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1 INTRODUCTION  

Natural frequency is one of the most fundamental 
characteristics of bridges, reflecting bearing condi-
tions and characterizing resonance phenomena under 
periodic loading (Salawu 1997). It is a commonly 
used indicator for diagnosing bridge health condi-
tions, while the extraction of bridge natural frequen-
cies is usually difficult in practice. Conventionally, 
the bridge natural frequency is identified using sen-
sors installed on the structure directly, also known as 
"sensor-based monitoring systems" (Sohn et al. 
2003). The sensor installation on bridges is expen-
sive, unsafe and laborious, particularly for a bridge 
under ongoing traffic or in a dangerous location 
(Enckell et al. 2011). Moreover, sensors mounted on 
the bridge are greatly susceptible to be damaged due 
to environmental factors such as weather, resulting in 
substantial repair and maintenance expenses (Kim et 
al. 2006). Furthermore, because the instrumentation 
is permanently installed on the bridge as a customized 
SHM framework, it is difficult to transfer one moni-
toring system to other bridges (Elhattab et al. 2016). 

These disadvantages limit the widespread application 
of traditional SHM methods on bridges in general. 

The drive-by bridge inspection approach, an indi-
rect SHM technique, has been increasingly prominent 
as a study topic in recent years (Cantero et al. 2019). 
Studies have investigated the potentials of employing 
the drive-by inspection method to obtain essential in-
formation of bridges (Nguyen & Tran 2010, Miya-
moto & Yabe 2012, Cerda et al. 2014, Obrien et al. 
2014, Obrien & Keenahan 2015, Obrien et al. 2017, 
Nagayama et al. 2017, Lan 2021, Lan 2021). The 
bridge vibrates when vehicles pass through it, and the 
dynamic information of the bridge will be reflected in 
vehicle responses via the Vehicle-Bridge Interaction 
(VBI) procedure, in which the vehicle performs as a 
“moving sensor” (Hester & González 2017, Wang et 
al. 2017). Such an approach, therefore, does not re-
quire numerous instrumentations to be placed on the 
bridge but only a few sensors on the passing vehicle 
(Yang et al. 2014). The indirect SHM method pro-
vides advantages in mobility, economy, and effi-
ciency when compared to traditional techniques (Ma-
lekjafarian et al. 2015). 
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Although it is theoretically possible to extract the 
bridge natural frequency from the VBI process, the 
vehicle-based measurement is typically difficult to 
conduct in engineering practice. Vehicle and bridge 
models that have been used in previous studies are 
generally oversimplified or customized, which are 
distant from realistic situations. As cars with custom-
ized qualities, like excessively heavy weight (over 
8% of bridge mass) and close-to-bridge frequency, 
would lead to intense VBI responses, thus signifi-
cantly strengthening the bridge frequency compo-
nents in vehicle spectrogram (Green & Cebon 1997). 
In reality, though, such tailored vehicles are rarely 
available. The spectral peak associated with the 
bridge frequency might be small in practice, and the 
interference from roughness components or vehicle 
dynamics could obscure the signal of interest. Non-
bridge frequency peaks in conjunction with a weak 
bridge frequency peak (or none at all) would be very 
common, and this could lead to a misidentification of 
natural frequencies (Yang & Yang 2018). A practical 
approach for identifying the bridge frequency among 
others in normal VBI situations is required. 

This paper presents a novel strategy to identify the 
bridge frequency by using multiple accelerometers on 
a passing truck. Customized cars or multiple vehicle 
systems are not necessary required to emphasize the 
bridge vibration components; instead, a commercial 
truck with sensors installed at various locations is 
used. It converts the frequency identification problem 
into a coherence-related problem, where the coher-
ence indexes are computed by using cross-spectral 
density function estimation to distinguish the bridge-
related frequency peak. The feasibility of the strategy 
is examined by laboratory experiments with a truck 
model and a steel beam. This experimental model can 
largely reconstruct a regular VBI scene, when a real-
scaled commercial truck model with an engine system 
is employed. The bridge natural frequency is identi-
fied under various bridge cases with a fully loaded 
truck, demonstrating the performance of the pre-
sented technique. 

 
2 BRIDGE FREQUENCY IDENTIFICATION 

ALGORITHM 

Vibration signals received from sensors on the vehi-
cle always contain complicated and varied compo-
nents. Bridge-related components in the spectrum are 
usually smaller than those associated with vehicle dy-
namics and other noises, making it difficult to distin-
guish the bridge frequency from others. Multiple or 
specialized vehicle systems, which have been widely 
employed in prior research to emphasize the compo-
nents associated to bridge frequency, are not always 
accessible. On the other hand, it is found that the 
bridge vibration component appears commonly in the 
responses of car sensors placed on different positions, 
while signal components from noises are less 

identical. As vehicle parts always have different 
structures and mechanisms (e.g., rear axle and the 
container) even within the same car. The bridge vi-
bration will occur in all parts as the common excita-
tion, but vibration signals containing a random nature 
like road profiles will be damped or disturbed by ve-
hicle mechanisms, showing less relevant features. 

This section describes a coherence-based signal 
processing strategy to identify the natural bridge fre-
quency from vehicle cross-spectrums. Four sensors 
are used in the study to simultaneously capture the 
vertical acceleration responses of the truck travelling 
through the bridge. They are mounted on the front of 
a car, front axle, rear axle and container, respectively, 
to provide required signals to the strategy. This re-
quires the application of cross-spectrum estimation 
proposed by Bendat and Piersol (2011):  

𝑅𝑓𝑔(𝜏) = ∫ 𝑓∗(𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡
∞

−∞
   (1) 

𝐺𝑥𝑦(𝑓) = F[𝑅𝑓𝑔(𝜏)]    (2) 

where 𝑅𝑓𝑔(𝜏) is the cross-correlation function of two 
random processes 𝑓(𝑡) and 𝑔(𝑡); the asterisk * de-
notes complex conjugate; and 𝜏 is the time displace-
ment. 𝐺𝑥𝑦(𝑓)  represents the cross-spectral density 
function; and F is defined as the Fourier transform. 

Employing the cross-spectrum estimation, the al-
gorithm is described as follows: 

1. Obtain vertical acceleration signals of the vehi-
cle, i.e. 𝑦�̈�, 𝑦�̈�, 𝑦�̈� and 𝑦�̈� from sensors on the front 
of the car, front axle, rear axle and the container, re-
spectively.  

2. Use 𝑦�̈� and 𝑦�̈�, 𝑦�̈� and 𝑦�̈�, 𝑦�̈� and 𝑦�̈�, respec-
tively, as the random processes 𝑓(𝑡) and 𝑔(𝑡), to 
compute the cross-spectral density function.  

3. The coherence indexes, 𝐶1(𝑓𝑖), 𝐶2(𝑓𝑖), 𝐶3(𝑓𝑖), 
are solved by three positioning combinations within 
the frequency range of interest, in which the rear axle 
is used as a reference. The rear axle, which served as 
the load-carrying axle, is usually assumed to be the 
most sensitive to the bridge vibration.  

The coherence index is then calculated by combin-
ing the three indexes: 

𝐶(𝑓𝑖) = 𝐶1(𝑓𝑖) + 𝐶2(𝑓𝑖) + 𝐶3(𝑓𝑖)   (3) 

Where the peak i is deemed prominent when its cor-
responding index is greater than a threshold; the 
threshold is empirically determined as 1.6 in this 
study. 

4. For a fully loaded truck, the bridge natural fre-
quency is recognized by finding the largest coherence 
indexes, 𝐶(𝑓𝑖), and excluding the vehicle frequency 
itself. The “dynamic frequency” of a driving vehicle 
naturally has the largest vibration commonality 
within the vehicle system. The 1st mode frequency of 
the bridge is identified as the greatest frequency peak 
in the cross-spectrum just after the truck’s frequency. 
Figure 1 shows a schematic illustration of the present 
strategy's method. 



 
 

 
Figure 1. Schematic illustration of the present strategy. 

3 EXPERIMENTAL PROGRAM 

Laboratory experiments are carried out to verify the 
present technique. The bridge frequency is modified 
by placing extra weights on the bridge with different 
mass sizes and locations, which in fact could repre-
sent structural damages in various positions and se-
verities as in previous studies (Cerda et al. 2014, Kim 
et al. 2014, Zhang et al. 2019, Zhang et al. 2019, Liu 
et al. 2020). 

3.1 Bridge model setup 

A HEA400 simply supported steel beam was utilized 
to model a bridge in the experiment as shown in Fig-
ure 2. The following are the physical properties of the 
steel beam: elastic modulus E = 210 GPa; density ρ = 
7.85 × 103 kg/m3; length L = 4 m; section area A = 
15898 mm2 and moment of inertia I = 85.64 × 106 
mm4. The fundamental natural frequency of a simply 
supported beam can be computed by: 

𝑓b
(1)

=
1

2𝜋
(

𝜋

𝐿
)

2
√

𝐸𝐼

𝑚
    (4) 

where 𝑚 represents the mass per unit length of the 
bridge; and the bridge natural frequency is theoreti-
cally estimated as 36.3 Hz.  
 

 

 
Figure 2. Steel beam used as a bridge model. 

 
The experimental setup contains an acceleration 

ramp and a deceleration ramp. As artificial damages, 
various-sized masses are added to three positions, 

altering the bridge frequency. Three accelerometers 
are installed on the steel beam at 0.1L, 0.5L, and 0.9L, 
respectively, to collect bridge vibrations during the 
vehicle passage. The details of the experimental setup 
are shown in Figure 3. 

 
 

 
Figure 3. Details of the experimental beam model setup. 

 

Figures 4a and 4b show how the mass and the sensor 

are attached to the beam. The PC-driven data acquisi-

tion system is connected to sensors via cables, which 

provides a sampling rate of 2000Hz. Data from bridge 

sensors, as the real bridge vibration responses, will be 

compared to car responses. 

 

 

 
(a) Placement of the additional mass. 

 

 
(b) Installation of the accelerometer. 
Figure 4. Attachments on the beam. 

3.2 Vehicle model setup 

As presented in Figure 5, Tamiya's Mercedes-Benz 
1850L is employed as the car model in the experi-
ment. The configuration and mechanics of the full-
sized truck are realistically captured in this 1/14 
scaled car model (568mm×202mm). The weight of 
the vehicle itself is 4.05 kg based on the laboratory 
measurement, which is about 0.8% of the bridge 



mass. Four sensors are instrumented at the front of the 
car, front axle, rear axle and the container, respec-
tively, as shown in Figures 6a, b.  

 

 

 
Figure 5. Scaled truck model. 

 

 
(a) Bottom truck. 

 

 
(b) Top truck. 
Figure 6. Sensor installation. 

 
In the experiment, loading weights of 6kg are 

placed inside the container, as depicted in Figure 7a, 
to simulate the “fully loaded” situation of the truck. 
The truck is driven by a 540-brushed type motor op-
erated by an electronic controller as shown in Figure 
7b. It is controlled to pass across the beam at a rela-
tively constant and low speed of nearly 1 m/s. 

 

 

  
              (a)                             (b) 
Figure 7. (a) Loading weights inside the container, (b) Electric 
controller. 

3.3 Experimental method 

The employed experimental models, just like many 

realistic cases, would not cause significant VBI re-

sponses. Such models can examine the present meth-

odology more effectively and provide references to 

practical problems. Firstly, the proposed strategy is 

tested for the original bridge condition to demonstrate 

the computing process. Secondly, the bridge fre-

quency is modified by adding masses of 20kg, 10kg, 

5kg to 0.6m, 2m and 2.4m of the beam in sequence, 

as indicated in Table 1. Thirdly, the fully loaded truck 

is controlled to travel through the beam under the 

above 10 cases, containing the original state, and 7 

crossings are repeated for each case. 

 
Table 1. Bridge case description. 

Case 

No. 

Loca-

tion 
Weight 

Case 

No. 

Loca-

tion 
Weight 

1 0 0 6 2 m 10 kg 

2 0.6 m 20 kg 7 2 m 5 kg 

3 0.6 m 10 kg 8 2.4 m 20 kg 

4 0.6 m 5 kg 9 2.4 m 10 kg 

5 2 m 20 kg 10 2.4 m 5 kg 
 

4 RESULTS AND ANALYSIS 

4.1 Acceleration acquisition and signal processing 

Figure 8 shows the vertical acceleration signals of the 

passing truck under the original bridge condition. The 

dash line “I” in the figure indicates the front axle en-

ters the bridge; the rear axle accesses the bridge at 

dash line “II”; responses at line “III” show that the 

front axle leaves the beam while the dash line “IV” 

shows the rear axle passing the beam. Due to the un-

smooth transition between the accelerating ramp and 

the steel beam, there is a peak in the signal response 

of the front axle when the truck enters the bridge. 



Similarly, a peak in the acceleration records of the 

front axle can also be found when it leaves the beam. 

Meanwhile, the bouncing and pitching motions in-

duced by the rear axle traversing the bridge will be 

communicated to the front axle due to coupling ef-

fects in the car itself. The entrance/exit information of 

the rear axle can also be seen at the front axle (the 

peaks following “I” and “III”). The effective signals 

in the study are selected as the acceleration signals 

between dash lines “II” and “III”, when the entire 

truck is on the beam. 

 

 
Figure 8. Original acceleration signals from vehicle sensors in 
different locations: (a) Front of the car, (b) Front axle, (c) Rear 
axle, (d) Container. 

 
The Fast Fourier Transforms (FFT) of acceleration 

data from four sensor positions (e.g. front car, front 
axle, rear axle, and container) on the truck, ranging 
from 0 to 100 Hz, are shown in Figures 9a, b, c, d. 
While the actual bridge natural frequency is derived 
from the FFT of bridge sensor responses within the 
range from 0 to 100Hz, as presented in Figure 10, 
which is 35.3 Hz, somewhat different from the theo-
retically estimated result of 36.3Hz. The bridge fre-
quency is more prominent in axel measurements, and 
this supports the findings of Koski et al. (2021). In 
engineering practice, however, this frequency value is 
supposedly unrecognized or only a broad range is 
known. The commonly used method of directly ob-
taining the bridge natural frequency from the vehicle 
spectrum is only applicable when the bridge fre-
quency noticeably dominates the spectrum, which can 
often be found under strong VBI responses. 

 
 

 
(a) The front car. 

 

 
(b) The front axle. 

 

 
(c) The rear axle. 

 

 
(d) The container. 
Figure 9. FFT of acceleration signals from sensors at different 
locations. 

 

 
Figure 10. FFT of acceleration signals of bridge sensors. 

4.2 Strategy performance for the original bridge 
case 

The cross-spectrums derived from the responses of 
vehicle sensors and their sum, coherence index, for 
the above case are shown in Figures 11a, b, respec-
tively, using the suggested strategy in cross-spectrum 
estimation. The first three prominent peaks with sub-
stantial commonality are marked in Figure 11b, and 
Table 2 shows the values of 𝐶(𝑓𝑖) with their compo-
nents of 𝐶1(𝑓𝑖), 𝐶2(𝑓𝑖) and 𝐶3(𝑓𝑖) for i = {1, 2, 3}. 
At a speed of 1 m/s, the vehicle dynamic frequency is 
19.5 Hz, and its coherence index is calculated as 2.95 
using cross-spectrum estimation, marked as the first 
prominent peak, 𝑓1. Excluding the vehicle dynamic 
frequency, 𝑓1, in the cross-spectrum, observably the 
frequency peak, 𝑓2, has the highest coherence index 



of 2.77, representing the most common vibration 
component in the vehicle system except for the vehi-
cle frequency itself. The bridge natural frequency is 
consequently chosen as 𝑓2, which is 39.0Hz, with a 
difference of 3.7Hz (10.4%) from the actual bridge 
frequency (35.3Hz). 

 

 

 
(a) Cohere 1: rear axle – front car; cohere 2: rear axle – front 
axle; cohere 3: rear axle – container. 

 

 
(b) Vehicle coherence index. 
Figure 11. Cross-spectrums. 

 
Table 2. Coherence indexes for the “Original” 
bridge case. 

i 1 2 3 

𝑓𝑖  (Hz) 19.5 39.0* 48.8 

𝐶1(𝑓𝑖)  0.98 0.95 0.86 

𝐶2(𝑓𝑖)  0.98 0.94 0.82 

𝐶3(𝑓𝑖)  0.99 0.88 0.89 

𝐶(𝑓𝑖)  2.95 2.77 2.57 

*  The bridge frequency identified by the vehicle cross spec-

trum. 

 
The first two prominent peaks (19.5 & 39.0Hz) re-

main the same when the cross-spectrum is focused on 
the whole frequency range from 0 to 1000Hz, as indi-
cated in Figure 12a. Similar results can be seen if the 
vehicle is exposed to the full loading weight of 6kg. 
These show that the proposed strategy could identify 
the bridge-related frequency over a broad frequency 
range when heavy loads are applied to the truck, 

which is important in cases when the determination 
of a rough frequency range is challenging.  

The cross-spectrum corresponding to the coher-
ence index calculated by the rear axle and the mid-
span bridge is presented in Figure 12b, which con-
firms the identification results. It demonstrates that 
the truck and the bridge system do share common fre-
quency components with large coherence indexes. It 
is worth mentioning that, in Figure 12b, the third 
prominent peak approaches the 2nd mode frequency 
of bridge (148.9 Hz), while the first and second peaks 
are identical to the vehicle cross-spectrum. The pres-
ence of the 2nd mode frequency, on the other hand, is 
less common in various vehicle components, and the 
third prominent peak in the vehicle cross-spectrum 
has no evident physical explanation, implying that the 
suggested technique may not perform well in the 
high-mode bridge frequency estimation. 

 
 

 
(a) Vehicle system. 

 

 
(b) Rear axle – mid-span bridge. 
Figure 12. Coherence index. 

4.3 Results for diverse bridge frequency cases 

The performance of the proposed strategy is tested 
by various frequency cases, where the bridge natural 
frequency is changed by adding extra masses of dif-
ferent sizes and positions. Table 3 summarizes the 
frequency estimation results with 10 cases of diverse 
bridge conditions (7 passages for each case). 𝑓�̅�,1 is 
the actual bridge natural frequency obtained from the 
bridge accelerometer, while 𝑓𝑏,1 represents the fre-
quency value estimated by the proposed strategy. 



They are the average values for multiple passages in 
each case. Frequency Shift is the difference between 
the estimated and the real bridge frequency, |𝑓�̅�,1 - 
𝑓𝑏,1|. The discrepancy, ∆𝑓𝑏,1, in the study is given by:  

|�̅�𝑏,1 − �̂�𝑏,1|

�̅�𝑏,1
× 100%     (5) 

The results reveal that the present technique can suc-
cessfully identify the bridge natural frequency despite 
the occurrence of frequency shifts. The frequency 
shifts between 3.4 Hz and 3.7 Hz, and the discrepancy 
varies from 9.8% to 10.9%. This is because the en-
ergy transmission in diverse mediums is always ac-
companied by energy dispersion, similar to Doppler's 
effect. The frequency shift will be maintained in a 
specified range for certain media, such as the steel 
beam and vehicle as the observer traveling at a con-
stant speed in this scenario. Customized cars were 
widely utilized to reduce the shifting effects, how-
ever, the non-negligible shifting that occurred here 
would be common in practice as the experimental 
model rebuilds the real VBI situations.  
 
Table 3. Coherence-based estimation results for di-
verse bridge conditions. 

Case Details 𝑓�̅�,1 
(Hz) 

𝑓𝑏,1 
(Hz) 

Frequency 
Shift (Hz) 

∆𝑓𝑏,1 
(%) 

1 Original 35.4 38.9 3.5 9.9 

2 0.15L, 20kg 34.2 37.8 3.6 10.5 

3 0.15L, 10kg 34.9 38.5 3.6 10.3 

4 0.15L, 5kg 35.1 38.7 3.6 10.2 

5 0.5L, 20kg 33.8 37.5 3.7 10.9 

6 0.5L, 10kg 34.3 38.0 3.7 10.7 

7 0.5L, 5kg 34.7 38.3 3.6 10.4 

8 0.6L, 20kg 34.0 37.5 3.5 10.3 

9 0.6L, 10kg 34.5 37.9 3.4 9.8 

10 0.6L, 5kg 35.0 38.5 3.5 10 

5 CONCLUSION  

This paper proposes a novel strategy to identify the 
bridge natural frequency from a passing truck. It uses 
the vertical accelerations of four sensors mounted on 
different positions of a commercial truck only, over-
coming the limitation that the vehicle-based measure-
ment always requires tailored cars as vibration excit-
ers to obtain bridge-relevant information. The present 
method can detect the bridge-related frequency from 
a vehicle spectrum with complicated frequency com-
ponents. Experiments are performed to examine the 
feasibility of the present methodology, where a steel 
beam and a real scaled truck model in full loading 
condition are employed to reconstruct the actual VBI 

system. The following conclusions can be drawn 
based on the results: 

(1) The present strategy can successfully identify 
the 1st mode frequency of the bridge by solely using 
vehicle vibration responses under noises from engine 
excitations and complicated vehicle dynamics.  

(2) The bridge frequency is shown to appear as a 
prominent peak in the vehicle cross-spectrum with a 
large coherence index. 

(3) The strategy performs outstandingly when us-
ing a fully loaded truck, which provides an identifica-
tion success rate of 100% without requiring prior 
knowledge. 

Nevertheless, it should be noticed that there is a 
non-negligible difference between the actual bridge 
frequency and its occurrence in the vehicle spectrum 
due to Doppler's effect. This is influenced by the se-
lection of vehicles and bridges. Studies will be con-
ducted on other types of bridges to further investigate 
the effectiveness of the present strategy. 

6 ACKNOWLEDGMENT 

This research was sponsored by the Jane and Aatos 
Erkko Foundation in Finland. The 1st author of this 
research was also financially supported by the Finnish 
Foundation for Technology Promotion (TES) and 
Chinese Scholarship Council (CSC). The last author 
is funded by the Academy of Finland Postdoctoral 
Research Project (339493). The financial support and 
the assistance of the laboratory staff at Aalto Univer-
sity are gratefully acknowledged. Any findings, opin-
ions, conclusions, and recommendations of this paper 
are those of the authors and do not necessarily reflect 
the views of the research sponsor. 

7 REFERENCES  

Salawu, O.S. 1997. Detection of structural damage through 
changes in frequency: a review. Engineering Structures 
22(9): 718-723. 

Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, 
D.W., Nadler, B.R. & Czarnecki, J.J. 2003. A review of struc-
tural health monitoring literature: 1996–2001. Los Alamos 
National Laboratory: USA.  

Enckell, M., Glisic, B., Myrvoll, F. & Bergstrand, B. 2011. Eval-
uation of a large-scale bridge strain, temperature and crack 
monitoring with distributed fibre optic sensors. Journal of 
Civil Structural Health Monitoring 1(2): 37–46.  

Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, 
S. & Turon, M. 2006. Wireless sensor networks for structural 
health monitoring. Proceedings of the 4th international con-
ference on Embedded networked sensor systems: 427–428. 

Elhattab, A., Uddin, N. & O’Brien, E. 2016. Drive-by bridge 
damage monitoring using bridge displacement profile differ-
ence. J Civil Struct Health Monitor 6(5): 839–850. 

Cantero, D., McGetrick, P., Kim, C.W. & O’Brien, E. 2019. Ex-
perimental monitoring of bridge frequency evolution during 
the passage of vehicles with different suspension properties. 
Eng Struct 187: 209–219. 



Nguyen, K.V. & Tran, H.T. 2010. Multi-cracks detection of a 
beam-like structure based on the on-vehicle vibration signal 
and wavelet analysis. Journal of Sound and Vibration 
329(21): 4455–4465. 

Miyamoto, A. & Yabe, A. 2012. Development of practical 
health monitoring system for short- and medium-span 
bridges based on vibration responses of city bus. Journal of 
Civil Structural Health Monitoring 2: 47-63. 

Cerda, F., Chen, S., Bielak, J., Garrett, J., Rizzo, P. & Ko-
vacevic, J. 2014. Indirect structural health monitoring of a 
simplified laboratory-scale bridge model. Smart Structures 
and Systems 13(5): 849-868. 

Obrien, E.J., McGetrick, P.J. & Gonzalez, A. 2014. A drive-by 
inspection system via vehicle moving force identification. 
Smart Struct. Syst. 13(5): 821–848. 

Obrien, E.J. & Keenahan, J. 2015. Drive-by damage detection in 
bridges using the apparent profile. Struct. Control. Health 
Monit. 22(5): 813–825. 

Obrien, E.J., Fitzgerald, P.C., Malekjafarian, A. & Sevillano, E. 
2017. Bridge damage detection using vehicle axle-force in-
formation. Engineering Structures 153: 71-80. 

Nagayama, T., Reksowardojo, A.P., Su, D. & Mizutani, T. 2017. 
Bridge natural frequency estimation by extracting the com-
mon vibration component from the responses of two vehi-
cles. Engineering Structures 150: 821-829. 

Lan, Y. 2021. Improving the Drive-by bridge inspection perfor-
mance by vehicle parameter optimization. Proceedings of 
8th Asia Pacific Workshop on Structural Health Monitoring 
(8AMWSHM) 18: 195-202. 

Lan, Y. 2021. Vertical vehicle displacement based drive-by in-
spection of bridge damage with parameter optimization. 
Journal of Engineering Research 9(4B): 193-210. 

Hester, D. & González, A. 2017. A discussion on the merits and 
limitations of using drive-by monitoring to detect localised 
damage in a bridge. Mechanical Systems and Signal Pro-
cessing 90: 234–253.  

Wang, H., Nagayama, T. & Su, D. 2017. Vehicle Parameter 
Identification through Particle Filter using Bridge Responses 
and Estimated Profile. Procedia Engineering 188: 64-71. 

Yang, Y., Li, Y. & Chang, K. 2014. Constructing the mode 
shapes of a bridge from a passing vehicle: a theoretical study. 
Smart Struct Syst 13(5): 797–819. 

Malekjafarian, A., McGetrick, P. & O’Brien, E. 2015. A Review 
of Indirect Bridge Monitoring Using Passing Vehicles. 
Shock and Vibration 2015: 1-16.  

Kim, C.W., Isemoto, R., McGetrick, P.J., Kawatani, M. & 
Obrien, E.J. 2014. Drive-by bridge inspection from three dif-
ferent approaches. Smart Structures and Systems 5: 775-796. 

Yang, Y.B. & Yang, J.P. 2018. State-of-the-Art Review on 
Modal Identification and Damage Detection of Bridges by 
Moving Test Vehicles. International Journal of Structural 
Stability and Dynamics 18(2): 1850025.  

Green, M.F. & Cebon, D. 1997. DYNAMIC INTERACTION 
BETWEEN HEAVY VEHICLES AND HIGHWAY 
BRIDGES. Computers & Structures 62(2): 253-264.  

Liu, J., Chen, S., Bielak, J. & Garrett, J.H. 2020. Diagnosis al-
gorithms for indirect structural health monitoring of a bridge 
model via dimensionality reduction. Mechanical Systems 
and Signal Processing 136: 106454. 

Bendat, J.S. & Piersol, A.G. 2011. Random data: analysis and 
measurement procedures. Canada. 

Zhang, Y., Miyamori, Y., Mikami, S. & Saito, T. 2019. Vibra-
tion-based structural state identification by a 1-dimensional 
convolutional neural network. Computer-Aided Civil and In-
frastructure Engineering 34(9): 822-839. 

Zhang, Y., Miyamori, Y., Saito, T., Mikami, S. & Oshima, T. 
2019. Robustness Tests of a Vibration-based Structural State 
Identification Method Through a 1-D Convolutional Neural 
Network. Proceedings of 9th International Conference on 

Structural Health Monitoring of Intelligent Infrastructure 
Conference (SHMII9). Missouri: USA. 

Koski, K., Fülöp, L., Tirkkonen, T., Yabe, A. & Miyamoto, A. 
2021. Heavy vehicle-based bridge health monitoring system. 
Proceedings of 10th International Conference on Bridge 
Maintenance, Safety and Management, IABMAS 2020. Sap-
poro: Japan. 

 


