)x̂(k − 1) (28)  

P−(k) = A(k − 1)P+(k − 1)A(k − 1)
T

+ Q (29)  

K(k) = P−(k)C(k)
T[

R + C(k)P−(k)C(k)
T ]−1 (30)  

x̂(k) = x̂−
(k) + K(k)[z(k) − C(k)x̂(k) ] (31)  

P+(k) = [I − K(k)C(k) ]P−(k), (32)  

where x̂− and x̂ denote, respectively, the a-priori (i.e. predicted) and a-posteriori (i.e. updated) estimates of variable (vector) x; z is a 
(noisy) measurement of x; A and C describe the state-transition and observation models of x; P− and P+ are the a-priori (i.e. predicted) 
and a-posteriori (i.e. updated) estimated co-variance matrices; K is the optimal Kalman gain; and variables Q = QT > 0 and R = RT > 0 
are tuning parameters that represent the (ideally known) covariance matrices of the process and measurement noise, respectively. 

Eq. (28) calculates the predicted (a priori) state estimate, i.e., the estimate of the system’s state considering the previous (esti
mated) state and the system dynamics, whereas (29) calculates the predicted (a priori) covariance, i.e., a measure of the estimated 
uncertainty of the prediction of the system’s state when employing only the system’s dynamics. Eq. (30) calculates the optimal Kalman 
gain K, i.e., the gain that minimises the residual error in the minimum mean-square-error sense. Finally, Eq. (31) calculates the updated 
(a posteriori) state estimate, accounting for the correction due to the available measurements, while (32) calculates the updated (a 
posteriori) estimate covariance, i.e., a measure of the estimated uncertainty of the prediction of the system’s state after measurements 

Fig. 1. The graphs G
(
A T , C

T)
for patterns A and C that include matrices A and C, respectively, of system (10), (15) (left), and of system (21), 

(24) (right). Black circles relate to the process models and red circles relate to the measurement models. Dashed lines indicate that the edge may 
exist, depending on the condition of parameters listed next to it (from which the time dependence is omitted). 
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are taken into account. 
The algorithm is initialised as: 

x̂(k0) = μ (33)  

P(k0) = H, (34)  

where μ and H = HT > 0 represent, in the ideal case where x̂(k0) is a Gaussian random variable, the mean and auto-covariance of x̂(k0)

and P(k0), respectively. 
In particular, two separate KFs are implemented: one for the estimation of boarding passengers and one for the estimation of 

alighting rates. 
For estimating boarding passengers, an estimator for xb

i,l is designed considering process model (10)-(11), measurement model (15)- 

(16), and employing measurements (17); moreover, initial values μ =
[

0 e0
i,l

]T 
and H = I2×2 are considered. The estimator delivers 

estimates x̂b
i,l, from which ŵi,l is to be extracted; the estimated boarding passengers can be derived from (3) and (6) as: 

b̂
r
j(k) =

∑

i∈I
ηr

i,j(k) ⋅ ŵi,l(k), ∀j ∈ Jl. (35) 

For estimating alighting passengers, an estimator for γs
i,l is designed, considering process model (21), measurement model (24)-(25) 

and employing measurements (26); initial values are set as μ = γs,0
i,l and H = 1. The estimator delivers estimates γ̂ s

i,l, from which γ̂ r
j is 

calculated as: 

γ̂ r
j (k) =

∑

i∈I
ηr

i,j(k) ⋅ γ̂s
i,l(k). (36) 

In both cases, it is possible that the KF delivers negative estimates at some steps, which are physically unrealistic. This is handled 
here in a heuristic manner, by bounding, at each step, the resulting estimates to be non-negative, and then using the bounded value at 
the next iteration. Even though some more complex methods exist to deal with this issue (Simon, 2010), testing them here led to 
virtually identical results. 

Finally, in order to estimate the passengers on board of vehicle j, p̂j(k), a conservation-of-passengers equation is employed at each 
time step, of the form 

p̂j(k + 1) = p̂j(k) + b̂
r
j(k) − âr

j (k), (37)  

where p̂j(0) = 0, i.e. the vehicle is empty at the beginning of the service. Combining (37) with (19) results in: 

p̂j(k + 1) =
[
1 − γ̂ j(k)

]
p̂j(k) + b̂

r
j(k), (38)  

which is calculated at each discrete time interval after estimates for b̂
r
j and γ̂ r

j are computed. 
The overall estimation methodology is illustrated in Fig. 2. 

Fig. 2. The proposed estimation scheme.  
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4. Data acquisition and processing 

The developed estimation method for real-time on-board passenger loads on the basis of AVL and APC data is applied on a real 
public transport network in this study, and this section sets out the core principles and methods used in that respect. The study area and 
dataset are introduced first and are followed by an outline of the data cleansing and processing tasks and by a description of the 
assimilation of the historical dataset used in the estimation. Finally, a brief description of the in-vehicle comfort measurement 
framework used is provided. 

4.1. Study area and dataset 

The present study focuses on the tramway system of the French city of Nantes. Nantes is located on the Loire River in Western 
France, close to the Atlantic coast. It is the sixth largest city of France, with a metropolitan population of 900,000. Its tramway network 
is operated by Semitan, and with its opening in 1985 Nantes became the first city to introduce a modern generation tramway, built 
from scratch. With its subsequent extensions, the network now consists of three tramway lines (numbered 1, 2 and 3) running on 44 km 
of track and serving a total of 83 stations, as well as a “Busway” Bus Rapid Transit (BRT) line (numbered 4). 

The Nantes tramway is shown in Fig. 3. Line 1, shown in green, has a length of 18.4 km and serves 34 stations. It consists of two 
branches at each end (Beaujoire and Ranzay in the East, and François Mitterand and Jamet in the West) and a central trunk between the 
branches with 19 stations. Its frequency reaches 15 vehicles per hour during peak times, and it is the busiest line on the network (and 
with 120,000 passengers per day, it is also one of the busiest of the whole of France), serving several principal locations of the city, 
including the main railway station and the city’s stadium. Line 2, shown in red, runs from Orvault in the North to Gare de Pont- 
Rousseau in the South, has a length of 11.7 km and serves 25 stations, including important educational (university) and health es
tablishments. It has a frequency of 8 vehicles per hour during peak times, and its patronage approaches roughly 80,000 passengers per 
day. Lastly, Line 3, shown in blue, runs from Marcel Paul in the North to Neustrie in the South, has a length of 14.1 km and serves 34 
stations. It has a similar operation with Line 2, with which it shares the track for seven stations (Commerce to Gare de Pont Rousseau) 
in the city centre. It serves several major commercial sites and is used by 75,000 passengers per day. The three lines run radially off the 
city centre but meet at Commerce. They are combined with Park and Ride (P + R) facilities on the outskirts, and also have major 
transfer points with the other public transport modes: the Busway (exclusive right-of-way line), the Chronobus (buses with limited 
segregated lines), the local buses and the regional coaches. 

The tramway system is served by three types of rolling stock, irrespectively of the line: the Alstom TFS, the Bombardier Incentro, 
and the CAF Urbos. The Alstom TFS is a 39 m long vehicle with a capacity of 236 passengers (including 74 seats) which began 
operation in 1985. Each Alstom vehicle is composed of two high floor carriages with three-step accesses (of which one mobile step) and 
a lower floor carriage in the middle; access is provided by six double length doors and two simple doors per vehicle side. The 
Bombardier Incentro is 36 m long with a capacity of 252 passengers (including 72 seats) and started operating in 2000. It has an 
integral low floor and six double (1.30 m) doors per side. Finally, the CAF Urbos is the newest vehicle in the network, having started 
operations in 2012. It is 37 m long with a capacity of 249 passengers (including 68 seats) and has an integral low floor and six double 
doors per vehicle side. 

The data used in this study have been collected from the Opthor and Ineo systems, used by the operator. Opthor is an APC system 
measuring the number of passengers boarding and alighting at each station, as well as the dwell time and other performance-related 

Fig. 3. The Nantes tramway network (Source. https://www.tan.fr).  
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measures. The system detects passengers using infrared sensors installed at each door of the vehicle with a 95 % measurement ac
curacy. Ineo, on the other hand, is an AVL system that enables comprehensive real-time tracking of each tramway vehicle, and can 
therefore deliver data on the actual arrival and departure time of each vehicle at each stop. All vehicles circulating in the network are 
equipped with Ineo; however, the operator has only installed Opthor on a limited number of vehicles (of Alstom TFS and Bombardier 
Incentro class only) and uses it to run frequent counts with it for various purposes. 

4.2. Dataset processing and cleansing 

The passenger data employed here were collected during an Opthor count conducted between 16 September and 20 December 
2019 on Line 1 of the Nantes tramway network. As part of the count, the operator collected 52,350 valid entries from 42 weekdays and 
a total of 1946 runs. This sample corresponds to roughly 10 % of the total number of daily runs. Each data entry reports the total 
number of boarding and alighting passengers (as detected by the APC sensors), as well as the number of passengers on-board. The 
Opthor data are, then, complemented by the corresponding Ineo dataset for the same period. Fig. 4 illustrates the number of runs 
covered by AVL and APC data throughout the study period; days with no APC data availability or AVL malfunctions have been 
discarded. 

A two-step process is performed to clean the AVL data and merge them with the APC relevant data. First, the AVL data are processed 
in order to remove erroneous data and fill missing data. This cleaning process involves correcting entries from inaccurate geo- 
localisation, namely:  

• removal of double entries of a station for a single run;  
• addition of missing stops, including terminal stops, to specific runs, and inference of travel times through distance-based linear 

interpolation between known stops; and  
• removal of runs that do not provide service coherence. 

Consequently, out of 20,360 commercial runs throughout the study period monitored by the AVL systems, 18,672 valid runs are 
kept. 

The APC and the AVL systems are operated independently and use different data identifiers (station and run IDs, as well as 
timestamps), and as such an exact matching of APC runs with the “clean” AVL runs does not exist. Therefore, a run-matching process by 
approximation is employed in order to ensure as good a match as possible between the datasets, as the second step of the process. The 
method relies on a matching algorithm employed for each day and for each origin station throughout the day, which involves con
ducting a matching test for each AVL run with respect to selected “matching candidate” APC runs. According to the algorithm, a match 
between an AVL run and an APC run is established if the AVL and APC runs share the same stops, and: 

Fig. 4. Daily APC and AVL coverage during the study period.  
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• the departure times of the AVL run and the APC run (either the theoretical/scheduled departure time or the actual departure time) 
are within 2 min of each other; or  

• the departure times are within 2–15 min and the APC run is the one nearest to the AVL run. 

If the difference between the departure times of the APC and AVL runs is greater than 15 min, the match is considered invalid and 
the relevant APC run is discarded. 

The parameters used in the run-matching process are justified as follows. Firstly, the 2-min threshold value determining immediate 
run-matching is based on the usual headway between runs at peak-time, as per the present dataset and the authors’ experience with 
other similar datasets. Then, the reason why both theoretical/scheduled and actual departure times from the AVL data need to be 
considered is the fact that the actual departure time may be inaccurate due to a vehicle dwelling at the origin station between runs 
without the AVL detectors on the ground distinguishing between its arrival (in the previous run) and departure (in the next run). 
Finally, the 15-min threshold is used in order to allow matching an APC run with the next recorded AVL run, if the latter is affected by 
lower geo-localisation precision accuracy – which can be a common source of error in AVL data. 

Out of the 1946 initial APC runs from the entire study period, 29 (1,5%) are discarded by the run-matching process, leaving 1917 
APC runs matched with an AVL run. Of the matched runs, 95 % have a time difference of up to 1 min, with only 1 % greater than 5 min, 
as illustrated in Fig. 5. 

4.3. Assimilation of historical data 

The methodology presented in Section 3 requires availability of historical data, which can be determined by processing AVL and 
APC data from days prior to the one for which estimation is carried out. In particular, historical data are required in order to compute 
ẽi,l(k) and ̃γs

i,l(k), i.e. the number of passengers entering the platform of station i to board a vehicle of line l and the alighting rate of 

vehicles of line l at station i, as well as e0
i,l and γs,0

i,l , i.e. the initial values for the estimates applied at the beginning of an operational day. 
The historical data extracted from the APC counts may vary with respect to the day of the week. As suggested previously, historical 

data observations are not homogenously distributed throughout the days of the week. In addition, a number of days (specifically 
Tuesdays) have been discarded from the initial dataset due to technical issues and major incidents. Furthermore, some variance is 
observed at the within-day profile of the number of boardings per stop, run and hour (Fig. 6). For example, Friday has a higher af
ternoon peak and the service is extended at night, whereas Wednesday has a higher midday peak. These differences suggest only broad 
day-to-day regularity and no within-day regularity, which is consistent with the mobility patterns of French urban areas (De Solere, 
2012). 

Consequently, two strategies for calculating historical data are employed here: a) aggregating data from the same weekday; and b) 
aggregating all available days together. Regardless of the aggregation strategy, historical data are averaged and aggregated into a set of 
bins, each of a 30-min duration, that include all APC measurements available during such time. As the operational day starting at 4:00 

AM and ending the next day at 3:59 AM is considered, a total of 48 30-min bins are used. The historical value ̃ei,l

(
k̃

)
, i.e. the historical 

value of the number of passengers per interval T entering the platform of station i to board a vehicle of line l during (k̃T̃,
(

k̃ +1
)

T̃ −1], is 

then calculated as 

Fig. 5. AVL-APC time difference distribution for matched runs.  
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ẽi,l

(
k̃
)

=

∑
d∈D

∑(̃k+1)̃T

k=̃k̃T
− 1b

d
i,l,d (k)

tdi,l,d(k)

∑
d∈D

∑(̃k+1)̃T

k=̃k̃T
− 1βd

i,l,d(k)

, (39)  

where ̃k is the bin index; ̃T is the bin size (in this case, 30 min); D is the set of days considered, which, depending on the chosen strategy, 
may include all available previous days or just a subset of them (e.g. only the days corresponding to the same weekday, as per case a 
defined above); bd

i,l,d(k) is the number of passengers boarding a vehicle of line l at station i during (k − 1, k] in day d; td
i,l,d(k) is the time 

elapsed between when the previous vehicle of line l stopped at station i and current time k; and βd
i,l,d(k) is binary variable indicating if a 

run of line l departing from station i during (k −1, k] on day d provides passenger load information. 
Correspondingly, ̃γs

i,l(k) is calculated as 

γ̃s
i,l

(
k̃
)

=

∑
d∈D

∑(̃k+1)̃T

k=̃k̃T
− 1γd

i,l,d(k)

∑
d∈D

∑(̃k+1)̃T

k=̃k̃T
− 1βd

i,l,d(k)

, (40) 

where γd
i,l,d(k) is the alighting rate of vehicles of line l at station i during (k −1, k] in day d. 

4.4. Passenger comfort levels 

The Level of Service (LOS) framework of Chandakas (2009) is used to measure in-vehicle comfort on-board a tramway vehicle, 
which assigns a comfort level on the basis of the on-board density of standing passengers (D) and of the availability of occupied seats 
(R), as shown in Table 1. 

The in-vehicle comfort level is matched to specific locations (or stops) at specific times of the day. Fig. 7 illustrates the average LOS 
of the eastbound (left) and westbound (right) Line 1 per time step of the historical data. LOS 4, where standing takes place in tolerable 
conditions, is observed in the densest section of the central trunk of the line throughout the day, but extends to the start and end of the 
line during the morning, midday and afternoon peak hours. LOS 5 conditions are also observed sporadically during peak times. 

Fig. 6. Observations per day of the week (left) and average volume of boardings per stop and run per hour and per day of the week (right).  

Table 1 
In-vehicle comfort LOS (Chandakas, 2009).  

LOS Conditions Description 

6 D > 4 Density greater than 4 standees per m2, exceptional situation 
5 1.8 < D ≤ 4 No tolerance from standees, reliability issues 
4 0 < D ≤ 1,8 Standing conditions tolerated 
3 0.5 < R ≤ 1 Possibility to travel seated, limited choice available 
2 0.25 < R ≤ 0.5 Possibility to choose a seat, constrained to availability 
1 R ≤ 0, 25 Free choice of a seat  
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5. Evaluation and validation 

This section documents the validation and evaluation process and results of the developed estimation method for real-time on- 
board passenger loads on the basis of AVL and APC data, based on its application on the Nantes tramway network. The evaluation 
metrics and methodology employed are presented first, and then the results obtained are reported and discussed. 

5.1. Evaluation metrics and methodology 

The proposed method is particularly aimed at estimating the passenger load for the runs that do not feature an APC system. 
However, as information is not available for such runs, an alternative validation approach is developed, which employs only data from 
runs equipped with APC. Specifically, when the estimation algorithm processes an APC-equipped run, estimation is first performed 
assuming that no APC measurement is available, denoting such estimate ω̌ (for a generic variable ω) and storing the respective 
estimated values; then, the estimates are re-calculated considering the available APC measurements, and these latter values are then 
used for the subsequent estimation steps. In this way, the estimation method can be evaluated in a fair manner through comparison of 
the estimates obtained without considering APC measurements (ω̌) with their corresponding actual measurements (ω). 

In order to evaluate the estimation performance and assess its effectiveness, a series of experiments are conducted and different 
metrics are calculated. First, the main components of the proposed methodology are evaluated, namely the boarding and alighting 
estimators described in Sections 3.3 and 3.4. The mean absolute error (MAE) metric is employed in this respect, defined as: 

MAE =

∑K
k=0

∑
i∈I

∑
l∈L

⃒
⃒
⃒ω̌ s

i,l(k) − ω s
i,l(k)

⃒
⃒
⃒

∑K
k=0

∑
i∈I

∑
l∈Lβs

i,l(k)
, (41)  

where K is the estimation horizon, i.e. an operational day; and ω s
i,l represents the variables considered for evaluation, which, in this 

case, are bs
i,l(k), γs

i,l(k), and (indirectly) as
i,l(k). In addition, the weighted mean absolute percentage error (WMAPE) is employed as a 

relative metric, defined as: 

WMAPE =

∑K
k=0

∑
i∈I

∑
l∈L

⃒
⃒
⃒ω̌ s

i,l(k) − ω s
i,l(k)

⃒
⃒
⃒

∑K
k=0

∑
i∈I

∑
l∈L

⃒
⃒ω s

i,l(k)
⃒
⃒

, (42) 

This metric overcomes the infinite error issue of other relative metrics (such as the mean absolute percentage error, MAPE); 
however, it is still expected to suffer from the limitation of over-penalising cases when real values are low. 

The focus then shifts to the estimated passenger comfort, which is calculated according to the method described in Section 4.4, 
assuming such information is available every time a vehicle stops at a station. In this case, the sequence of estimated comfort levels 
(again, assuming no APC measurement was available) is compared with the sequence of comfort level calculated from actual measured 
data. In this comparison, besides investigating aggregated measures such as the mean absolute comfort error, more disaggregated 
information is further considered, such as the distribution of errors for different error classes. 

Fig. 7. In-vehicle comfort LOS for eastbound (left) and westbound (right) Line 1 of the Nantes tramway (the direction of the run is from bottom 
to top). 
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5.2. Results and discussion 

The performance of the individual components of the estimation method is first investigated, i.e. the boarding and the alighting rate 
estimators. The estimation results for the estimator of boarding passengers are presented in Tables 2 and 3. As can be observed, the 
estimation MAEs and WMAPEs for all days investigated are overall low; all MAEs are lower than 10 passengers and most WMAPEs 
remain below 1 (bearing in mind that they are also affected by the low actual values). Moreover, it can be seen that the performance of 
the estimator improves by incorporating historical data, with a maximum improvement of the order of 25 % on Friday 20 December 
2019 in both the MAE and the WMAPE values. In addition, it can be observed that the case where the estimator is fed with historical 
data from all days outperforms the case that employs historical data only from the same weekdays. This suggests that the assumption 
that different days may have different peak hour patterns (which is the reason why the use of historical data only from the same 
weekdays was proposed in the first place) is uninfluential and that its effects are most probably outweighed by the fact that greater data 
availability allows obtaining better results. A notable exception is Thursday 12 December 2019, which is also characterised by 
considerably higher MAE and WMAPE values than the other days; a deeper investigation into that day, though, has revealed that a 
service disruption lasting about 40 min that happened during the afternoon has caused the estimator to produce some unreasonably 
high errors. 

The performance of the alighting passengers’ estimator is demonstrated in Tables 4 and 5, where a similar pattern as the one 
observed for the boarding passengers’ estimator can be observed. On the other hand, the MAE and WMAPE values calculated for the 
alighting rates without using historical data already look reasonably low. Still, even in this case the use of historical data improves the 
estimation performance even further and, again, best results are obtained when all days are used to assimilate the historical data. 

The results in terms of passenger comfort (absolute) errors are investigated next, calculated as described in Section 4.4. The results 
are shown in Table 6, where it can be observed that the resulting comfort levels obtained via the estimation scheme are accurate, with 
an absolute error lower than one comfort level for all examined scenarios, except one (the service disrupted impacted Thursday 12 
December 2019, without using historical data). From these results, the value of employing historical data in addition to real-time 
measurements is highlighted again. 

Considering the passenger comfort estimation results in more detail, Fig. 8 shows how the comfort errors (calculated as estimated 
level minus measured comfort level) are distributed. Firstly, it is interesting to observe that the number of data points with a comfort 
error equal to zero have by far the highest count, reaching almost 50 % of all observations for the case when historical data for all days 
are used. Secondly, it can be seen that the occurrence of error points decreases as the (absolute) error increases, i.e., the second most 
frequent errors are ±1, while higher errors (e.g. 4 and 5) are either extremely rare or even completely absent. Thirdly, the use of 
historical data not only increases the average performance, as discussed earlier, but also makes the distribution of errors narrower, 
meaning fewer higher error occurrences. 

Moreover, it is interesting to mention that, from a practical viewpoint, a negative error (i.e. when a more comfortable condition 
than the actual one is estimated) is more critical than a positive error (i.e. when a less comfortable condition than the actual one is 
estimated), since the former would tell end-users that a run is less crowded than what it is in reality, which may, in turn, lead to poor 
decisions (e.g. even more crowding in an already crowded run). In this respect, it is interesting to observe that by using historical data, 
the samples with negative error diminish more than the ones with positive error. 

Furthermore, Figs. 9 and 10 present an example of disaggregated information on the passenger comfort estimation for a selected 
day. In particular, Fig. 9 shows contour plots for the measured comfort, the estimated comfort, and the comfort error, calculated for all 
the runs equipped with APC for Wednesday 18 December 2019, and where estimates are produced without utilising historical data. 

Table 2 
MAE for the estimated number of boarding passengers, employing different historical data settings.  

Day No historical data (φ = 0) Historical data only from same weekdays Historical data from all days 

Wed 11 Dec  6.411  5.768  5.320 
Thu 12 Dec  9.100  9.484  9.327 
Fri 13 Dec  6.282  6.422  5.696 
Mon 16 Dec  7.050  6.184  6.147 
Wed 18 Dec  5.458  5.214  4.351 
Thu 19 Dec  7.071  7.094  6.497 
Fri 20 Dec  7.944  6.696  5.914  

Table 3 
WMAPE for the estimated number of boarding passengers, employing different historical data settings.  

Day No historical data (φ = 0) Historical data only from same weekdays Historical data from all days 

Wed 11 Dec  0.881  0.803  0.733 
Thu 12 Dec  1.209  1.217  1.271 
Fri 13 Dec  0.726  0.689  0.621 
Mon 16 Dec  0.959  0.950  0.935 
Wed 18 Dec  0.773  0.760  0.658 
Thu 19 Dec  0.854  0.735  0.801 
Fri 20 Dec  1.033  0.835  0.756  
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Table 4 
MAE for the estimated alighting rate and number of alighting passengers, using different historical data settings.  

Day Alighting rate Alighting passengers  

No historical 
data 
(φ = 0) 

Historical data only 
from same weekdays 

Historical data 
from all days 

No historical 
data 
(φ = 0) 

Historical data only 
from same weekdays 

Historical data 
from all days 

Wed 11 Dec  0.106  0.099  0.092  7.819  7.810  7.816 
Thu 12 Dec  0.091  0.089  0.075  7.610  7.613  7.642 
Fri 13 Dec  0.092  0.083  0.078  9.155  9.145  9.149 
Mon 16 Dec  0.099  0.085  0.077  8.022  8.016  8.041 
Wed 18 Dec  0.092  0.086  0.078  7.613  7.632  7.618 
Thu 19 Dec  0.079  0.073  0.071  8.594  8.611  8.612 
Fri 20 Dec  0.090  0.090  0.076  8.689  8.682  8.678  

Table 5 
WMAPE for the estimated alighting rate and number of alighting passengers, using different historical data settings.  

Day Alighting rate Alighting passengers  

No historical 
data 
(φ = 0) 

Historical data only 
from same weekdays 

Historical data 
from all days 

No historical 
data 
(φ = 0) 

Historical data only 
from same weekdays 

Historical data 
from all days 

Wed 11 Dec  0.633  0.573  0.555  0.940  0.945  0.946 
Thu 12 Dec  0.552  0.475  0.496  0.945  0.956  0.946 
Fri 13 Dec  0.550  0.493  0.470  0.939  0.934  0.934 
Mon 16 Dec  0.608  0.536  0.569  0.944  0.956  0.956 
Wed 18 Dec  0.608  0.555  0.525  0.944  0.962  0.951 
Thu 19 Dec  0.558  0.517  0.514  0.912  0.921  0.917 
Fri 20 Dec  0.570  0.536  0.504  0.937  0.937  0.933  

Table 6 
Absolute comfort level error employing different settings for historical data.  

Day No historical data 
(φ = 0) 

Historical data only from same weekdays Historical data for all days 

Wed 11 Dec  0.859  0.744  0.734 
Thu 12 Dec  1.031  0.715  0.712 
Fri 13 Dec  0.694  0.630  0.588 
Mon 16 Dec  0.837  0.651  0.692 
Wed 18 Dec  0.864  0.710  0.646 
Thu 19 Dec  0.728  0.609  0.564 
Fri 20 Dec  0.821  0.553  0.504  

Fig. 8. Distribution of the comfort errors for all days, considering a total of 10,523 data points.  
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Correspondingly, Fig. 10 shows the same contour plots, but in this case estimates are produced utilising historical data for all days. 
Again, the good performance of the proposed estimation scheme is demonstrated, as generally very low errors are produced, while it 
can be clearly seen that, in the case where historical data for all days are utilised, large areas in the contour plot are white (denoting 
zero comfort error) and swathes of purple and pink coloured cells (denoting negative comfort errors) are eliminated. It can also be 
observed how, at the disaggregated level, the negative errors reduce both in total amount and in magnitude when utilising historical 
data, which is therefore a preferable choice. 

The findings obtained are further supported by the graphs in Fig. 11, which show the distribution of the comfort errors for all days, 
grouped by the measured comfort levels. As can be seen, the impact of the use of historical data in terms of the estimation accuracy 
becomes most prominent at the higher levels of on-board crowding (namely levels 3 and 4), where most of the severe negative dis
crepancies (of two or three levels) are either completely eliminated or, at least, attenuated. Indeed, just like in the example day of 
Figs. 9 and 10, the pink and purple areas are severely diminished as more historical data are employed. This suggests that the proposed 
estimation scheme is not only able to reliably estimate the actual on-board comfort level with only few errors, but is also capable of 
ensuring that any remaining errors are low and not critical (i.e. no instances of a crowded vehicle estimated as empty). 

Fig. 9. Measured comfort level (left); its estimates using the proposed method (centre); and the estimation error calculated in terms of comfort error 
(right), for Wednesday 18 December 2019, without utilising historical data. 

Fig. 10. Measured comfort level (left); its estimates using the proposed method (centre); and the estimation error calculated in terms of comfort 
error (right), for Wednesday 18 December 2019, utilising historical data for all days. 
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Furthermore, it is investigated how the comfort error metric changes with the amount of historical data available to the estimation 
methodology, and to this end, experiments are performed by utilising an increasing number of days from the set of available historical 
data, from 5 to 34 days (i.e. all available days), and evaluating the performance for the same days as tested in the previous experiments. 
The results are presented in Fig. 12, where it can be observed that as more historical data become available, the estimation perfor
mance improves. It is particularly interesting to highlight that, after a certain amount of historical data are available, adding further 
data improves the estimation performance only marginally; in the experiments carried out in this study, for example, this happens 
when more than 15 days of data are available. 

Finally, it is investigated how the performance of the proposed estimator varies with different amounts of APC data. These ex
periments are conducted by randomly selecting a percentage of the available APC equipped runs and performing estimation so that the 
proposed estimator employs only APC data from the selected runs. In particular, it is tested how the estimator performs using 25 %, 50 
% and 75 % of the available APC data, which roughly corresponds to 2.5 %, 5 % and 7.5 % of the total number of daily runs, 
respectively (as per Section 4.2). The same percentages are used to sample the data treated as historical, as well as the data treated as 
real-time. In order to reduce noise due to the stochastic nature of the selection, five different random seeds are employed, and the 
arithmetic averages of the estimation metrics obtained for five replications for each of the tested percentages are reported. The results 
are presented in Fig. 13, where the case where all the available APC data are used (i.e. 100 %) is also shown. As can be observed, and as 
can be expected, in virtually all tested days the estimation performance improves by increasing the amount of APC data available, with 
improvements being more significant at lower levels of APC data availability (i.e. from 25 % to 50 %). 

Fig. 11. Distribution of the comfort errors for all days, grouped by the measured comfort levels.  

Fig. 12. Absolute comfort level error obtained via utilising different amounts of historical data.  
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6. Conclusions 

The provision of accurate and reliable passenger comfort information on-board public transport vehicles has long been identified as 
an important constituent component of good customer service. In light of the COVID-19 pandemic and its associated impacts on public 
transport patronage, however, the provision of such information has become an absolute necessity for the “survival” of public transport 
services going forward. The present study, therefore, has proposed a new KF-based estimation scheme for on-board comfort levels, 
which employs historical and current non-exhaustive APC data, as well as AVL measurements. The method has been successfully 
validated through application to the tramway network of the French city of Nantes, with the results demonstrating that overall low 
estimation errors are delivered, which are also non-critical. 

But while the study has made an initial contribution to the topic on on-board passenger comfort estimation, research in this di
rection continues. For instance, a limitation of the present study is that, as identified in Section 3.5, the system is not always fully 
observable. This means that there are some caveats in the estimation, such as in early-morning runs (due to the non-availability of 
previous measurements (apart from historical data)) and conditions with high passenger flow volatility (e.g. service disruptions). 
Indeed, it can be observed from the experiments of this study that the vast majority of the (remaining) errors originate in such situ
ations, and it is the objective of future work to address this aspect, by including additional data sources, such as WiFi and mobile data. 
The development of these device-based capturing techniques could impact the necessity and the extent to which APC systems are 
deployed. In addition, it would be interesting to investigate how the frequency and distribution of APC-equipped vehicles affect 
estimation performance, which could be properly evaluated if a larger amount of APC data were available. To this extent, further 
analysis could explore how the estimation performance of the proposed scheme would compare with that of other methods, such as 
that of Jenelius (2019), and how it could be potentially improved by combining and integrating these methods. An alternative 
approach could involve using data produced by a simulator, which would allow randomly determining whether any (simulated) run is 
APC-equipped or not (naturally with limitations in terms of the realism of the demand and arrival patterns). 

Moreover, a limitation of the present study is that the proposed estimation method has so far not been applied in a real-time 
context, but only in an “offline” one. The reason for this is not inherent to the estimation method itself, but rather the fact that the 
two systems used in the validation case study (APC and AVL) operate independently from each other and their data are therefore not 
synchronised. A considerable amount of data pre-processing has therefore been necessary here in order to assimilate both the historical 
and the current datasets. In order to be able to perform real-time on-board comfort estimation, synchronisation of the APC and AVL 
data feeds using a vehicle label and a timestamp would be required so as to improve the run-matching process. In practice this is 
usually enabled by an architecture with continuous or semi-continuous communication between the systems. It would be, hence, 
useful to explore how this could be achieved in the current case study, or to apply the method in a real-time context on a different case 
study. This would additionally enable the monitoring of passenger behaviour and perceptions in response to the information provided 
by the estimation scheme. 

Finally, further research will concentrate on extending the capabilities and accuracy of the proposed method. For example, it would 
be interesting to investigate the performance of the estimation scheme in other sites, featuring more complex network topologies and a 
greater variety of modes, and to also extend the remit of the method from estimation (at the current station and time) to prediction (at a 
later station and/or future time point). Moreover, additional scenarios covering the phenomena of overcrowding and left-behind 
passengers (which were not present in the dataset employed here), may be further studied; these will likely require some special 

Fig. 13. Absolute comfort level error obtained by utilising different amounts of APC data.  
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treatments and potentially also some modifications to the proposed method. Such extensions could provide a much different insight 
into how on-board comfort information would influence a priori and real-time passenger planning decisions in multi-modal trips and 
would consequently allow modelling the impacts at the route/mode choice and assignment levels. 
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De Solere, R. (Ed), 2012. La mobilité urbaine en France: Enseignements des années 2000-2010. Editions du CERTU, Collection Références. 
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