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Generalized Leverage Scores: Geometric Interpretation and Applications

Bruno Ordozgoiti 1 Antonis Matakos 2 Aristides Gionis 3

Abstract
In problems involving matrix computations, the
concept of leverage has found a large number of
applications. In particular, leverage scores, which
relate the columns of a matrix to the subspaces
spanned by its leading singular vectors, are help-
ful in revealing column subsets to approximately
factorize a matrix with quality guarantees. As
such, they provide a solid foundation for a variety
of machine-learning methods. In this paper we
extend the definition of leverage scores to relate
the columns of a matrix to arbitrary subsets of sin-
gular vectors. We establish a precise connection
between column and singular-vector subsets, by
relating the concepts of leverage scores and prin-
cipal angles between subspaces. We employ this
result to design approximation algorithms with
provable guarantees for two well-known prob-
lems: generalized column subset selection and
sparse canonical correlation analysis. We run
numerical experiments to provide further insight
on the proposed methods. The novel bounds we
derive improve our understanding of fundamental
concepts in matrix approximations. In addition,
our insights may serve as building blocks for fur-
ther contributions.

1. Introduction
When dealing with data in matrix form, it is often useful to
find compact low-dimensional approximations. One way
to find such an approximation is by computing a singular
value decomposition (SVD), which offers a representation
of a matrix in terms of a set of linearly-independent factors,
conveniently sorted in order of importance. The SVD is
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optimal the following sense: for any constant k, it reveals
the best rank-k approximation of a matrix, as measured by
a family of matrix norms.

A drawback of SVD is that the resulting factors do not cor-
respond directly to the rows or columns of the input matrix
and lack an intuitive interpretation. To address this issue,
many works in the literature seek approximate factorizations
in terms of elements of the matrix: instead of settling for
a set of abstract factors, like those offered by the SVD, we
aim to find a subset of rows or columns that are particularly
representative of the whole matrix.

Computing an SVD is a tractable problem and has been the
subject of extensive research. Thus, efficient methods exist
to obtain an SVD to any desired level of precision (Golub
& Van Loan, 1996). When we wish to select a subset of
matrix elements instead, the task often becomes computa-
tionally hard under various natural objectives (Civril, 2014;
Shitov, 2017). Therefore, research in this area has focused
on finding efficient approximation algorithms.

An example of a more intuitive matrix approximation is the
column subset selection problem (Deshpande et al., 2006;
Boutsidis et al., 2009), which, given a matrix and a num-
ber k, asks for the k best columns, in the following sense:
Problem 1. Column subset selection (CSS). Given a ma-
trix A ∈ Rm×n and a positive integer k smaller than the
rank of A, find a matrix C comprised of k columns of A to
minimize

‖A− CC+A‖2F , (1)

where C+ is the Moore-Penrose pseudoinverse of C.

The matrix CC+A is the best Frobenius-norm approxima-
tion of A in the column-space of C and is efficiently com-
putable. It is easy to verify that the problem of maximizing
‖CC+A‖2F is equivalent to Problem 1, meaning that the set
of optimal solutions remain the same.

Leverage scores and good column subsets. In finding
good column subsets for the CSS problem, leverage scores
have proved very useful. These scores — to be precisely
defined later — relate the columns of a matrix to the sub-
space spanned by its top singular vectors. Thus, they might
reveal whether a column subset is particularly representative.
Leverage scores, and variants thereof, have been employed
to design approximation algorithms for CSS and related
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problems (Drineas et al., 2006b; 2008; Mahoney & Drineas,
2009; Boutsidis et al., 2009; Papailiopoulos et al., 2014).
We give a more detailed overview of related work in the
appendix. Leverage scores can be traced back to the concept
of statistical leverage, long employed in statistics and the
analysis of linear regression (Chatterjee & Hadi, 1986).

The techniques based on leverage scores, however, do not
apply to other matrix-approximation problems, such as the
following generalization of CSS (in maximization form):

Problem 2. Generalized column subset selection (GCSS).
Given two matrices A ∈ Rm×n, B ∈ Rm×p and a posi-

tive integer k smaller than the rank of A, find a matrix C
comprised of k columns of A to maximize

‖CC+B‖2F . (2)

The reason that leverage scores are no longer helpful is that
they relate the columns of A to its top-k singular vectors,
and these, in turn, may not provide a good approximation
ofB. The following question arises naturally: is there useful
information elsewhere among the singular subspaces of A?

We will show that, indeed, such information can be drawn
from subspaces spanned by arbitrary sets of singular vectors.
This information, in the form of leverage scores, will be
useful to tackle problems like GCSS.

1.1. Our Contributions.

In this paper we introduce the concept of generalized lever-
age scores, which relate the columns of a matrix to the
subspace spanned by an arbitrary subset of its singular vec-
tors. Our definition, which provides a natural extension of
leverage scores, can be employed to obtain approximation
algorithms for a variety of problems. Furthermore, the anal-
ysis leading to these algorithms yields insightful results of
independent interest, relating leverage scores and the con-
cept of angles between subspaces. In more detail, we make
the following contributions.

Generalized leverage scores and connections to princi-
pal angles: We introduce the concept of generalized lever-
age scores, defined in terms of an arbitrary set of singular
vectors, as contrasted to the standard leverage scores, which
are defined with respect to the leading singular vectors. We
show how this generalization enables the application of
leverage-score-based techniques to a new array of problems,
leading to algorithms with approximation guarantees.

The cornerstone of these results is a novel inequality that
gives a geometric interpretation of the generalized leverage
scores, by relating them to the principal angles between ma-
trix columns and singular vectors. The special case of stan-
dard leverage scores, which is of independent interest, will
be treated separately and proved using different arguments.

We believe that our results, which relate two fundamen-
tal quantities, solidify our understanding of how leverage
scores connect matrix columns and singular vectors.

Applications: We showcase the applicability of the general-
ized leverage scores by providing approximation algorithms
for two well-known problems:

For GCSS (Problem 2), we show that choosing singular
vectors and generalized leverage scores to cover a (1− ε)-
factor of readily accessible quantities, we find a column
submatrix C of A such that ‖CC+B‖2F ≥ (1 − ε)2‖B‖2F .
This is akin to a known result for CSS (Papailiopoulos et al.,
2014), and complementary to the only other known bound —
to our knowledge — for GCSS (Bhaskara et al., 2016). In
contrast to the result of Bhaskara et al. (2016), the number
of columns chosen by our algorithm does not depend on the
smallest singular value of the optimal subset, which is un-
known. Instead, it depends on the decay of the generalized
leverage scores, which is trivially computable. In particular,
if the scores follow a power-law decay, O

(
σ2
ωk
σ2
µε

)
columns

suffice, where σω, σµ are a choice of singular values that
depends on the approximation constant ε — the user, thus,
has control over this ratio.

For sparse canonical correlation analysis (SPARSECCA)
(Hardoon & Shawe-Taylor, 2011; Uurtio et al., 2017) we
give similar results (see Section 5.2). Given input matrices
A and B, we use a similar criterion as before to find column
subsets of both matrices whose canonical correlations add
up to a (1 − ε)4 factor of the total canonical correlations
between A and B. We are not aware of other algorithms
that give guarantees for SPARSECCA in these terms.

The cost of the proposed algorithms is dominated by the
task of finding an SVD. Thus, our approaches can take full
advantage of the plethora of existing techniques for this
purpose, as well as fast approximate methods.

2. Preliminaries
We will use upper and lowercase letters for matrices and
vectors, respectively, as in A and x. We will also use upper-
case letters for sets. Context will be sufficient to tell sets
and matrices apart. For a matrix A we write Ai,: to denote
its i-th row. We write A+ to denote the pseudoinverse of A.

As in other works involving leverage scores, the singular
value decomposition will make frequent appearances in this
paper. We use the subindex k, as in Uk and Vk, to denote the
“truncated” submatrices of a singular value decomposition,
obtained by retaining the first k singular vectors only. Anal-
ogously, given a set R of natural numbers, UR and VR will
denote the matrices obtained by retaining the singular vec-
tors indexed by R. For instance, note that Uk = U{1,...,k}.
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Chief among our cast of characters are the leverage scores.
Definition 2.1. Given a matrix A with singular value de-
composition A = UΣV T , the rank-k leverage score of the
i-th column of A is defined as ‖(Vk)i,:‖22.

Given a matrix A, we will denote the i-th diagonal element
of AA+ as `i(A). This quantity is sometimes known in the
statistics literature as statistical leverage of the i-th row ofA,
and as we will see, it is connected to the leverage scores.
Even though this choice of nomenclature may occasionally
lead to confusion, we retain it for historical reasons. We
ask the reader to remark the distinction in this text between
statistical leverages and leverage scores.

Also relevant is the concept of principal angles between
subspaces, defined as follows (Björck & Golub, 1973):
Definition 2.2. Let F and G be subspaces of Rn. Let the
columns of matrices Q and T be orthonormal bases of F
and G, respectively. The principal angles between F and G
are the angles whose cosines are the singular values ofQTT .

We will often speak of angles between two matrices to mean
the angles between the subspaces spanned by their columns.

We make use of projection matrices and their properties.
Definition 2.3. A matrix H is said to be a projection matrix
(or projector) if H2 = H .

For any projection matrix H , we have:
Property 1.

∑
j H

2
ij = Hii.

Property 2. H is invariant with respect to the basis of the
space onto which it projects.
Property 3. tr(H) = r, where r is the dimension of the
space onto which H projects.

3. Leverage Scores and the Top-k Singular
Subspace

In this section we present our first result, which relates the
two fundamental quantities defined in the previous section:
the leverage scores and the principal angles between sub-
spaces. Even though this is a special case of the result in
Section 4, we treat it separately for two reasons: first, it is
of independent interest and, to the best of our knowledge,
novel; second, the proof techniques will be useful — but
insufficient — for the more general results of Section 4, so
this case serves as a natural, more accessible, preamble.

To state our result, we will rely on two easily verified facts,
given below. Here, we consider matrices A = UΣV T and
C = AS, where S is a column selection matrix (binary
matrix with unit-norm columns), and thus C is comprised
of a column subset of A.
Fact 1. The sum of the leverage scores of the columns of
C = AS is equal to ‖V Tk S‖2F .

Fact 2. The sum of the squared cosines of the principal
angles between C and Uk is equal to ‖CC+Uk‖2F .

To verify Fact 2, note that if UC is an orthonormal basis for
C, then ‖UTCUk‖2F = ‖UCUTCUk‖2F = ‖UCU+

CUk‖2F =
‖CC+Uk‖2F . The last equality relies on Property 2.

We now state the main result of this section.

Theorem 3.1. Consider a matrix A ∈ Rm×n and its singu-
lar value decomposition A = UΣV T . Consider a column
sampling matrix S ∈ Rn×r and write C = AS. Then

‖CC+Uk‖2F ≥ ‖V Tk S‖2F .

In words, the sum of the leverage scores of a column subset
provides a lower bound for the sum of the cosines of the
principal angles between two subspaces: the one spanned
by said column subset and the one spanned by the top-k left
singular vectors. We believe this result provides new insight
on how the leverage scores connect column subsets and the
top-k singular vectors.

In our proof of Theorem 3.1 we will make use of the fol-
lowing technical result, which characterizes the change in
the statistical leverages of a matrix upon multiplication of
its rows by scalars. Recall that `i(A) is the i-th diagonal
element of AA+.

Lemma 3.2. Consider a matrix X ∈ Rn×k of rank k. Ad-
ditionally, consider a non-negative real number α and a
diagonal matrix Σ̃(i) defined as follows: Σ̃

(i)
ii = α, Σ̃

(i)
jj = 1

for all j 6= i. We write xj = XT
j,:, for any j. Then

`j(Σ̃
(i)X) = `j(X)−

(α2 − 1)(xTj (XTX)−1xi)
2

1 + (α2 − 1)`i(X)
,

and in particular,

`i(Σ̃
(i)X) =

α2`i(X)

1 + (α2 − 1)`i(X)
.

Proof. First, observe that since X is full column rank,
XX+ = X(XTX)−1XT . Note also that scaling one row
ofX through multiplication by a scalar is a rank-1 update of
X . In particular, let xTi be the i-th row of X , and consider
the product Σ̃(i)X . It can be verified that

(Σ̃(i)X)T Σ̃(i)X = XTX + (α2 − 1)xix
T
i .

The statistical leverage of the j-th row of Σ̃(i)X can thus be
computed as

x̂Tj (XTX + (α2 − 1)xix
T
i )−1x̂j ,

where x̂Tj is the j-th row of Σ̃(i)X . Applying the Sherman-
Morrison formula we obtain that the statistical leverage of



Generalized Leverage Scores: Geometric Interpretation and Applications

the j-th row, j 6= i, of Σ̃(i)X can be written as follows

`′j = x̂Tj (XTX)−1xj

−
(α2 − 1)x̂Tj (XTX)−1xix

T
i (XTX)−1x̂j

1 + (α2 − 1)xTi (XTX)−1xi
.

Since x̂j = xj , we have

`′j = `j −
(α2 − 1)(xTj (XTX)−1xi)

2

1 + (α2 − 1)`i
.

Finally, by definition, xTi (XTX)−1xi = `i, so if j = i we
easily reach the expression for `′i stated in the lemma.

Proof of Theorem 3.1. We will start by rewriting the quan-
tities in question into a more convenient form. Note that
C = UΣV TS. In addition, (UΣV TS)+ = (ΣV TS)+UT .
Thus, we can write

‖CC+Uk‖2F = ‖UΣV TS(ΣV TS)+UTUk‖2F

=

∥∥∥∥ΣV TS(ΣV TS)+
(
Ik
0

)∥∥∥∥2
F

. (3)

Here, Ik is the k × k identity matrix. The last equality
follows because U is orthogonal. The resulting quantity
is the squared Frobenius norm of the matrix composed of
the first k columns of the projector ΣV TS(ΣV TS)+. By
Property 1, any projector H satisfies Hii =

∑
j H

2
ji. In

words, each diagonal entry equals the squared norm of the
corresponding column. Thus, the quantity in Equation (3)
equals the sum of the statistical leverages of the top k rows
of ΣV TS. We now turn to V Tk S.

‖V Tk S‖2F = ‖STVk‖2F =

∥∥∥∥STV ( Ik
0

)∥∥∥∥2
F

=

∥∥∥∥V TS(V TS)T
(
Ik
0

)∥∥∥∥2
F

(4)

=

∥∥∥∥V TS(V TS)+
(
Ik
0

)∥∥∥∥2
F

. (5)

Equations (4) and (5) hold because V TS is comprised of
orthonormal columns, which means that the norm is unaf-
fected by its presence as a left-multiplying factor, and its
pseudoinverse is equal to its transpose.

Equations (3) and (5) suggest that we are interested in an-
alyzing the change in statistical leverage of V TS when
premultiplied by diagonal matrix Σ. In particular, we want
to show that the sum of the statistical leverages of the top k
rows of V TS does not decrease by this multiplication.

We will now make use of Property 2 to coerce Σ into a more
favorable form. In particular, we define Σ̃ = σ−1k Σ. This
ensures that σi(Σ̃) ≥ 1, for 1 ≤ i ≤ k and σi(Σ̃) ≤ 1, for

i > k. Observe that by Property 2, ΣV TS(ΣV TS)+ =
Σ̃V TS(Σ̃V TS)+.

To understand how Σ̃ affects the statistical leverages, we
will consider scaling each row separately. In particular, we
define Σ̃(i) as the diagonal matrix satisfying Σ̃

(i)
ii = Σ̃ii and

Σ̃
(i)
jj = 1, for j 6= i. Note that the matrices V TS and Σ̃

(i)
jj

satisfy the conditions of Lemma 3.2.

Let `j(Σ̃(i)V TS) be the statistical leverage of the j-th row
of Σ̃(i)V TS. By Lemma 3.2 we have that

(i) if σ̃i ≥ 1 then `i(Σ̃
(i)V TS) ≥ `i(V

TS) and
`j(Σ̃

(i)V TS) ≤ `j(V TS) for j 6= i; and

(ii) if σ̃i ≤ 1 then `i(Σ̃
(i)V TS) ≤ `i(V

TS) and
`j(Σ̃

(i)V TS) ≥ `j(V TS) for j 6= i.

We will now analyze the effect of scaling all rows. For
convenience, we define matrices resulting from successively
scaling the rows of V TS:

X(i) =

 i∏
j=1

Σ̃(j)

V TS.

That is, X(i) is simply the matrix obtained by scaling the
first i rows of V TS by the corresponding entries of Σ̃. From
our discussion above we easily conclude that in the case
of X(k), the sum of the statistical leverages of the bot-
tom n − k rows has not increased. Furthermore, upon
successive left multiplication by Σ̃(k+1) . . . Σ̃(n) to obtain
Σ̃V TS, said sum cannot increase. This is because σi ≤ 1
for j > k. Finally, we invoke Property 3 to indicate that∑
j `j(V

TS) =
∑
j `j(X

(i)) for any i, as scaling a row
cannot affect the rank, and so the dimension of the subspace
spanned by these matrices is the same.

Thus, as the sum of statistical leverages remains constant
and the bottom n− k have not increased, we conclude that
the sum of the top k statistical leverages has not decreased.

This concludes our proof.

4. Generalized Leverage Scores and
Arbitrary Singular Subspaces

We will now generalize the result presented in Section 3 to
consider subspaces spanned by an arbitrary subset of singu-
lar vectors. We first define the generalized leverage scores.

Definition 4.1. Given a matrix A of rank ρ with singular
value decomposition A = UΣV T , the generalized leverage
score of the i-th column of A with respect to the set R ⊆ [ρ]
is defined as ‖(VR)i‖22.

Instead of the connection between leverage scores and prin-
cipal angles between C and Uk, as in Section 3, we are now
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interested in the relationship between generalized leverage
scores and the angles between C and UR, for an arbitrary
index set R. In other words, we seek to bound ‖CC+UR‖2F
in terms of ‖V TR S‖2F , using the matrices and notation intro-
duced in Section 3. This result will lead to our approxima-
tion results, presented in Section 5.

Our analysis will be based in the following equalities, anal-
ogous to Equations (3) and (4),

‖CC+UR‖2F =

∥∥∥∥ΣV TS(ΣV TS)+
(
IR
0

)∥∥∥∥2
F

, (6)

‖V TR S‖2F =

∥∥∥∥V TS(V TS)+
(
IR
0

)∥∥∥∥2
F

, (7)

where IR is the matrix that “picks” the columns indexed by
the set R.

Again, we need to analyze the changes in the diagonal el-
ements of V TS(V TS)+ upon left-multiplication of V TS
by Σ. The challenge now is that the entries of interest are
no longer the top ones. If we apply the previous reasoning,
whereby we analyzed a sequential application of the left-
multiplication by Σ, it could be the case that some of the
diagonal elements do indeed decrease. As a consequence,
‖CC+UR‖2F may become smaller than ‖V TR S‖2F , so an
inequality like the one in Theorem 3.1 no longer holds.

Nevertheless, we can bound the extent of this decrease. The
next lemma provides such a bound, and is essential for the
final result.

Lemma 4.2. Consider a matrix and its singular value de-
composition A = UΣV T ∈ Rm×n. Consider a column
sampling matrix S ∈ Rn×r, and write C = AS. Consider
an arbitrary index set R. We have

‖CC+UR‖2F ≥ ‖V TR S‖2F −
σ2
ω

σ2
µ

(
|R| − ‖V TR S‖2F

)
,

where σω = maxi/∈R σi(A) and σµ = mini∈R σi(A).

Before proving Lemma 4.2, we will state the Woodbury
matrix identity, which we will employ as a technical crutch.

Lemma 4.3. Woodbury matrix identity (Hager, 1989).

Given an invertible matrix T , let P = T + Y Z. Then

P−1 = T−1 − T−1Y
(
Ik + ZT−1Y

)−1
ZT−1.

We will also introduce some helpful notation. We write
X = V TS, H = XX+ and H̃ = Σ̃X(Σ̃X)+. We define
the set M = {i : i < maxR, i /∈ R}. We define σµ =
mini∈R{σi(A)}, σω = maxi∈M{σi(A)} (or σω = 0 if
M = ∅) and write Σ̃ = σ−1µ Σ.

We use xi to denote the i-th row of X (as a column vector).

Finally, for S ⊂ N we define Σ̃S so that Σ̃Sii = Σ̃ii if i ∈ S
and Σ̃Sii = 1 otherwise; and ES =

∑
i∈S(σ̃2

i − 1)xix
T
i .

Note that (Σ̃SX)T Σ̃SX = XTX + ES ; see proof of
Lemma 3.2.

Proof of Lemma 4.2. Throughout this proof we assume that
none of the singular vectors picked (i.e., those indexed by
the set R) belong to the nullspace of A.

Note that because of Equations (6) and (7), it will suffice to
bound

∑
i∈R H̃ii in terms of

∑
i∈RHii.

We first identify the scaling operations (i.e., the rows of Σ̃)
that cause the value of

∑
i∈RHii to decrease.

First, note that only rows with indices in M or R can have
any such effect (as argued in the proof of Theorem 3.1,
multiplying a row of V TS by a value smaller than 1 will
cause the rest of the diagonals of H to increase). In the
case of a row j ∈ R, we have both a positive and a negative
effect, as Hjj will increase and every Hii, i ∈ R, i 6= j will
decrease. By Lemma 3.2, after scaling row j, we can write

`j(Σ̃
(j)X) = `j(X)+

(α2 − 1)`j(X)− (α2 − 1)(`j(X))2

1 + (α2 − 1)`j(X)
.

On the other hand, the elements Hii, for i ∈ R, i 6= j will
experience the decrease indicated by Lemma 3.2. Now, by
Property 1 for projection matrices:

`j(X) ≥
∑
i∈R

`2i (X).

Therefore, after scaling any row j ∈ R, the net effect on∑
i∈RHii will be positive. It will thus be enough to bound

the effect of scaling the rows indexed by M . To accomplish
this, we will use Lemma 4.3. We write T = XTX , Y =
ES , and Z = I . Lemma 4.3 gives

(
(Σ̃SX)T Σ̃SX

)−1
= (XTX)−1

− (XTX)−1ES(I + (XTX)−1ES)−1(XTX)−1

= I − ES(I + ES)−1, (8)

because XTX = I . We are interested in analyzing how
much H̃jj may decrease with respect to Hjj , for any j ∈ R.
Note that the diagonal elements Hjj may decrease each
time we left-multiply H by Σ̃(i), for some i ∈ M . Thus,
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we can bound the total decrease for any j ∈ R as follows:

H̃jj ≥ xTj
(

(Σ̃MX)T Σ̃MX
)−1

xj

= xTj xj − xTj EM (I + EM )−1xj

= Hjj − xTj (
∑
i∈M

(σ̃2
i − 1)xix

T
i )(I + EM )−1xj

= Hjj −
∑
i∈M

(σ̃2
i − 1)Hjix

T
i (I + EM )−1xj .

Since EM is the sum of positive semidefinite matrices and
thus positive semidefinite itself, the spectral norm of (I +
EM )−1 is at most 1. This means that xTi (I + EM )−1xj ≤
|xTi xj | and thus we can conclude that

H̃jj ≥ Hjj −
∑
i∈M

(σ̃2
i − 1)Hji|xTi xj |

= Hjj −
∑
i∈M

(σ̃2
i − 1)H2

ji.

We can thus write

H̃jj ≥ Hjj −
∑
i∈M

(σ̃2
i − 1)H2

ji

≥ Hjj − (σ̃ω
2 − 1)

∑
i∈M

H2
ji

≥ Hjj − (σ̃ω
2 − 1)(‖Hj,:‖22 −H2

jj)

= Hjj − (σ̃ω
2 − 1)(Hjj −H2

jj) . Property 1

= Hjj − (σ̃ω
2 − 1)Hjj(1−Hjj)

≥ Hjj − σ̃ω2(1−Hjj). . 0 ≤ Hjj ≤ 1

By summing over all rows of interest (that is, those in the
set R), we can analyze the total change attributable to the
scaling of all rows:∑

j∈R
H̃jj ≥

∑
j∈R

Hjj − σ̃ω2
∑
j∈R

(1−Hjj)

=
∑
j∈R

Hjj −
σ2
ω

σ2
µ

∑
j∈R

(1−Hjj). (9)

The result now follows from the fact that
∑
j∈RHjj =

‖V TR S‖2F , established by Equation (7).

Note that if
∑
i∈RHjj = ‖V TR S‖2F ≥ |R| − ε, from Equa-

tion (9) we easily get

‖CC+UR‖2F ≥ ‖V TR S‖2F −
2εσ2

ω

σ2
µ

.

We immediately obtain the following result.
Theorem 4.4. Consider a matrix A and its singular value
decomposition A = UΣV T ∈ Rm×n. Consider an arbi-
trary index set R and a column sampling matrix S ∈ Rn×r

satisfying ‖V TR S‖2F ≥ |R|−
εσ2
µ

2σ2
ω

, and write C = AS. Then

‖CC+UR‖2F ≥ ‖V TR S‖2F − ε.

Algorithm 1 Generalized deterministic leverage score sam-
pling for GCSS (Problem 2).
Input: Target matrix B ∈ Rm×t, basis matrix A = UΣV T ,
ε, δ ∈ R.
1. Choose index set R so that ‖UTRB‖2F ≥ (1− δ)‖B‖2F .
2. Output column-selection matrix S based on generalized-

leverage-scores ordering so that ‖V TR S‖2F ≥ |R| −
ε2σ2

µ

8σ2
ω
.

Note that as an immediate corollary, we can replace σω/σµ
with the condition number of A.

We remark briefly upon the insight revealed by this result.
As we descend into the depths of the singular spectrum, the
leverage scores provide an ever-weakening link between
columns and singular-vector subspaces. The extent of this
decline is quantified by the ratio σω/σµ.

5. Applications
5.1. Column Subset Selection

We apply our results to GCSS (Problem 2). The only
provable method we know for this formulation was given
by Bhaskara et al. (2016).

We propose Algorithm 1 for Problem 2, and show it enjoys
approximation guarantees. The proof is in the Appendix.

Theorem 5.1. Let C = AS, where S is the matrix output
by Algorithm 1. Then

‖CC+B‖2F ≥ (1− ε)(1− δ)‖B‖2F .

This result is akin to that of Papailiopoulos et al. (2014). In
particular, it expands the guarantees to an arbitrary target
matrix B, as the result of Papailiopoulos et al. (2014) is
limited to the case A = B. Note that while their result is
for the minimization objective, one can obtain a bound for
maximization by simple manipulations.

This result is also an alternative to that of Bhaskara et al.
(2016), which gives a relative-error approximation to the
optimum for the greedy algorithm. The number of columns
required is inversely proportional to the smallest singular
value of the optimal subset. Our result, on the contrary, does
not rely on said singular value, which is unknown and could
be arbitrarily small, but on the easily computed decay of
the generalized leverage scores and the ratio of the chosen
singular values. We will make this precise in Section 6.

5.2. Sparse Canonical Correlation Analysis

Consider two matrices A and B, whose rows correspond
to mean-centered observations of a collection of random
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variables. The problem of Canonical Correlation Analy-
sis (Hotelling, 1936) is to find pairs of vectors, in the spaces
spanned by the columns of A and B respectively, that have
maximal correlation. Formally, the i-th canonical correla-
tion between A and B can be defined as follows:

max
ui,vi

uTi A
TBvi

such that ‖Aui‖ = ‖Bvi‖ = 1,

uTi uj = vTi vj = 0, j = 1, . . . , i− 1.

By decomposing A = QAΣAV
T
A and B = QBΣBV

T
B , and

optimizing over the vectors û = ΣAV
T
A u and v̂ = ΣBV

T
B v,

it is easy to see that computing the singular value decom-
position of QTAQB is equivalent to finding the canonical
correlations. In particular, these are given by the resulting
singular values, and are of course equal to the cosines of the
principal angles between A and B.

Sparsity. In high-dimensional settings, that is, when the
matrices A and B have a large number of columns, one
may be interested in knowing whether a small number of
variables account for a significant amount of the canonical
correlations. This can be accomplished by enforcing sparsity
into the vectors ui and vi when finding the i-th canonical
correlation. This is usually referred to as Sparse CCA.

We can show that we can expand our results from Section 5.1
to solve Sparse CCA with approximation guarantees. The
algorithm is similar to Algorithm 1, as it can be interpreted
as two-sided column subset selection. We analyze the algo-
rithm next.

Analysis. We first compute ‖QTAQB‖2F , which is the total
sum of canonical correlations between A and B. Our goal
is to choose column subsets from both matrices so as to
preserve this quantity as much as possible. We first proceed
as in Algorithm 1, choosing columns ofA to approximateB.
We find a subset C = AS such that

‖CC+QB‖2F = ‖QTASQB‖2F ≥ (1−ε)(1−δ)‖QTAQB‖2F .

Next, we do the same, but picking columns from B to ap-
proximate AS. We obtain a subset C ′ = BS′ such that

‖C ′C ′+QAS‖2F ≥ (1− ε)(1− δ)‖QTASQB‖2F
≥ (1− ε)2(1− δ)2‖QTAQB‖2F .

We easily derive the following result.

Theorem 5.2. Given two matrices A and B with respective
orthonormal bases QA and QB , Algorithm 2 outputs two
column-sampling matrices S and S′ such that if W and W ′

are orthonormal bases of AS and BS′ respectively, then

‖WTW ′‖2F ≥ (1− ε)2(1− δ)2‖QTAQB‖2F .

Algorithm 2 Generalized deterministic leverage score sam-
pling for Sparse CCA.
Input: Matrices A ∈ Rm×n, B ∈ Rm×t, ε, δ ∈ R.

1. Orthonormalize A = QARA and B = QBRB , and
compute q = ‖QTAQB‖2F .

2. Compute the SVD of A = UΣV T .

3. Choose index set R so that ‖UTRQB‖2F ≥ (1− δ)q.

4. Find a column-selection matrix S so that
‖V TR S‖2F ≥ |R| −

ε2σ2
µ

8σ2
ω

.

5. Compute the SVD of B = U ′Σ′V ′T and orthonormal-
ize AS = QASRAS .

6. Compute q′ = ‖QTASQB‖2F .

7. Choose index set T so that ‖U ′TT QAS‖2F ≥ (1− δ)q′.

8. Find a column-selection matrix S′ so that
‖V ′TT S′‖2F ≥ |T | −

ε2σ′2
µ

8σ′2
ω

.

9. Output matrices S and S′.

6. Complexity and Practical Aspects
Computational complexity. As we have mentioned before,
the running time of algorithms derived from our approach is
dominated by the cost of computing an SVD. Thus, one can
benefit from the extensive literature and off-the-shelf soft-
ware for computing SVD (Golub & Van Loan, 1996). If one
is willing to trade accuracy for speed, it is possible to employ
randomized methods. In particular, given an input matrix
of size m × n, it is possible to compute an approximate
truncated SVD of rank-k in time O(mnk) (Martinsson &
Tropp, 2020). For the applications we consider here, the pre-
cise accuracy of the approximation is not important, as long
as the order of the generalized leverage scores is preserved.

The effects of truncation. The most straightforward way
to use the SVD efficiently is to truncate it, that is, to com-
pute only the leading k singular vectors and values. Smaller
values of k will yield coarser approximations at improved
speed and storage requisites. One interesting aspect of our
approach is that truncation does not necessarily imply a
loss of precision. In Algorithm 1, for instance, note that
only the singular vectors up to σµ are needed. The rest
can be discarded at no loss. In computationally constrained
environments, where computing a full SVD might be chal-
lenging, one can successively compute more vectors, by
increasing k, until ‖UTk B‖2F becomes large enough.

The number of selected columns. As shown in previous
work (Papailiopoulos et al., 2014), when the rank-k lever-
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Figure 1: Behavior of our method in an example of Altschuler et al.
(2016), as θ varies in [1,0). Left: the norm of B when projected
onto the space spanned by the last left singular vector and the rest.
Right: Lower bound of Theorem 5.1.

age scores follow a power-law decay, poly(k, 1/ε) columns
suffice to add up to k − ε.

The result translates unchanged to Theorem 3.1, and applies
to Theorem 4.4 with small changes. To see this, it is enough
to observe that to obtain our bound on the principal angles,
we require the generalized leverage scores to add up to
|R| − εσ2

µ/(2σ
2
ω). We apply the results of Papailiopoulos

directly.

In particular, if the generalized leverage scores satisfy `i =
`1/i

(1+η), the number of required columns is

c = max

{(
4kσ2

ω

εσ2
µ

) 1
1+η

− 1,

(
4kσ2

ω

εησ2
µ

) 1
η

− 1,

}
.

That is, the number of columns required to achieve Theo-
rem 5.1 for arbitrary constants ε, δ, in case of a power-law
leverage-score decay, is polynomial in kσ2

ω/σ
2
µ.

Note that by replacing σω/σµ with the condition number of
the input matrix we obtain a result similar to one of Çivril
& Magdon-Ismail (2012).

7. Experimental Results
We conduct experiments to gain further insight about our
results. Throughout this section, we focus on GCSS and
Algorithm 1, which we will call GLS.

A widely used algorithm in GCSS literature is the GREEDY
algorithm, which iteratively selects the best column from A
to add to C, such that ‖CC+B‖2F is maximized. In practice,
the GREEDY algorithm can be implemented very efficiently
and often provides good results (Farahat et al., 2011). While
we have observed superior results from GREEDY in terms of
objective, our approach does offer certain advantages. We
present experimental results to provide further insight on
the behaviour of our algorithm, and to help determine when
it may be an alternative to GREEDY.

Can we outperform greedy? We consider an example
by Altschuler et al. (2016), where the output of GREEDY
matches their quality guarantee.

Consider a set of orthogonal vectors {e0, e1, . . . , en}. We
build a matrixAwith columns e1, θe0+e1, and 2θe0+ej for
j ≥ 2. The target matrix B is comprised only of column e0.
Even thoughB can be expressed using the first two columns
of A, i.e., e1, θe0 + e1, GREEDY will pick 2θe0 + et+1

at iteration t. To achieve a (1 − ε)-approximation of the
optimum for k = 2, it will need more than 1

2θ2ε columns.

Does our approach fare any better? We analyze its behavior
for varying values of θ, in an instantiation of the above
example of size 11×11. In order to find the optimal column
subset, comprised of columns 1 and 2, our algorithm needs
to pick a singular vector subset R such that the generalized
leverage scores are high for these two columns.

In Figure 1 we plot key values for θ ∈ (0, 1]. On the left,
we show the norm of B projected onto the last left singular
vector un, as well as on the rest, U:n−1. As θ shrinks, the
former rapidly approaches 1 = ‖B‖2F , which indicates that
un is a good choice of R (step 1 of Algorithm 1). On the
right we plot the sum of the generalized leverage scores
for columns 1 and 2, ‖V TR S‖2F , and the lower bound on
‖CC+B‖2F , where C = AS, of Theorem 5.1. The leverage
scores associated to un always add up to almost 1. When B
projects well onto the space of un, the lower bound indicates
that these two columns are a good choice. When θ is small,
our algorithm will identify them for most values of ε, δ.

Quality-efficiency trade-off. We evaluate the performance
of Algorithm 1 on a collection of real datasets, obtained
from a repository maintained by Arizona State University
for feature-selection tasks.1 We split each dataset in two.
The first half of the columns acts as matrix A (see def. of
GCSS), and the second as B.

We compare our method to GREEDY and a uniformly-at-
random baseline (averaged over 100 iterations).

We run a variation on Algorithm 1. To avoid large values of
the ratio σω

σµ
, we only retain singular vectors paired with the

leading singular values accounting for at least 75% of the to-
tal squared norm. As per Algorithm 1, one would then build
the setR based on the choice of δ. which however can make
it difficult to control the size of R, and thus the decay of
leverage scores. We thus try setting the size of R to a num-
ber of values: 1/10, 1/4 and 1/2 of the retained rank. For
each resulting R we compute generalized leverage scores.
We use the generalized-leverage-score ordering to build a
column submatrix Ck of size k, for a range of k (depending
on the dataset size). We measure both ‖CkC+

k V ‖2F and the
running time of both algorithms (GREEDY and ours).

The results are shown in Figure 2. GREEDY is clearly supe-
rior in terms of objective function. However, our approach is

1https://jundongl.github.io/
scikit-feature/datasets.html

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
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Figure 2: Performance analysis. Retained rank: no. of singular values accounting for 75% of ‖A‖2F . Objective ratio: ‖CC+B‖2F
‖AA+B‖2

F
.

more efficient for large values of k, as it requires essentially
constant computation time with respect to this parameter.
On some datasets, the leverage scores are not informative
and a random choice may perform better in expectation.
This is consistent with our results, as in the absence of sharp
decay, there are no guarantees for small column subsets
(see Section 6). Our approach seems to perform better on
high-dimensional, high-rank data.

8. Related Work
The concept of leverage scores can be traced back to statisti-
cal leverage, long employed in statistics and the analysis of
linear regression (Chatterjee & Hadi, 1986). The statistical
leverages of a matrix, defined as the diagonal entries of
the projector onto its row space, determine the influence of
each row on the solution of a least-squares problem; hence
“leverage.” It is not difficult to see that the leverage scores
of a matrix’s columns correspond to the statistical leverages
of a related matrix; see Equation (5).

The idea of using leverage scores to find good column sub-
sets has its origins in randomized algorithms for fast matrix
multiplication and `2 regression (Drineas et al., 2006a;b).
These methods sample rows or columns of the input ma-
trices with probability proportional to their norms, to then
solve the given tasks on the subsampled matrices with accu-
racy guarantees. It was later observed that similar strategies
could be employed to compute approximate matrix factor-
izations, such as CUR (Mahoney & Drineas, 2009). For
this purpose, rows and columns are sampled with proba-
bilities proportional to their leverage scores (Drineas et al.,
2008). A similar approach yields approximation algorithms
for column subset selection (Boutsidis et al., 2009). Lever-
age scores can also be used for the design of deterministic
algorithms (Papailiopoulos et al., 2014). The results pre-
sented in our paper allows us to extend the approach of
Papailiopoulos et al. (2014) to other problems, as we argue
in Section 5.1. Superior algorithms were later proposed

for column subset selection (Guruswami & Sinop, 2012;
Boutsidis et al., 2014). In addition, the greedy algorithm
has attracted attention of its own (Çivril & Magdon-Ismail,
2012; Bhaskara et al., 2016), given its simplicity, efficiency
and practical effectiveness (Farahat et al., 2011).

Recently, leverage scores have found applications in other
areas, such as kernel methods (Schölkopf et al., 2002). De-
spite their potential for effective machine-learning algorithm
design (Cortes & Vapnik, 1995), kernels often require han-
dling large matrices. For that reason, sampling methods
and approximate factorizations are often studied in this con-
text. Leverage-score sampling has proven effective for this
purpose (El Alaoui & Mahoney, 2015; Musco & Musco,
2016; Calandriello et al., 2017; Li et al., 2019; Erdélyi et al.,
2020; Liu et al., 2020b). For a comprehensive review of this
and related methods, see the article of Liu et al. (2020a).
For overviews on the use of leverage scores and on ran-
domized algorithms for matrix-related tasks, see the articles
of Mahoney (2011) and Martinsson & Tropp (2020).

9. Conclusions
We have shown how the proposed generalized leverage
scores, along with our novel results, can be used to design
approximation algorithms for well-known problems. Our
experimental results reveal that the proposed methods have
certain advantages over known methods. Given the funda-
mental nature of the concept of generalized leverage scores
and the numerous uses of standard leverage scores in the
literature, we believe our contributions are likely to be taken
further by the community in subsequent work.
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Appendix
Proofs missing from the main text

Proof of Theorem 5.1. Throughout this proof, r(A) denotes the column space of a given matrix A.

We can write ‖UTRB‖2F =
∑
i ‖UTR bi‖22 ≥

∑
i(1 − δi)‖bi‖22, for choices of δi such that ‖UTR bi‖22 ≥ (1 − δi)‖bi‖22, for

i = 1, . . . , t. This implies that for every i there is a unit vector u ∈ r(UR) satisfying (uT bi)
2 ≥ (1− δi)‖bi‖22.

On the other hand, Theorem 4.4 guarantees that ‖CC+UR‖2F ≥ |R| − ε2/4. This implies that for every unit vector
u ∈ r(UR) there is a unit vector w ∈ r(C) such that (wTu)2 ≥ 1− ε2/4.

It can be shown (Ordozgoiti et al., 2021) that for each u ∈ r(UR), w ∈ r(C) and bi, where u,w are unit vectors:

wT bi ≥ uTwuT bi −
√

(1− (uTw)2) (‖bi‖22 − (uT bi)2).

We get (uTw)2 ≥ 1− ε2/4 and (uT bi)
2 ≥ (1− δi)‖bi‖22.

Thus, for every bi we can choose u,w so that

(wT bi)
2 ≥

(√
(1− ε2/4)(1− δi)‖bi‖22 −

√
ε2

4
δi‖bi‖22

)2

= (1− ε2/4)(1− δi)‖bi‖22 +
ε2

4
δi‖bi‖22

− 2

√
(1− ε2/4)(1− δi)

ε2

4
δi‖bi‖22

= (1− ε2/4)(1− δi)‖bi‖22

−
√
ε2

4
δi‖bi‖22

(
2
√

(1− ε2/4)(1− δi)− 1
)

≥ (1− ε2/4)(1− δi)‖bi‖22 −
√
ε2

4
δi‖bi‖22

≥ (1− ε2/4)(1− δi)‖bi‖22 −
√
ε2

4
‖bi‖22

= (1− ε2/4)(1− δi)‖bi‖22 −
ε

2
‖bi‖22

It follows from the previous exposition that for adequate choices of wi in the column space of C,

‖CC+B‖2F =

t∑
i=1

(wTi bi)
2

≥
t∑
i=1

(1− ε2/4)(1− δi)‖bi‖22 −
ε

2
‖bi‖22

= (1− ε2/4)(1− δ)‖B‖2F −
ε

2
‖B‖2F .



Generalized Leverage Scores: Geometric Interpretation and Applications

Finally,

(1−ε2/4)(1− δ)‖B‖2F −
ε

2
‖B‖2F

= (1− δ)‖B‖2F − (1− δ)ε
2

4
‖B‖2F −

ε

2
‖B‖2F

≥ (1− δ)‖B‖2F −
ε

2

( ε
2
‖B‖2F + ‖B‖2F

)
= (1− δ)‖B‖2F − ‖B‖2F

ε

2

( ε
2

+ 1
)

≥ (1− δ)‖B‖2F
(

1− ε

2

( ε
2

+ 1
))

≥ (1− δ)‖B‖2F
(

1− 2
ε

2

)
.

= (1− δ)‖B‖2F (1− ε).

Quality-efficiency tradeoff results for the rest of the datasets

In Figures 3 and 4 we plot the objective ratio and the running time for a larger number of datasets. GREEDY remains the
better option if measured by the objective function. Our algorithm, GLS, performs better on high rank data sets, in line with
previous observations. In some cases uniform sampling performs better. This reinforces our previous observation that for
some datasets, the leverage scores computed the chosen set R are not informative. We note here that more careful tuning
may have served to achieve better results, and thus leave a more thorough empirical evaluation for future work.

With respect to running time (figure 4), the results are in line with what we would expect. With respect to k, GREEDY scales
linearly with k but GLS remains essentially constant.
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Figure 3: Objective ratio for values of k on the rest of the datasets
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Figure 4: Running times for values of k on the rest of the datasets


