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Abstract: This article studies an integral representation of functionals of linear growth on metric measure
spaces with a doubling measure and a Poincaré inequality. Such a functional is de�ned via relaxation, and
it de�nes a Radon measure on the space. For the singular part of the functional, we get the expected integral
representation with respect to the variation measure. A new feature is that in the representation for the ab-
solutely continuous part, a constant appears already in the weighted Euclidean case. As an application we
show that in a variational minimization problem involving the functional, boundary values can be presented
as a penalty term.
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� Introduction
Let f : R+ ! R+ be a convex, nondecreasing function that satis�es the linear growth condition

mt ≤ f (t) ≤ M(� + t)

with some constants � < m ≤ M < ∞. Let Ω be an open set on a metric measure space (X, d, µ). Throughout
the work we assume that the measure is doubling and that the space supports a Poincaré inequality. For
u 2 L�loc(Ω), we de�ne the functional of linear growth via relaxation by

F(u, Ω) = inf
⇢
lim inf
i!∞

ˆ
Ω
f (gui ) dµ : ui 2 Liploc(Ω), ui ! u in L�loc(Ω)

�
,

where gui is the minimal 1-weak upper gradient of ui. For f (t) = t, this gives the de�nition of functions of
bounded variation, or BV functions, on metric measure spaces, see [1], [3] and [24]. For f (t) =

p
� + t�, we get

the generalized surface area functional, which has been considered previously in [17] and [18]. Our �rst result
shows that ifF(u, Ω) < ∞, thenF(u, ·) is a Borel regular outer measure on Ω. This result is a generalization of
[24, Theorem 3.4]. For corresponding results in the Euclidean case with either the Lebesgue measure or more
general measures, we refer to [2], [4], [8], [9], [10], [13], [14], and [15].
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Integral Representation for Functionals � 289

Ourmain goal is to studywhether the relaxed functionalF(u, ·) can be represented as an integral in terms
of the variationmeasure kDuk, as can be done in the Euclidean setting, see e.g. [2, Section 5.5]. To this end, let
u 2 L�(Ω)withF(u, Ω) < ∞. Then the growth condition implies that u 2 BV(Ω).Wedenote thedecomposition
of the variation measure kDuk into the absolutely continuous and singular parts by dkDuk = a dµ + dkDuks,
where a 2 L�(Ω). Similarly, we denote by Fa(u, ·) and Fs(u, ·) the absolutely continuous and singular parts
of F(u, ·) with respect to µ. For the singular part, we obtain the integral representation

Fs(u, Ω) = f∞kDuks(Ω),

where f∞ = limt!∞ f (t)/t. This is analogous to the Euclidean case. However, for the absolutely continuous
part we only get an integral representation up to a constant

ˆ
Ω
f (a) dµ ≤ Fa(u, Ω) ≤

ˆ
Ω
f (Ca) dµ,

where C depends on the doubling constant of the measure and the constants in the Poincaré inequality.
Furthermore, we give a counterexample which shows that the constant cannot be dismissed. We observe
that working in the general metric context produces signi�cant challenges that are already visible in the
Euclidean setting with a weighted Lebesgue measure. In overcoming these challenges, a key technical tool is
an equi-integrability result for the discrete convolution of a measure. As a by-product of our analysis, we are
able to show that a BV function is actually a Newton-Sobolev function in a set where the variation measure
is absolutely continuous.

As an application of the integral representation, we consider a minimization problem related to func-
tionals of linear growth. First we de�ne the concept of boundary values of BV functions, which is a delicate
issue already in the Euclidean case. Let Ω b Ω* be bounded open sets in X, and assume that h 2 BV(Ω*). We
de�ne BVh(Ω) as the space of functions u 2 BV(Ω*) such that u = h µ-almost everywhere inΩ* \Ω. A function
u 2 BVh(Ω) is a minimizer of the functional of linear growth with boundary values h, if

F(u, Ω*) = inf F(v, Ω*),

where the in�mum is taken over all v 2 BVh(Ω). It was shown in [17] that this problem always has a solution.
By using the integral representation, we can express the boundary values as a penalty term. More precisely,
under suitable conditions on the space and Ω, we establish equivalence between the above minimization
problem and minimizing the functional

F(u, Ω) + f∞
ˆ
∂Ω

|TΩu − TX\Ωh|θΩ dH

over all u 2 BV(Ω). Here TΩu and TX\Ωu are boundary traces and θΩ is a strictly positive density function.
This extends the Euclidean results in [14, p. 582] to metric measure spaces. A careful analysis of BV extension
domains and boundary traces is needed in the argument.

� Preliminaries
In this paper, (X, d, µ) is a completemetric measure space with a Borel regular outer measure µ. Themeasure
µ is assumed to be doubling, meaning that there exists a constant cd > � such that

� < µ(B(x, �r)) ≤ cdµ(B(x, r)) < ∞

for every ball B(x, r) with center x 2 X and radius r > �. For brevity, we will sometimes write λB for B(x, λr).
On a metric space, a ball B does not necessarily have a unique center point and radius, but we assume every
ball to come with a prescribed center and radius. The doubling condition implies that

µ(B(y, r))
µ(B(x, R)) ≥

�
C

⇣ r
R

⌘Q
(2.1)
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for every r ≤ R and y 2 B(x, R), and some Q > � and C ≥ � that only depend on cd. We recall that a complete
metric space endowedwith a doublingmeasure is proper, that is, closed and bounded sets are compact. Since
X is proper, for any open setΩ ⇢ Xwe de�ne Liploc(Ω) as the space of functions that are Lipschitz continuous
in every Ω0 b Ω (and other local spaces of functions are de�ned similarly). Here Ω0 b Ω means that Ω0 is
open and that Ω0 is a compact subset of Ω.

For any set A ⇢ X, the restricted spherical Hausdor� content of codimension � is de�ned as

HR(A) = inf
( ∞X

i=�

µ(B(xi , ri))
ri

: A ⇢
∞[

i=�
B(xi , ri), ri ≤ R

)
,

where � < R < ∞. The Hausdor�measure of codimension � of a set A ⇢ X is

H(A) = lim
R!�

HR(A).

The measure theoretic boundary ∂*E is de�ned as the set of points x 2 X in which both E and its com-
plement have positive density, i.e.

lim sup
r!�

µ(B(x, r) \ E)
µ(B(x, r)) > � and lim sup

r!�

µ(B(x, r) \ E)
µ(B(x, r)) > �.

A curve � is a recti�able continuous mapping from a compact interval to X. The length of a curve � is
denoted by `� . We will assume every curve to be parametrized by arc-length, which can always be done (see
e.g. [16, Theorem 3.2]).

A nonnegative Borel function g on X is an upper gradient of an extended real-valued function u on X if
for all curves � in X, we have

|u(x) − u(y)| ≤
ˆ
�
g ds (2.2)

whenever both u(x) and u(y) are �nite, and
´
� g ds =∞ otherwise. Here x and y are the end points of �. If g is

a nonnegative µ-measurable function on X and (2.2) holds for �-almost every curve, then g is a �-weak upper
gradient of u. A property holds for �-almost every curve if it fails only for a curve family with zero �-modulus.
A family Γ of curves is of zero �-modulus if there is a nonnegative Borel function ρ 2 L�(X) such that for all
curves � 2 Γ, the curve integral

´
� ρ ds is in�nite.

We consider the following norm

kukN�,�(X) = kukL�(X) + infg kgkL�(X),

where the in�mum is taken over all upper gradients g of u. The Newtonian space is de�ned as

N�,�(X) = {u : kukN�,�(X) < ∞}/⇠,

where the equivalence relation ⇠ is given by u ⇠ v if and only if ku − vkN�,�(X) = �. In the de�nition of upper
gradients and Newtonian spaces, the whole space X can be replaced by any µ-measurable (typically open)
set Ω ⇢ X. It is known that for any u 2 N�,�

loc (Ω), there exists a minimal �-weak upper gradient, which we
always denote by gu, satisfying gu ≤ g µ-almost everywhere in Ω, for any �-weak upper gradient g 2 L�loc(Ω)
of u [5, Theorem 2.25]. For more on Newtonian spaces, we refer to [26] and [5].

Next we recall the de�nition and basic properties of functions of bounded variation onmetric spaces, see
[1], [3] and [24]. For u 2 L�loc(X), we de�ne the total variation of u as

kDuk(X) = inf
⇢
lim inf
i!∞

ˆ
X
gui dµ : ui 2 Liploc(X), ui ! u in L�loc(X)

�
,

where gui is the minimal �-weak upper gradient of ui. We say that a function u 2 L�(X) is of bounded varia-
tion, andwrite u 2 BV(X), if kDuk(X) < ∞. Moreover, a µ-measurable set E ⇢ X is said to be of �nite perimeter
if kDχEk(X) < ∞. By replacing X with an open set Ω ⇢ X in the de�nition of the total variation, we can de�ne
kDuk(Ω). For an arbitrary set A ⇢ X, we de�ne

kDuk(A) = inf{kDuk(Ω) : A ⇢ Ω, Ω ⇢ X is open}.
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If u 2 BV(Ω), kDuk(·) is a �nite Radon measure on Ω by [24, Theorem 3.4]. The perimeter of E in Ω is denoted
by

P(E, Ω) = kDχEk(Ω).

We have the following coarea formula given by Miranda in [24, Proposition 4.2]: if Ω ⇢ X is an open set and
u 2 L�loc(Ω), then

kDuk(Ω) =
ˆ ∞

−∞
P({u > t}, Ω) dt. (2.3)

For an open set Ω ⇢ X and a set of locally �nite perimeter E ⇢ X, we know that

kDχEk(Ω) =
ˆ
∂*E\Ω

θE dH, (2.4)

where θE : X ! [α, cd], with α = α(cd , cP) > �, see [1, Theorem 5.3] and [3, Theorem 4.6]. The constant cP is
related to the Poincaré inequality, see below.

The jump set of a function u 2 BVloc(X) is de�ned as

Su = {x 2 X : u^(x) < u_(x)},

where u^ and u_ are the lower and upper approximate limits of u de�ned as

u^(x) = sup
⇢
t 2 R : lim

r!�
µ({u < t} \ B(x, r))

µ(B(x, r)) = �
�

and
u_(x) = inf

⇢
t 2 R : lim

r!�
µ({u > t} \ B(x, r))

µ(B(x, r)) = �
�
.

Outside the jump set, i.e. in X \ Su,H-almost every point is a Lebesgue point of u [20, Theorem 3.5], and we
denote the Lebesgue limit at x by eu(x).

We say that X supports a (�, �)-Poincaré inequality if there exist constants cP > � and λ ≥ � such that for
all balls B(x, r), all locally integrable functions u, and all �-weak upper gradients g of u, we haveˆ

B(x,r)
|u − uB(x,r)| dµ ≤ cPr

ˆ
B(x,λr)

g dµ,

where
uB(x,r) =

ˆ
B(x,r)

u dµ = �
µ(B(x, r))

ˆ
B(x,r)

u dµ.

If the space supports a (�, �)-Poincaré inequality, by an approximation argument we get for every u 2 L�loc(X)ˆ
B(x,r)

|u − uB(x,r)| dµ ≤ cPr
kDuk(B(x, λr))
µ(B(x, λr)) ,

where the constant cP and the dilation factor λ are the same as in the (�, �)-Poincaré inequality. When u = χE
for E ⇢ X, we get the relative isoperimetric inequality

min{µ(B(x, r) \ E), µ(B(x, r) \ E)} ≤ �cPrkDχEk(B(x, λr)). (2.5)

Throughout the work we assume, without further notice, that the measure µ is doubling and that the space
supports a (�, �)-Poincaré inequality.

� Functional and its measure property
In this section we de�ne the functional that is considered in this paper, and show that it de�nes a Radon
measure. Let f be a convex nondecreasing function that is de�ned on [�,∞) and satis�es the linear growth
condition

mt ≤ f (t) ≤ M(� + t) (3.1)
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for all t ≥ �, with some constants � < m ≤ M < ∞. This implies that f is Lipschitz continuous with constant
L > �. Furthermore, we de�ne

f∞ = sup
t>�

f (t) − f (�)
t = lim

t!∞
f (t) − f (�)

t = lim
t!∞

f (t)
t ,

where the second equality follows from the convexity of f . From the de�nition of f∞, we get the simple esti-
mate

f (t) ≤ f (�) + tf∞ (3.2)

for all t ≥ �. This will be useful for us later.
Now we give the de�nition of the functional. For an open set Ω and u 2 N�,�(Ω), we could de�ne it as

u 7�!
ˆ
Ω
f (gu) dµ,

where gu is the minimal 1-weak upper gradient of u. For u 2 BV(Ω), we need to use a relaxation procedure as
given in the following de�nition.

De�nition 3.1. Let Ω ⇢ X be an open set. For u 2 L�loc(Ω), we de�ne

F(u, Ω) = inf
⇢
lim inf
i!∞

ˆ
Ω
f (gui ) dµ : ui 2 Liploc(Ω), ui ! u in L�loc(Ω)

�
,

where gui is the minimal 1-weak upper gradient of ui.

Note that we could equally well require that gui is any 1-weak upper gradient of ui. We de�ne F(u, A) for
an arbitrary set A ⇢ X by

F(u, A) = inf{F(u, Ω) : Ω is open,A ⇢ Ω}. (3.3)

In this section we show that if u 2 L�loc(Ω) with F(u, Ω) < ∞, then F(u, ·) is a Borel regular outer measure on
Ω, extending [24, Theorem 3.4]. The functional clearly satis�es

mkDuk(A) ≤ F(u, A) ≤ M(µ(A) + kDuk(A)) (3.4)

for any A ⇢ X. This estimate follows directly from the de�nition of the functional, the de�nition of the varia-
tion measure, and (3.1). It is also easy to see that

F(u, B) ≤ F(u, A)

for any sets B ⇢ A ⇢ X.

Remark 3.2. In this remainder of this section we do not, in fact, need the convexity of f , or the fact that the
space supports a (�, �)-Poincaré inequality.

In order to show the measure property, we �rst prove a few lemmas. The �rst is the following technical
gluing lemma that is similar to [2, Lemma 5.44].

Lemma 3.3. Let U0, U, V 0, V be open sets in X such that U0 b U and V 0 ⇢ V . Then there exists an open
set H ⇢ (U \ U0) \ V 0, with H b U, such that for any ε > � and any pair of functions u 2 Liploc(U) and
v 2 Liploc(V), there is a function ϕ 2 Lipc(U) with � ≤ ϕ ≤ � and ϕ = � in a neighborhood of U

0
, such that the

function w = ϕu + (� − ϕ)v 2 Liploc(U0 [ V 0) satis�es
ˆ
U0[V0

f (gw) dµ ≤
ˆ
U
f (gu) dµ +

ˆ
V
f (gv) dµ + C

ˆ
H
|u − v| dµ + ε.

Here C = C(U, U0,M).
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Proof. Let η = dist(U0, X \ U) > �. De�ne

H =
⇢
x 2 U \ V 0 : η

� < dist(x, U0) < �η
�

�
.

Now �x u 2 Liploc(U), v 2 Liploc(V) and ε > �. Choose k 2 N such that

M
ˆ
H
(� + gu + gv) dµ < εk (3.5)

if the above integral is �nite — otherwise the desired estimate is trivially true. For i = �, . . . , k, de�ne the sets

Hi =
⇢
x 2 U \ V 0 : (k + i − �)η

�k < dist(x, U0) < (k + i)η
�k

�
,

so that H �
Sk

i=� Hi, and de�ne the Lipschitz functions

ϕi(x) =

8
>><

>>:

�, dist(x, U0) > k+i
�k η,

�
η ((k + i)η − �k dist(x, U

0)), k+i−�
�k η ≤ dist(x, U0) ≤ k+i

�k η,
�, dist(x, U0) < k+i−�

�k η.

Now gϕi = � µ-almost everywhere in U0 and in U \ V 0 \ Hi [5, Corollary 2.21]. Let wi = ϕiu + (� − ϕi)v on
U0 [ V 0. We have the estimate

gwi ≤ ϕigu + (� − ϕi)gv + gϕi |u − v|,

see [5, Lemma 2.18]. By also using the estimate f (t) ≤ M(� + t), we get
ˆ
U0[V0

f (gwi ) dµ ≤
ˆ
U
f (gu) dµ +

ˆ
V
f (gv) dµ +

ˆ
Hi

f (gwi ) dµ

≤
ˆ
U
f (gu) dµ +

ˆ
V
f (gv) dµ +M

ˆ
Hi

(� + gu + gv) dµ +
�Mk
η

ˆ
Hi

|u − v| dµ.

Now, since H �
Sk

i=� Hi, we have

�
k

kX

i=�

ˆ
U0[V0

f (gwi ) dµ ≤
ˆ
U
f (gu) dµ +

ˆ
V
f (gv) dµ +

M
k

ˆ
H
(� + gu + gv) dµ +

�M
η

ˆ
H
|u − v| dµ

≤
ˆ
U
f (gu) dµ +

ˆ
V
f (gv) dµ + C

ˆ
H
|u − v| dµ + ε.

In the last inequality we used (3.5). Thus we can �nd an index i such that the function w = wi satis�es the
desired estimate.

In the following lemmas, we assume that u 2 L�loc(A [ B).

Lemma 3.4. Let A ⇢ X be open with F(u, A) < ∞. Then

F(u, A) = sup
BbA

F(u, B).

Proof. Take open sets B� b B� b B� b A and sequences ui 2 Liploc(B�), vi 2 Liploc(A \ B�) such that ui ! u
in L�loc(B�), vi ! u in L�loc(A \ B�),

F(u, B�) = lim
i!∞

ˆ
B�

f (gui ) dµ,

and
F(u, A \ B�) = lim

i!∞

ˆ
A\B�

f (gvi ) dµ.
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By using Lemma 3.3 with U = B�, U0 = B�, V = V 0 = A \ B� and ε = �/i, we �nd a set H ⇢ B� \ B�, H b B�,
and a sequence wi 2 Liploc(A) such that wi ! u in L�loc(A), andˆ

A
f (gwi ) dµ ≤

ˆ
B�

f (gui ) dµ +
ˆ
A\B�

f (gvi ) dµ + C
ˆ
H
|ui − vi| dµ +

�
i

for every i 2 N. In the above inequality, the last integral converges to zero as i ! ∞, since H b B� and
H b A \ B�. Thus

F(u, A) ≤ lim inf
i!∞

ˆ
A
f (gwi ) dµ ≤ F(u, B�) + F(u, A \ B�).

Exhausting A with sets B� concludes the proof, since then F(u, A \ B�) ! � by (3.4).

Lemma 3.5. Let A, B ⇢ X be open. Then

F(u, A [ B) ≤ F(u, A) + F(u, B).

Proof. First we note that every C b A [ B can be presented as C = A0 [ B0, where A0 b A and B0 b B.
Therefore, according to Lemma 3.4, it su�ces to show that

F(u, A0 [ B0) ≤ F(u, A) + F(u, B)

for every A0 b A and B0 b B. If F(u, A) =∞ or F(u, B) =∞, the claim holds. Assume therefore that F(u, A) <
∞ and F(u, B) < ∞. Take sequences ui 2 Liploc(A) and vi 2 Liploc(B) such that ui ! u in L�loc(A), vi ! u in
L�loc(B),

F(u, A) = lim
i!∞

ˆ
A
f (gui ) dµ,

and
F(u, B) = lim

i!∞

ˆ
B
f (gvi ) dµ.

By using Lemma 3.3 with U0 = A0, U = A, V 0 = B0, V = B and ε = �/i, we �nd a set H b A, H ⇢ B0 b B, and a
sequence wi 2 Liploc(A0 [ B0) such that wi ! u in L�loc(A0 [ B0), andˆ

A0[B0
f (gwi ) dµ ≤

ˆ
A
f (gui ) dµ +

ˆ
B
f (gvi ) dµ + C

ˆ
H
|ui − vi| dµ +

�
i

for every i 2 N. By the properties of H, the last integral in the above inequality converges to zero as i ! ∞,
and then

F(u, A0 [ B0) ≤ F(u, A) + F(u, B).

Lemma 3.6. Let A, B ⇢ X be open and let A \ B = ;. Then

F(u, A [ B) ≥ F(u, A) + F(u, B).

Proof. If F(u, A [ B) = ∞, the claim holds. Hence we may assume that F(u, A [ B) < ∞. Take a sequence
ui 2 Liploc(A [ B) such that ui ! u in L�loc(A [ B) and

F(u, A [ B) = lim
i!∞

ˆ
A[B

f (gui ) dµ.

Then, since A and B are disjoint,

F(u, A [ B) = lim
i!∞

ˆ
A[B

f (gui ) dµ

≥ lim inf
i!∞

ˆ
A
f (gui ) dµ + lim inf

i!∞

ˆ
B
f (gui ) dµ

≥ F(u, A) + F(u, B).
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Now we are ready to prove the measure property of the functional.

Theorem 3.7. Let Ω ⇢ X be an open set, and let u 2 L�loc(Ω) with F(u, Ω) < ∞. Then F(u, ·) is a Borel regular
outer measure on Ω.

Proof. First we show that F(u, ·) is an outer measure on Ω. Obviously F(u, ;) = �. As mentioned earlier,
clearly F(u, A) ≤ F(u, B) for any A ⇢ B ⇢ Ω. Take open sets Ai ⇢ Ω, i = �, �, . . .. Let ε > �. By Lemma 3.4
there exists a set B b S∞

i=� Ai such that

F

 
u,

∞[

i=�
Ai

!
< F(u, B) + ε.

Since B ⇢
S∞

i=� Ai is compact, there exists n 2 N such that B ⇢ B ⇢
Sn

i=� Ai. Then by Lemma 3.5,

F(u, B) ≤ F
 
u,

n[

i=�
Ai

!
≤

nX

i=�
F(u, Ai),

and thus letting n ! ∞ and ε ! � gives us

F

✓
u,

∞[

i=�
Ai

◆
≤

∞X

i=�
F(u, Ai). (3.6)

For general sets Ai ⇢ Ω, we can prove (3.6) by approximation with open sets.
The next step is to prove thatF(u, ·) is a Borel outermeasure. Let A, B ⇢ Ω satisfy dist(A, B) > �. Fix ε > �

and choose an open set U � A [ B such that

F(u, A [ B) > F(u, U) − ε.

De�ne the sets

VA =
⇢
x 2 Ω : dist(x, A) < dist(A, B)

�

�
\ U,

VB =
⇢
x 2 Ω : dist(x, B) < dist(A, B)

�

�
\ U .

Then VA , VB are open and A ⇢ VA, B ⇢ VB. Moreover VA \ VB = ;. Thus by Lemma 3.6,

F(u, A [ B) ≥ F(u, VA [ VB) − ε
≥ F(u, VA) + F(u, VB) − ε
≥ F(u, A) + F(u, B) − ε.

Now letting ε ! � shows that F(u, ·) is a Borel outer measure by Carathéodory’s criterion.
The measure F(u, ·) is Borel regular by construction, since for every A ⇢ Ω we may choose open sets Vi

such that A ⇢ Vi ⇢ Ω and
F(u, Vi) < F(u, A) + �

i ,

and by de�ning V =
T∞

i=� Vi, we get F(u, V) = F(u, A), where V � A is a Borel set.

As a simple application of the measure property of the functional, we show the following approximation
result.

Proposition 3.8. Let Ω ⇢ X be an open set, and let u 2 L�loc(Ω) with F(u, Ω) < ∞. Then for any sequence of
functions ui 2 Liploc(Ω) for which ui ! u in L�loc(Ω) andˆ

Ω
f (gui ) dµ ! F(u, Ω),

we also have f (gui ) dµ
*
* dF(u, ·) in Ω.

Unauthenticated
Download Date | 12/5/16 11:31 AM



296 � Heikki Hakkarainen, Juha Kinnunen, Panu Lahti, and Pekka Lehtelä

Proof. For any open set U ⇢ Ω, we have by the de�nition of the functional that

F(u, U) ≤ lim inf
i!∞

ˆ
U
f (gui ) dµ. (3.7)

On the other hand, for any relatively closed set F ⇢ Ω we have

F(u, Ω) = lim sup
i!∞

ˆ
Ω
f (gui ) dµ

≥ lim sup
i!∞

ˆ
F
f (gui ) dµ + lim inf

i!∞

ˆ
Ω\F

f (gui ) dµ

≥ lim sup
i!∞

ˆ
F
f (gui ) dµ + F(u, Ω \ F).

The last inequality follows from (3.7), since Ω \ F is open. By the measure property of the functional, we can
subtract F(u, Ω \ F) from both sides to get

lim sup
i!∞

ˆ
F
f (gui ) dµ ≤ F(u, F).

According to a standard characterization of the weak* convergence of Radon measures, the above inequality
and (3.7) together give the result [11, p. 54].

� Integral representation
In this sectionwe study an integral representation for the functionalF(u, ·), in terms of the variationmeasure
kDuk. First we show an estimate from below. Note that due to (3.4),F(u, Ω) < ∞ always implies kDuk(Ω) < ∞.

Theorem 4.1. Let Ω be an open set, and let u 2 L�loc(Ω) with F(u, Ω) < ∞. Let dkDuk = a dµ + d kDuks be the
decomposition of the variation measure into the absolutely continuous and singular parts, where a 2 L�(Ω) is
a Borel function and kDuks is the singular part. Then we have

F(u, Ω) ≥
ˆ
Ω
f (a) dµ + f∞kDuks(Ω).

Proof. Pick a sequence ui 2 Liploc(Ω) such that ui ! u in L�loc(Ω) andˆ
Ω
f (gui ) dµ ! F(u, Ω) as i ! ∞. (4.1)

Using the linear growth condition for f , presented in (3.1), we estimate

lim sup
i!∞

ˆ
Ω
gui dµ ≤ �

m lim sup
i!∞

ˆ
Ω
f (gui ) dµ < ∞.

For a suitable subsequence, which we still denote by gui , we have gui dµ
*
* dν in Ω, where ν is a Radon

measure with �nite mass in Ω. Furthermore, by the de�nition of the variation measure, we necessarily have
ν ≥ kDuk, which can be seen as follows. For any open set U ⇢ Ω and for any ε > �, we can pick an open set
U0 b U such that kDuk(U) < kDuk(U0) + ε; see e.g. Lemma 3.4. We obtain

kDuk(U) < kDuk(U0) + ε ≤ lim inf
i!∞

ˆ
U0
gui dµ + ε

≤ lim sup
i!∞

ˆ
U0
gui dµ + ε ≤ ν(U0) + ε ≤ ν(U) + ε.

On the �rst line we used the de�nition of the variationmeasure, and on the second line we used a property of
theweak* convergenceofRadonmeasures, see e.g. [2, Example 1.63]. By approximationweget ν(A) ≥ kDuk(A)
for any A ⇢ Ω.
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The following lower semicontinuity argument is from [2, p. 64–66]. First we note that as a nonnegative
nondecreasing convex function, f can be presented as

f (t) = sup
j2N

(djt + ej), t ≥ �,

for some sequences dj , ej 2 R, with dj ≥ �, j = �, �, . . ., and furthermore supj dj = f∞ [2, Proposition 2.31,
Lemma 2.33]. Given any pairwise disjoint open subsets of Ω, denoted by A�, . . . , Ak, k 2 N, and functions
ϕj 2 Cc(Aj) with � ≤ ϕj ≤ �, we have

ˆ
Aj

(djgui + ej)ϕj dµ ≤
ˆ
Aj

f (gui ) dµ

for every j = �, . . . , k and i 2 N. Summing over j and letting i ! ∞, we get by the weak* convergence
gui dµ

*
* dν

kX

j=�

 ˆ
Aj

djϕj dν +
ˆ
Aj

ejϕj dµ
!
≤ lim inf

i!∞

ˆ
Ω
f (gui ) dµ.

Since we had ν ≥ kDuk, this immediately implies

kX

j=�

 ˆ
Aj

djϕj dkDuk +
ˆ
Aj

ejϕj dµ
!
≤ lim inf

i!∞

ˆ
Ω
f (gui ) dµ.

We recall that dkDuk = a dµ+ dkDuks. It is known that the singular part kDuks is concentrated on a Borel set
D ⇢ Ω that satis�es µ(D) = � and kDuks(Ω\D) = �, see e.g. [11, p. 42]. De�ne theRadonmeasure σ = µ+kDuks,
and the Borel functions

hj =
(
dja + ej , on Ω \ D,
dj , on D

for j = �, . . . , k, and

h =
(
f (a), on Ω \ D,
f∞, on D.

As mentioned above, we have supj hj = h, and we can write the previous inequality as

kX

j=�

ˆ
Aj

hjϕj dσ ≤ lim inf
i!∞

ˆ
Ω
f (gui ) dµ.

Since the functions ϕj 2 Cc(Aj), � ≤ ϕj ≤ �, were arbitrary, we get

kX

j=�

ˆ
Aj

hj dσ ≤ lim inf
i!∞

ˆ
Ω
f (gui ) dµ.

Since this holds for any pairwise disjoint open subsets A�, . . . , Ak ⇢ Ω, by [2, Lemma 2.35] we get
ˆ
Ω
h dσ ≤ lim inf

i!∞

ˆ
Ω
f (gui ) dµ.

However, by the de�nitions of h and σ, this is the same as
ˆ
Ω
f (a) dµ + f∞kDuks(Ω) ≤ lim inf

i!∞

ˆ
Ω
f (gui ) dµ.

Combining this with (4.1), we get the desired estimate from below.
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It is worth noting that in the above argument, we only needed the weak* convergence of the sequence gui dµ
to a Radon measure that majorizes kDuk. Then we could use the fact that the functional for measures

ν 7�!
ˆ
Ω
f (ǎ) dµ + f∞νs(Ω), dν = ǎ dµ + dνs ,

is lower semicontinuous with respect to weak* convergence of Radonmeasures. This lower semicontinuity is
guaranteed by the fact that f is convex, but in order to have upper semicontinuity, we should have that f is
also concave (and thus linear). Thus there is an important asymmetry in the setting, and for the estimate from
above, we will need to use rather di�erent methods where we prove weak or strong L�-convergence for the
sequence of upper gradients, instead of just weak* convergence of measures. To achieve this type of stronger
convergence, we need to speci�cally ensure that the sequence of upper gradients is equi-integrable. The price
that is paid is that a constant C appears in the �nal estimate related to the absolutely continuous parts. An
example that we provide later shows that this constant cannot be discarded.

We recall that for a µ-measurable set H ⇢ X, the equi-integrability of a sequence of functions gi 2 L�(H),
i 2 N, is de�ned by two conditions. First, for any ε > � there must exist a µ-measurable set A ⇢ H with
µ(A) < ∞ such that ˆ

H\A
gi dµ < ε for all i 2 N.

Second, for any ε > � there must exist δ > � such that if eA ⇢ H is any µ-measurable set with µ(eA) < δ, then
ˆ
eA
gi dµ < ε for all i 2 N.

We will need the following equi-integrability result that partially generalizes [12, Lemma 6]. For the con-
struction of Whitney coverings that are needed in the result, see e.g. [6, Theorem 3.1].

Lemma 4.2. Let Ω ⇢ X be open, let H ⇢ Ω be µ-measurable, and let ν be a Radon measure with �nite mass
in Ω. Write the decomposition of ν into the absolutely continuous and singular parts with respect to µ as dν =
a dµ+dνs, and assume that νs(H) = �. Take a sequence of open sets Hi such that H ⇢ Hi ⇢ Ω and νs(Hi) < �/i,
i 2 N. For a given τ ≥ � and every i 2 N, take a Whitney covering {Bi

j = B(xij , rij)}∞j=� of Hi such that rij ≤ �/i for
every j 2 N, τBi

j ⇢ Hi for every j 2 N, every ball τBi
k meets at most co = co(cd , τ) balls τBi

j, and if τBi
j meets

τBi
k, then r

i
j ≤ �rik. De�ne the functions

gi =
∞X

j=�
χBi

j

ν(τBi
j)

µ(Bi
j)
, i 2 N.

Then the sequence gi is equi-integrable in H. Moreover, a subsequence of gi converges weakly in L�(H) to a
function ǎ that satis�es ǎ ≤ coa µ-almost everywhere in H.

Remark 4.3. If the measure ν is absolutely continuous in the whole of Ω, then we can choose H = Hi = Ω
for all i 2 N.

Proof. To check the �rst condition of equi-integrability, let ε > � and take a ball B = B(x�, R)with x� 2 X and
R > � so large that ν(Ω \ B(x�, R)) < ε/co. Then, by the bounded overlap property of the Whitney balls, we
have ˆ

H\B(x� ,R+�τ)
gi dµ ≤ coν(Hi \ B(x�, R)) < ε

for all i 2 N.
To check the second condition, assume by contradiction that there is a sequence of µ-measurable sets

Ai ⇢ H with µ(Ai) ! �, and
´
Ai
gi dµ > η > � for all i 2 N. Fix ε > �. We know that there exists δ > � such

that if A ⇢ Ω and µ(A) < δ, then
´
A a dµ < ε. Note that by the bounded overlap property of theWhitney balls,
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we have for every i 2 N
ˆ
Ai

gi dµ =
∞X

j=�

µ(Ai \ Bi
j)

µ(Bi
j)

ν(τBi
j)

≤ coνs(Hi) +
∞X

j=�

µ(Ai \ Bi
j)

µ(Bi
j)

ˆ
τBi

j

a dµ.
(4.2)

Fix k 2 N. We can divide the above sum into two parts: let I� consist of those indices j 2 N for which µ(Ai \
Bi
j)/µ(Bi

j) > �/k, and let I� consist of the remaining indices. We estimate

µ

0

@
[

j2I�

τBi
j

1

A ≤ C
X

j2I�

µ(Bi
j) ≤ Ck

X

j2I�

µ(Ai \ Bi
j) ≤ Ckµ(Ai) < δ,

when i is large enough. Now we can further estimate (4.2):
ˆ
Ai

gi dµ ≤ coνs(Hi) +
co
k

ˆ
Hi

a dµ + coε

for large enough i 2 N. By letting �rst i ! ∞, then k ! ∞, and �nally ε ! �, we get a contradiction with´
Ai
gi dµ > η > �, proving the equi-integrability.
Finally, let us prove theweak convergence in L�(H). Possibly by taking a subsequence that we still denote

by gi, wehave gi ! ǎweakly in L�(H) for some ǎ 2 L�(H), by theDunford-Pettis theorem (see e.g. [2, Theorem
1.38]). By this weak convergence and the bounded overlap property of the Whitney balls, we can estimate for
any x 2 H and � < er < r

ˆ
B(x,er)\H

ǎ dµ = lim sup
i!∞

ˆ
B(x,er)\H

gi dµ

= lim sup
i!∞

∞X

j=�

µ(Bi
j \ B(x,er) \ H)

µ(Bi
j)

ν(τBi
j)

≤ lim sup
i!∞

X

j2N: Bi
j\B(x,er)\H= �;

ν(τBi
j)

≤ lim sup
i!∞

coν(B(x, r)).

By lettinger % r, we get ˆ
B(x,r)\H

ǎ dµ ≤ coν(B(x, r)).

By the Radon-Nikodym theorem, µ-almost every x 2 H satis�es

lim
r!�

ˆ
B(x,r)\H

ǎ dµ = ǎ(x) and lim
r!�

νs(B(x, r))
µ(B(x, r)) = �.

By using these estimates as well as the previous one, we get for µ-almost every x 2 H

ǎ(x) = lim
r!�

ˆ
B(x,r)\H

ǎ dµ

≤ co lim sup
r!�

ˆ
B(x,r)

a dµ + co lim sup
r!�

νs(B(x, r))
µ(B(x, r)) ,

where the �rst term on the right-hand side is coa by the Radon-Nikodym theorem, and the second term is
zero. Thus we have ǎ ≤ coa µ-almost everywhere in H.

Now we are ready to prove the estimate from above.
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Theorem 4.4. Let Ω be an open set, and let u 2 L�loc(Ω) with F(u, Ω) < ∞. Let dkDuk = a dµ + d kDuks be the
decomposition of the variation measure, where a 2 L�(Ω) and kDuks is the singular part. Then we have

F(u, Ω) ≤
ˆ
Ω
f (Ca) dµ + f∞kDuks(Ω),

with C = C(cd , cP , λ).

Proof. Since the functional F(u, ·) is a Radon measure by Theorem 3.7, we can decompose it into the abso-
lutely continuous and singular parts as F(u, ·) = Fa(u, ·) + Fs(u, ·). The singular parts kDuks and Fs(u, ·) are
concentrated on a Borel set D ⇢ Ω that satis�es µ(D) = � and

kDuks(Ω \ D) = � = Fs(u, Ω \ D),

see e.g. [11, p. 42].
First we prove the estimate for the singular part. Let ε > �. Choose an open set G with D ⇢ G ⇢ Ω, such

that µ(G) < ε and kDuk(G) < kDuk(D) + ε. Take a sequence ui 2 Liploc(G) such that ui ! u in L�loc(G) andˆ
G
gui dµ ! kDuk(G) as i ! ∞.

Thus for some i 2 N large enough, we haveˆ
G
gui dµ < kDuk(G) + ε

and
F(u, G) <

ˆ
G
f (gui ) dµ + ε.

The latter inequality necessarily holds for large enough i by the de�nition of the functionalF(u, ·). Now, using
the two inequalities above and the estimate for f given in (3.2), we can estimate

F(u, D) ≤ F(u, G) ≤
ˆ
G
f (gui ) dµ + ε

≤
ˆ
G
f (�) dµ + f∞

ˆ
G
gui dµ + ε

≤ f (�)µ(G) + f∞kDuk(G) + f∞ε + ε
≤ f (�)ε + f∞(kDuk(D) + ε) + f∞ε + ε.

In the last inequality we used the properties of the set G given earlier. Letting ε ! �, we get the estimate from
above for the singular part, i.e.

Fs(u, Ω) = F(u, D) ≤ f∞kDuk(D) = f∞kDuks(Ω). (4.3)

Next let us consider the absolutely continuous part. Let D be de�ned as above, and let H = Ω \ D. Let
ε > �. Take an open set G such that H ⇢ G ⇢ Ω, and kDuk(G) < kDuk(H) + ε.

For every i 2 N, take a Whitney covering {Bi
j = B(xij , rij)}∞j=� of G such that rij ≤ �/i for every j 2 N,

�λBi
j ⇢ G for every j 2 N, every ball �λBi

k meets at most C = C(cd , λ) balls �λBi
j, and if �λBi

j meets �λBi
k,

then rij ≤ �rik. Then take a partition of unity {ϕ
i
j}
∞
j=� subordinate to this cover, such that � ≤ ϕi

j ≤ �, each ϕi
j is

a C(cd)/rij-Lipschitz function, and supp(ϕi
j) ⇢ �Bi

j for every j 2 N (see e.g. [6, Theorem 3.4]). De�ne discrete
convolutions with respect to the Whitney coverings by

ui =
∞X

j=�
uBi

j
ϕi
j , i 2 N.

We know that ui ! u in L�(G) as i ! ∞, and that each ui has an upper gradient

gi = C
∞X

j=�
χBi

j

kDuk(�λBi
j)

µ(Bi
j)
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with C = C(cd , cP), see e.g. the proof of [20, Proposition 4.1]. We can of course write the decomposition gi =
gai + gsi , where

gai = C
∞X

j=�
χBi

j

´
�λBi

j
a dµ

µ(Bi
j)

and

gsi = C
∞X

j=�
χBi

j

kDuks(�λBi
j)

µ(Bi
j)

.

By the bounded overlap property of the coverings, we can easily estimateˆ
G
gsi dµ ≤ eCkDuks(G) < eCε (4.4)

for every i 2 N, with eC = eC(cd , cP , λ). Furthermore, by Lemma 4.2 we know that the sequence gai is equi-
integrable and that a subsequence, which we still denote gai , converges weakly in L�(G) to a function ǎ ≤ Ca,
with C = C(cd , λ). By Mazur’s lemma we have for certain convex combinations, denoted by a hat,

cgai =
NiX

j=i
di,jgaj ! ǎ in L�(G) as i ! ∞,

where di,j ≥ � and
PNi

j=i di,j = � for every i 2 N [25, Theorem 3.12]. We note that bui 2 Liploc(G) for every i 2 N
(the hat always means that we take the same convex combinations), bui ! u in L�loc(G), and gbui ≤ bgi µ-almost
everywhere for every i 2 N (recall that gu always means the minimal �-weak upper gradient of u). Using the
de�nition of F(u, ·), the fact that f is L-Lipschitz, and (4.4), we get

F(u, H) ≤ F(u, G) ≤ lim inf
i!∞

ˆ
G
f (gbui ) dµ

≤ lim inf
i!∞

ˆ
G
f (bgi) dµ ≤ lim inf

i!∞

✓ˆ
G
f (cgai ) dµ +

ˆ
G
L bgsi dµ

◆

≤ lim inf
i!∞

✓ˆ
G
f (cgai ) dµ + LeCε

◆
=
ˆ
G
f (ǎ) dµ + LeCε

≤
ˆ
G
f (Ca) dµ + LeCε ≤

ˆ
Ω
f (Ca) dµ + LeCε.

By letting ε ! � we get the estimate from above for the absolutely continuous part, i.e.

Fa(u, Ω) = F(u, H) ≤
ˆ
Ω
f (Ca) dµ.

By combining this with (4.3), we get the desired estimate from above.

Remark 4.5. By using Theorems 4.1 and 4.4, as well as the de�nition of the functional for general sets given
in (3.3), we can conclude that for any µ-measurable set A ⇢ Ω ⇢ X with F(u, Ω) < ∞, we have

Fs(u, A) = f∞kDuks(A)

and ˆ
A
f (a) dµ ≤ Fa(u, A) ≤

ˆ
A
f (Ca) dµ,

where Fa(u, ·) and Fs(u, ·) are again the absolutely continuous and singular parts of the measure given by
the functional.

Since locally Lipschitz functions are dense in the Newtonian space N�,�(Ω) with Ω open [5, Theorem 5.47],
from the de�nition of total variation we know that if u 2 N�,�(Ω), then u 2 BV(Ω) with kDuk absolutely
continuous, and more precisely

kDuk(Ω) ≤
ˆ
Ω
gu dµ.
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We obtain, to some extent as a by-product of the latter part of the proof of the previous theorem, the follow-
ing converse, which also answers a question posed in [20]. A later example will show that the constant C is
necessary here as well.

Theorem 4.6. Let Ω ⇢ X be an open set, let u 2 BV(Ω), and let dkDuk = a dµ + dkDuks be the decomposition
of the variation measure, where a 2 L�(Ω) and kDuks is the singular part. Let H ⇢ Ω be a µ-measurable set for
which kDuks(H) = �. Then, by modifying u on a set of µ-measure zero if necessary, we have u|H 2 N�,�(H) and
gu ≤ Ca µ-almost everywhere in H, with C = C(cd , cP , λ).

Proof. We pick a sequence of open sets Hi such that H ⇢ Hi ⇢ Ω and kDuks(Hi) < �/i, i = �, �, . . .. Then, as
described in Lemma 4.2, we pick Whitney coverings {Bi

j}
∞
j=� of the sets Hi, with the constant τ = �λ.

Furthermore, as we did in the latter part of the proof of Theorem 4.4 with the open set G, we de�ne for
every i 2 N a discrete convolution ui of the function u with respect to the Whitney covering {Bi

j}
∞
j=�. Every ui

has an upper gradient

gi = C
∞X

j=�
χBi

j

kDuk(�λBi
j)

µ(Bi
j)

in Hi, with C = C(cd , cP), and naturally gi is then also an upper gradient of ui in H. We have ui ! u in L�(H)
(see e.g. the proof of [20, Proposition 4.1]) and, according to Lemma 4.2 and up to a subsequence, gi ! ǎ
weakly in L�(H), where ǎ ≤ Ca µ-almost everywhere in H. We now know by [16, Lemma 7.8] that bymodifying
u on a set of µ-measure zero, if necessary, we have that ǎ is a �-weak upper gradient of u in H. Thus we have
the result.

Remark 4.7. As in Lemma 4.2, if kDuk is absolutely continuous on the whole of Ω, we can choose simply
H = Ω, and then we also have the inequality

ˆ
Ω
gu dµ ≤ CkDuk(Ω)

with C = C(cd , cP , λ). Note also that the proof of [16, Lemma 7.8], which we used above, is also based on
Mazur’s lemma, so the techniques used above are very similar to those used in the proof of Theorem 4.4.

Finally we give the counterexample that shows that in general, we can have

Fa(u, Ω) >
ˆ
Ω
f (a) dµ and kDuk(Ω) <

ˆ
Ω
gu dµ.

The latter inequality answers a question raised in [24] and later in [3].

Example 4.8. Take the space X = [�, �], equipped with the Euclidean distance and a measure µ, which we
will next de�ne. First we construct a fat Cantor set A as follows. Take A� = [�, �], whose measure we denote
by α� = L�(A�) = �, where L� is the 1-dimensional Lebesgue measure. Then in each step i 2 N we de�ne Ai
by removing from Ai−� the set Bi, which consists of �i−� open intervals of length �−�i, centered at the middle
points of the intervals that make up Ai−�. We denote αi = L�(Ai), and de�ne A =

T∞
i=� Ai. Then we have

α = L�(A) = lim
i!∞

αi = �/�.

Now, equip the space X with the weighted Lebesgue measure dµ = w dL�, where w = � in A and w = � in
X \ A. De�ne

g = �
α χA = �χA and gi =

�
αi−� − αi

χBi , i 2 N.

The unweighted integral of g and each gi over X is �. Next de�ne the function

u(x) =
ˆ x

�
g dL�.
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Now u is in N�,�(X) and even in Lip(X), since g is bounded. In this �-dimensional setting, it can be seen that
every 1-weak upper gradient of u is in fact an upper gradient, and then it is easy to see that theminimal 1-weak
upper gradient of u is g. Approximate u with the functions

ui(x) =
ˆ x

�
gi dL�, i 2 N.

The functions ui are Lipschitz, and they converge to u in L�(X) and even uniformly, which can be seen as
follows. Given i 2 N, the set Ai consists of �i intervals of length αi/�i. If I is one of these intervals, we have

�−i =
ˆ
I
g dL� =

ˆ
I
gi+� dL�, (4.5)

and also ˆ
X\Ai

g dL� = � =
ˆ
X\Ai

gi+� dL�.

Hence ui+� = u at the end points of the intervals that make up Ai, and elsewhere |ui+� − u| is at most �−i by
(4.5).

Clearly the minimal 1-weak upper gradient of ui is gi. However, we have
ˆ �

�
g dµ = � > � = lim

i!∞

ˆ �

�
gi dµ ≥ kDuk([�, �]).

Thus the total variation is strictly smaller than the integral of the minimal 1-weak upper gradient, demon-
strating the necessity of the constant C in Theorem 4.6. On the other hand, any approximating sequence
vi 2 Lip(X) satisfying vi ! u in L�(X) converges, up to a subsequence, to u also pointwise µ- and thus L�-
almost everywhere, and then we necessarily have for some such sequence

kDuk([�, �]) = lim
i!∞

ˆ �

�
gvi dµ ≥ lim sup

i!∞

ˆ �

�
gvi dL� ≥ �. (4.6)

Hence we have kDuk([�, �]) = �. Let us show that more precisely, dkDuk = a dµ with a = χA. The fact that u
is Lipschitz implies that kDuk is absolutely continuous with respect to µ. Since ui converges to u uniformly,
for any interval (d, e) ⇢ (�, �) we must have

lim
i!∞

ˆ
(d,e)

gi dL� =
ˆ
(d,e)

g dL�,

and since for the weight we had w = � where gi > �, and w = � where g > �, we now get

lim
i!∞

ˆ
(d,e)

gi dµ = �
�

ˆ
(d,e)

g dµ.

By the de�nition of the variation measure, we have at any point x 2 X for small enough r > �

kDuk((x − r, x + r)) ≤ lim inf
i!∞

ˆ
(x−r,x+r)

gi dµ = �
�

ˆ
(x−r,x+r)

g dµ.

Now, if x 2 A, we can estimate the Radon-Nikodym derivative

lim sup
r!�

kDuk(B(x, r))
µ(B(x, r)) ≤ �,

and if x 2 X \ A, we clearly have that the derivative is �. On the other hand, if the derivative were strictly
smaller than � in a subset of A of positive µ-measure, we would get kDuk(X) < �, which is a contradiction
with the fact that kDuk(X) = �. Thus dkDuk = a dµ with a = χA. ¹

1 We can further show that gi dµ
*
* a dµ in X, but we do not have gi ! a weakly in L�(X), demonstrating the subtle di�erence

between the two types of weak convergence.
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To show that we can have Fa(u, X) >
´
X f (a) dµ — note that Fa(u, X) = F(u, X)— assume that f is given

by

f (t) =
(
t, t 2 [�, �],
�t − �, t > �.

(We could equally well consider other nonlinear f that satisfy the earlier assumptions.) Since a = χA, we have
ˆ
X
f (a) dµ =

ˆ
X
a dµ = �

ˆ
X
χA dL� = �.

On the other hand, for some sequence of Lipschitz functions vi ! u in L�(X), we have

F(u, X) = lim
i!∞

ˆ
X
f (gvi ) dµ

= lim
i!∞

✓
�
ˆ
A
f (gvi ) dL� +

ˆ
X\A

f (gvi ) dL�
◆
.

(4.7)

By considering a subsequence, if necessary, we may assume that vi ! u pointwise µ- and thus L�-almost
everywhere. By Proposition 3.8, we have for any closed set F ⇢ X \ A

lim sup
i!∞

ˆ
F
f (gvi ) dµ ≤ F(u, F) ≤ F(u, X \ A) ≤

ˆ
X\A

f (gu) dµ = �,

which implies that
lim
i!∞

ˆ
F
f (gvi ) dL� = � = lim

i!∞

ˆ
F
gvi dL�.

Applying these two equalities together with the inequality f (t) ≥ �t − �, we obtain

lim sup
i!∞

ˆ
X\A

f (gvi ) dL� = lim sup
i!∞

ˆ
X\(A[F)

f (gvi ) dL�

≥ lim sup
i!∞

ˆ
X\(A[F)

(�gvi − �) dL�

≥ lim sup
i!∞

ˆ
X\(A[F)

�gvi dL� − L�(X \ (A [ F))

= lim sup
i!∞

ˆ
X\A

�gvi dL� − L�(X \ (A [ F)).

The last term on the last line can be made arbitrarily small. Inserting this into (4.7), we get

F(u, X) = lim sup
i!∞

✓
�
ˆ
A
f (gvi ) dL� +

ˆ
X\A

f (gvi ) dL�
◆

≥ � lim inf
i!∞

ˆ
A
f (gvi ) dL� + � lim sup

i!∞

ˆ
X\A

gvi dL�

≥ � lim inf
i!∞

ˆ �

�
gvi dL� ≥ �.

The last inequality follows from the pointwise convergence of vi to u L�-almost everywhere.
Roughly speaking, we note that the total variation kDuk(X) is found to be unexpectedly small because

the growth of the approximating functions ui is concentrated outside the Cantor set A, where it is “cheaper”
due to the smaller value of theweight function. However, whenwe calculateF(u, X), the same does not work,
because now the nonlinear function f places “extra weight” on upper gradients that take values larger than
�.
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� Minimization problem
Let us consider a minimization problem related to the functional of linear growth. First we specify what we
mean by boundary values of BV functions.

De�nition 5.1. Let Ω and Ω* be bounded open subsets of X such that Ω b Ω*, and assume that h 2 BV(Ω*).
We de�ne BVh(Ω) as the space of functions u 2 BV(Ω*) such that u = h µ-almost everywhere in Ω* \ Ω.

Now we give the de�nition of our minimization problem.

De�nition 5.2. A function u 2 BVh(Ω) is a minimizer of the functional of linear growth with the boundary
values h 2 BV(Ω*), if

F(u, Ω*) = inf F(v, Ω*),

where the in�mum is taken over all v 2 BVh(Ω).

Note that if u 2 L�loc(Ω*) and u = h in Ω* \ Ω, then u 2 L�(Ω*). Furthermore, if F(u, Ω*) < ∞, then
kDuk(Ω*) < ∞ by (3.4). Thus it makes sense to restrict u to the class BV(Ω*) in the above de�nition. Observe
that theminimizers donot dependonΩ*, but the value of the functional does. Note also that theminimization
problem always has a solution and that the solution is not necessarily continuous, see [17].

Remark 5.3. We point out that any minimizer is also a local minimizer in the following sense. A minimizer
u 2 BVh(Ω) of F(·, Ω*) with the boundary values h 2 BV(Ω*) is a minimizer of F(·, Ω00) with the boundary
values u 2 BVu(Ω0) for every Ω0 b Ω00 ⇢ Ω*, with Ω0 ⇢ Ω. This can be seen as follows. Every v 2 BVu(Ω0)
can be extended to a BV function in Ω* by de�ning v = u in Ω* \ Ω00. The minimality of u and the measure
property of the functional (Theorem 3.7) then imply that

F(u, Ω* \ Ω00) + F(u, Ω00) ≤ F(v, Ω* \ Ω00) + F(v, Ω00).

Since u = v µ-almost everywhere in Ω* \Ω0, the �rst terms on both sides of the inequality cancel out, and we
have

F(u, Ω00) ≤ F(v, Ω00).

Nowwewish to express the boundary values of theminimization problem as a penalty term involving an
integral over the boundary. To this end, we need to discuss boundary traces and extensions of BV functions.

De�nition 5.4. An open set Ω is a strong BV extension domain, if for every u 2 BV(Ω) there is an extension
Eu 2 BV(X) such that Eu|Ω = u, there is a constant � ≤ cΩ < ∞ such that kEukBV(X) ≤ cΩkukBV(Ω), and
kD(Eu)k(∂Ω) = �.

The word "strong” refers to the condition kD(Eu)k(∂Ω) = �, which is not (necessarily) part of the con-
ventional de�nition of a BV extension domain. It can be understood as an additional regularity condition for
the domain. As an example of a BV extension domain that fails to satisfy this additional condition, consider
X = C = R� and the slit disk

Ω = B(�, �) \ {z = (x�, x�) : x� > �, x� = �}.

This is a BV extension domain according to [21, Theorem 1.1]. However, the function u(z) = Arg(z) 2 BV(Ω)
clearly cannot be extended such that the condition kD(Eu)k(∂Ω) = � would be satis�ed.

De�nition 5.5. We say that a µ-measurable setΩ satis�es theweakmeasure density condition if forH-almost
every x 2 ∂Ω we have

lim inf
r!�

µ(B(x, r) \ Ω)
µ(B(x, r)) > �.
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These are the two conditionswewill impose in order to have satisfactory results on the boundary traces of
BV functions. Based on results found in [7], we proved in [22] that every bounded uniform domain is a strong
BV extension domain and satis�es the weak measure density condition. An open set Ω is A-uniform, with
constant A ≥ �, if for every x, y 2 Ω there is a curve � in Ω connecting x and y such that `� ≤ Ad(x, y), and for
all t 2 [�, `� ], we have

dist(�(t), X \ Ω) ≥ A−�min{t, `� − t}.

The standard assumption in the classical Euclidean theory of boundary traces is a bounded domain with
a Lipschitz boundary, see e.g. [2, Theorem 3.87]. It can be checked that such a domain is always a uniform
domain, and so the theory we develop here is a natural generalization of the classical theory to the metric
setting.

Now we give the de�nition of boundary traces.

De�nition 5.6. For a µ-measurable set Ω and a µ-measurable function u on Ω, a real-valued function TΩu
de�ned on ∂Ω is a boundary trace of u if forH-almost every x 2 ∂Ω, we have

lim
r!�

ˆ
Ω\B(x,r)

|u − TΩu(x)| dµ = �.

Often we will also call TΩu(x) a boundary trace if the above condition is satis�ed at the point x. If the
trace exists at a point x 2 ∂Ω, we clearly have

TΩu(x) = lim
r!�

ˆ
B(x,r)\Ω

u dµ = ap lim
y2Ω, y!x

u(y),

where ap lim denotes the approximate limit. Furthermore, we can show that the trace is always a Borel func-
tion.

Let us recall the following decomposition result for the variation measure of a BV function from [3, The-
orem 5.3]. For any open set Ω ⇢ X, any u 2 BV(Ω), and any Borel set A ⇢ Ω that is σ-�nite with respect toH,
we have

kDuk(Ω) = kDuk(Ω \ A) +
ˆ
A

ˆ u_(x)

u^(x)
θ{u>t}(x) dt dH(x). (5.1)

The function θ and the lower andupper approximate limits u^ and u_were de�ned in Section 2. In particular,
by [3, Theorem 5.3] the jump set Su is known to be σ-�nite with respect toH.

The following is our main result on boundary traces.

Theorem 5.7. Assume that Ω is a strong BV extension domain that satis�es the weak measure density con-
dition, and let u 2 BV(Ω). Then the boundary trace TΩu exists, that is, TΩu(x) is de�ned for H-almost every
x 2 ∂Ω.

Proof. Extend u to a function Eu 2 BV(X). By the fact that

kD(Eu)k(∂Ω) = �

and the decomposition (5.1), we have H(SEu \ ∂Ω) = � — recall that the function θ is bounded away from
zero. Here

SEu = {x 2 X : (Eu)^(x) < (Eu)_(x)},

as usual. On the other hand, by [20, Theorem 3.5] we know that H-almost every point x 2 ∂Ω \ SEu is a
Lebesgue point of Eu. In these points we de�ne TΩu(x) simply as the Lebesgue limit fEu(x). For H-almost
every x 2 ∂Ω the weak measure density condition implies

lim inf
r!�

µ(B(x, r) \ Ω)
µ(B(x, r)) = c(x) > �.
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Thus forH-almost every x 2 ∂Ω we can estimate

lim sup
r!�

ˆ
B(x,r)\Ω

|u − TΩu(x)| dµ

≤ lim sup
r!�

�
c(x)µ(B(x, r))

ˆ
B(x,r)

|Eu − fEu(x)| dµ = �.

Due to the Lebesgue point theorem [20, Theorem 3.5], we have in fact

lim sup
r!�

ˆ
B(x,r)\Ω

|u − TΩu(x)|Q/(Q−�) dµ = �

forH-almost every x 2 ∂Ω, where Q > � was given in (2.1). However, we will not need this stronger result.
Let us list some general properties of boundary traces.

Proposition 5.8. Assume that Ω is a µ-measurable set and that u and v are µ-measurable functions on Ω. The
boundary trace operator enjoys the following properties for any x 2 ∂Ω for which both TΩu(x) and TΩv(x) exist:

(i) TΩ(αu + βv)(x) = α TΩu(x) + β TΩv(x) for any α, β 2 R.

(ii) If u ≥ v µ-almost everywhere in Ω, then TΩu(x) ≥ TΩv(x). In particular, if u = v µ-almost everywhere in Ω,
then TΩu(x) = TΩv(x).

(iii) TΩ(max{u, v})(x) = max{TΩu(x), TΩv(x)} and TΩ(min{u, v})(x) = min{TΩu(x), TΩv(x)}.

(iv) Let h > � and de�ne the truncation uh = min{h,max{u, −h}}. Then TΩuh(x) = (TΩu(x))h.

(v) IfΩ is a µ-measurable set such that bothΩ and its complement satisfy theweakmeasure density condition,
and w is a µ-measurable function on X, then forH-almost every x 2 ∂Ω for which both traces TΩw(x) and
TX\Ωw(x) exist, we have

{TΩw(x), TX\Ωw(x)} = {w^(x), w_(x)}.

Proof. Assertions (i) and (ii) are clear. Since minimum and maximum can be written as sums by using ab-
solute values, property (iii) follows from (i) and the easily veri�ed fact that TΩ|u|(x) = |TΩu(x)|. Assertion
(iv) follows from (iii). In proving assertion (v), due to the symmetry of the situation we can assume that
TΩw(x) ≥ TX\Ωw(x). By using the de�nition of traces and Chebyshev’s inequality, we deduce that for every
ε > �,

lim
r!�

µ({|w − TΩw(x)| > ε} \ B(x, r) \ Ω)
µ(B(x, r) \ Ω) = �

and
lim
r!�

µ({|w − TX\Ωw(x)| > ε} \ B(x, r) \ Ω)
µ(B(x, r) \ Ω) = �.
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To determine the lower and upper approximate limits, we use these results to compute

lim sup
r!�

µ({w > t} \ B(x, r))
µ(B(x, r)) = lim sup

r!�


µ({w > t} \ B(x, r) \ Ω)

µ(B(x, r)) + µ({w > t} \ B(x, r) \ Ω)
µ(B(x, r))

�

8
>><

>>:

= � + � if t > TΩw(x),
= lim supr!�

µ(B(x,r)\Ω)
µ(B(x,r)) + � if TX\Ωw(x) < t < TΩw(x),

= lim supr!�

h
µ(B(x,r)\Ω)
µ(B(x,r)) + µ(B(x,r)\Ω)

µ(B(x,r))

i
if t < TX\Ωw(x),

8
>><

>>:

= � if t > TΩw(x),
2 (�, �) if TX\Ωw(x) < t < TΩw(x),
= � if t < TX\Ωw(x).

To obtain the result “2 (�, �)” above, we used the weak measure density conditions. We conclude that
w_(x) = TΩw(x), and since “lim sup” can be replaced by “lim inf” in the above calculation, we also get
w^(x) = TX\Ωw(x).

Aminor point to be noted is that any function that is in the classBV(X), such as an extension Eu of u 2 BV(Ω),
is also in the class BV(Ω), and thus TΩEu = TΩu.

Eventuallywewill alsoneed tomakeanadditional assumptionon the space, as described in the following
de�nition that is from [3, De�nition 6.1]. The function θE was introduced earlier in (2.4).

De�nition 5.9. We say that X is a local space if, given any two sets of locally �nite perimeter E� ⇢ E� ⇢ X,
we have θE� (x) = θE� (x) forH-almost every x 2 ∂*E� \ ∂*E�.

See [3] and [22] for some examples of local spaces, and [23, Example 5.2] for an example of a space that is
not local, despite having a doublingmeasure and a Poincaré inequality. The assumption E� ⇢ E� can, in fact,
be removed as follows. Note that for a set of locally �nite perimeter E, we have kDχEk = kDχX\Ek, i.e. the two
measures are equal [24, Proposition 4.7]. From this it follows that θE(x) = θX\E(x) forH-almost every x 2 ∂*E.
Now, if E� and E� are arbitrary sets of locally �nite perimeter, we know that E� \ E� and E� \ E� are also sets
of locally �nite perimeter [24, Proposition 4.7]. For every x 2 ∂*E� \ ∂*E� we have either x 2 ∂*(E� \ E�) or
x 2 ∂*(E� \ E�). Thus by the locality condition, we have forH-almost every x 2 ∂*E� \ ∂*E� either

θE� (x) = θE�\E� (x) = θE� (x)

or
θE� (x) = θE�\E� (x) = θX\E� (x) = θE� (x).

Thus we have θE� (x) = θE� (x) forH-almost every x 2 ∂*E� \ ∂*E�.
In a local space the decomposition (5.1) takes a simpler form, as proved in the following lemma.

Lemma 5.10. If X is a local space, Ω is a set of locally �nite perimeter, u 2 BV(X), and A ⇢ ∂*Ω is a Borel set,
then we have ˆ

A

ˆ u_(x)

u^(x)
θ{u>t}(x) dt dH(x) =

ˆ
A
(u_(x) − u^(x))θΩ dH(x).

Note that since Ω is a set of locally �nite perimeter, A ⇢ ∂*Ω is σ-�nite with respect toH.

Proof. We have
ˆ
A

ˆ u_(x)

u^(x)
θ{u>t}(x) dt dH(x) =

ˆ
A

ˆ ∞

−∞
χ{(u^(x),u_(x))}(t)θ{u>t}(x) dt dH(x)

=
ˆ ∞

−∞

ˆ
A
χ{(−∞,t)}(u

^(x))χ{(t,∞)}(u
_(x))θ{u>t}(x) dH(x) dt

=
ˆ ∞

−∞

ˆ
A\∂*{u>t}

χ{(−∞,t)}(u
^(x))χ{(t,∞)}(u

_(x))θ{u>t}(x) dH(x) dt.
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On the third line we used Fubini’s theorem. On the fourth line we used the fact that if u^(x) < t < u_(x), then
x 2 ∂*{u > t}. This follows from the de�nitions of the lower and upper approximate limits. By the locality
condition we see that the right-hand side above equals

ˆ ∞

−∞

ˆ
A\∂*{u>t}

χ{(−∞,t)}(u
^(x))χ{(t,∞)}(u

_(x))θΩ(x) dH(x) dt

=
ˆ ∞

−∞

ˆ
A
χ{(−∞,t)}(u

^(x))χ{(t,∞)}(u
_(x))θΩ(x) dH(x) dt

=
ˆ
A

ˆ ∞

−∞
χ{(u^(x),u_(x))}(t) dt θΩ(x) dH(x)

=
ˆ
A
(u_(x) − u^(x))θΩ(x) dH(x).

Now we prove two propositions concerning boundary traces that are based on [2, Theorem 3.84] and [2, The-
orem 3.86].

Proposition 5.11. LetΩ andΩ* be open sets such thatΩ andΩ*\Ω satisfy theweakmeasure density condition,
Ω ⇢ Ω*, and Ω is of �nite perimeter. Let u, v 2 BV(Ω*), and let w = uχΩ + vχΩ*\Ω. Then w 2 BV(Ω*) if and only
if ˆ

∂Ω
|TΩu − TΩ*\Ω v| dH < ∞. (5.2)

In the above characterization, we implicitly assume that the integral is well-de�ned — in particular, this is the
case if Ω and Ω* \ Ω are also strong BV extension domains, due to Theorem 5.7. Furthermore, if X is a local
space, we then have

kDwk(Ω*) = kDuk(Ω) + kDvk(Ω* \ Ω) +
ˆ
∂Ω

|TΩu − TΩ*\Ω v|θΩ dH.

Proof. First note that by theweakmeasuredensity conditions,wehaveH(∂Ω\∂*Ω) = �, and thusH(∂Ω) < ∞.
This further implies that µ(∂Ω) = � [19, Lemma 6.1], and by this and the weak measure density conditions
again,

H(∂Ω \ ∂Ω) = � and TΩ*\Ω = TΩ*\Ω .

To prove one direction of the proposition, let us assume (5.2). In particular, we assume that TΩu(x) and
TΩ*\Ω v(x) exist forH-almost every x 2 ∂Ω. For h > �, de�ne the truncated functions

uh = min{h,max{u, −h}} and vh = min{h,max{v, −h}}.

Clearly uh , vh , χΩ , χΩ*\Ω 2 BV(Ω*) \ L∞(Ω*). Then

wh = uhχΩ + vhχΩ*\Ω 2 BV(Ω*) \ L∞(Ω*),

see e.g. [20, Proposition 4.2]. Based on the decomposition of the variation measure given in (5.1),

kDwhk(Ω*) = kDuhk(Ω) + kDvhk(Ω* \ Ω) +
ˆ
∂Ω

ˆ w_
h (x)

w^
h (x)

θ{wh>t}(x) dt dH(x)

≤ kDuk(Ω) + kDvk(Ω* \ Ω) +
ˆ
∂Ω

cd|w_
h (x) − w^

h (x)| dH(x).
(5.3)

By Proposition 5.8 (iv), the boundary traces TΩ of u, uh,wh, and TΩ*\Ω of v, vh,wh, existH-almost everywhere
on the boundary ∂Ω. For wh this fact follows from the de�nition of boundary traces, by which we have that
TΩwh = TΩuh, and similarly TΩ*\Ω wh = TΩ*\Ω vh. Proposition 5.8 (v) now gives

�
w^
h (x), w_

h (x)
 
= {TΩwh(x), TΩ*\Ω wh(x)} = {TΩuh(x), TΩ*\Ω vh(x)} (5.4)
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forH-almost every x 2 ∂Ω. Using Proposition 5.8 (iv) again, forH-almost every x 2 ∂Ω we have

TΩuh(x) = min{h,max{TΩu(x), −h}},
TΩ*\Ω vh(x) = min{h,max{TΩ*\Ω v(x), −h}}.

(5.5)

By the lower semicontinuity of the total variation as well as (5.3), (5.4) and (5.5), we now get

kDwk(Ω*) ≤ lim inf
h!∞

kDwhk(Ω*) ≤ kDuk(Ω) + kDvk(Ω* \ Ω) + lim inf
h!∞

cd
ˆ
∂Ω

|TΩuh − TΩ*\Ω vh| dH

= kDuk(Ω) + kDvk(Ω* \ Ω) + cd
ˆ
∂Ω

|TΩu − TΩ*\Ω v| dH < ∞.

Thus w 2 BV(Ω*).
To prove the converse, assume that w 2 BV(Ω*). Here we can simply again write the decomposition of

the variation measure

∞ > kDwk(Ω*) ≥ kDuk(Ω) + kDvk(Ω* \ Ω) + α
ˆ
∂Ω

|w_ − w^| dH,

where α = α(cd , cP) > �, and just as earlier, note that

|w_(x) − w^(x)| = |TΩw(x) − TΩ*\Ω w(x)| = |TΩu(x) − TΩ*\Ω v(x)| (5.6)

forH-almost every x 2 ∂Ω. This combined with the previous estimate gives the desired result. If X is a local
space, we combine the decomposition of the variation measure (5.1), Lemma 5.10, and (5.6) to obtain the last
claim.

Next we show that if a set A (which could be e.g. the boundary ∂Ω) is in a suitable sense of codimension one,
traces of BV functions are indeed integrable on A. Let us �rst recall the following fact from the theory of sets
of �nite perimeter. Given any set of �nite perimeter E ⇢ X, forH-almost every x 2 ∂*E we have

� ≤ lim inf
r!�

µ(E \ B(x, r))
µ(B(x, r)) ≤ lim sup

r!�

µ(E \ B(x, r))
µ(B(x, r)) ≤ � − �, (5.7)

where � 2 (�, �/�] only depends on the doubling constant and the constants in the Poincaré inequality [1,
Theorem 5.4].

Proposition 5.12. Let Ω* ⇢ X be open, let u 2 BV(Ω*), and let A ⇢ Ω* be a bounded Borel set that satis�es
dist(A, X \ Ω*) > � and

H(A \ B(x, r)) ≤ cA
µ(B(x, r))

r (5.8)

for every x 2 A and r 2 (�, R], where R 2 (�, dist(A, X \ Ω*)) and cA > � are constants. Then
ˆ
A
(|u^| + |u_|) dH ≤ CkukBV(Ω*), (5.9)

where C = C(cd , cP , λ, A, R, cA).

Proof. Wemay assume that u ≥ �. Let

c = inf
x2A

µ(B(x, R/(�λ)));

by the doubling property of µ we have c = c(A, R, cd , λ) > �. First consider a set E ⇢ X that is of �nite
perimeter in Ω* and satis�es µ(E) < δ, where δ > � is a constant that will be determined below. De�ne

E� =
⇢
x 2 Ω* : lim inf

r!�
µ(E \ B(x, r))
µ(B(x, r)) ≥ �

�
,
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where � = �(cd , cP , λ) > � is the constant from (5.7). Pick any x 2 E� \ A. We note that

µ(E \ B(x, R/(�λ)))
µ(B(x, R/(�λ))) ≤ µ(E)

µ(B(x, R/(�λ))) <
δ
c .

By choosing δ > � small enough, we have

µ(E \ B(x, R/(�λ)))
µ(B(x, R/(�λ))) ≤ �

� .

Thus we have δ = δ(c, �), and consequently δ = δ(cd , cP , λ, A, R). By the de�nition of E� , we can �nd a
number r 2 (�, R/�] that satis�es

�
�cd

< µ(E \ B(x, r/λ))
µ(B(x, r/λ)) ≤ �

� .

This can be done by repeatedly halving the radius R/� until the right-hand side of the above inequality does
not hold, and picking the last radius for which it did hold. From the relative isoperimetric inequality (2.5) we
conclude that

µ(B(x, r/λ))
r/λ ≤ �cd

�
µ(E \ B(x, r/λ))

r/λ ≤ C
�
P(E, B(x, r)). (5.10)

Using the radii chosen this way, we get a covering {B(x, r(x))}x2A\E� of the set A \ E� . By the 5-covering
lemma, we can select a countable family of disjoint balls {B(xi , ri)}∞i=� such that the balls B(xi , �ri) cover
A \ E� . By using (5.8) and (5.10), we get

H(E� \ A) ≤
∞X

i=�
H(E� \ A \ B(xi , �ri))

≤ cA
∞X

i=�

µ(B(xi , �ri))
�ri

≤ C
∞X

i=�

µ(B(xi , ri/λ))
ri/λ

≤ C
∞X

i=�
P(E, B(xi , ri)) ≤ CP(E, Ω*),

(5.11)

where C = (cd , cP , λ, cA).
Then we consider the function u. Assume that x 2 A \ Su and u^(x) + u_(x) > t, with t > �. By the

de�nitions of the lower and upper approximate limits, we know that x 2 ∂*{u > s} for all s 2 (u^(x), u_(x)).
By the coarea formula (2.3), the sets {u > s} are of�nite perimeter inΩ* for every s 2 T, where T is a countable
dense subset of R. Thus, outside aH-negligible set, (5.7) holds for every x 2 ∂*{u > s} and s 2 T. Assuming
that x is outside thisH-negligible set, we can �nd s 2 ((u^(x) + u_(x))/�, u_(x)) \ T and estimate

lim inf
r!�

µ({u > t/�} \ B(x, r))
µ(B(x, r)) ≥ lim inf

r!�
µ({u > s} \ B(x, r))

µ(B(x, r)) ≥ �,

which means that x 2 {u > t/�}� . By Chebyshev’s inequality we get

µ({u > t/�}) ≤
kukL�(Ω*)

t/� < δ

if t > t�, where t� = C(cd , cP , λ, A, R)kukL�(Ω*) due to the dependencies of δ given earlier. By the coarea
formula, {u > t/�} is of �nite perimeter in Ω* for almost every t 2 R, and Cavalieri’s principle and (5.11) then
imply that

ˆ
A\Su

(u^ + u_) dH =
ˆ ∞

�
H({x 2 A \ Su : u^(x) + u_(x) > t}) dt

≤
ˆ ∞

�
H({u > t/�}� \ A) dt

≤ t�H(A) +
ˆ ∞

t�
C(cd , cP , λ, cA)P({u > t/�}, Ω*) dt

≤ C(cd , cP , λ, A, R)kukL�(Ω*)H(A) + C(cd , cP , λ, cA)kDuk(Ω*).
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This gives the estimate for A\ Su. For A \ Su, we simply note that if x 2 A \ Su and u^(x) = u_(x) > t, then the
approximate limit of u at x is larger than t, which easily gives x 2 {u > t}� , and then we can use Cavalieri’s
principle as above.

Finally we get the desired representation for the minimization problem.

Theorem 5.13. Assume that X is a local space, and let Ω b Ω* be bounded open sets such that Ω and Ω* \ Ω
satisfy theweakmeasure density condition,Ω is a strongBV extensiondomain, and ∂Ω satis�es the assumptions
of Proposition 5.12. Assume also that h 2 BV(Ω*) and that the trace TX\Ωh(x) exists forH-almost every x 2 ∂Ω,
which in particular is true if Ω* \ Ω is also a strong BV extension domain. Then the minimization problem given
in De�nition 5.2, with boundary values h, can be reformulated as the minimization of the functional

F(u, Ω) + f∞
ˆ
∂Ω

|TΩu − TX\Ωh|θΩ dH (5.12)

over all u 2 BV(Ω).

Note that this formulation contains no reference to Ω*.

Proof. First note that due to the conditions of Proposition 5.12, we haveH(∂Ω) < ∞, and thus µ(∂Ω) = � and
Ω is a set of�nite perimeter, see e.g. [19, Lemma6.1, Proposition 6.3]. By theweakmeasure density conditions,

H(∂Ω \ ∂Ω) = � and TΩ*\Ω = TΩ*\Ω .

Now, for any u 2 BVh(Ω), we have u 2 BV(Ω*) by de�nition, and F(u, Ω*) < ∞ by (3.4). Then

F(u, Ω*) = F(u, Ω) + Fs(u, ∂Ω) + F(h, Ω* \ Ω)
= F(u, Ω) + f∞kDuks(∂Ω) + F(h, Ω* \ Ω)

= F(u, Ω) + f∞
ˆ
∂Ω

|u_ − u^|θΩ dH + F(h, Ω* \ Ω)

= F(u, Ω) + f∞
ˆ
∂Ω

|TΩu − TX\Ωh|θΩ dH + F(h, Ω* \ Ω),

(5.13)

where the �rst equality follows from the measure property of F(u, ·) as well as the fact that µ(∂Ω) = �, the
second equality follows from the integral representation of the functional (see Remark 4.5), the third equality
follows from the decomposition (5.1) and Lemma 5.10, and the fourth equality follows from Proposition 5.8
(v). Now, the term F(h, Ω* \ Ω) does not depend on u, so in fact we need to minimize (5.12).

Conversely, assume that u 2 BV(Ω). Thenwe can extend u to Eu 2 BV(Ω*). By Proposition 5.8 (v)we have

{TΩh(x), TX\Ω h(x)} = {h^(x), h_(x)}

forH-almost every x 2 ∂Ω. By the proof of Theorem 5.7 we have that TΩEu(x) is the Lebesgue limit of Eu for
H-almost every x 2 ∂Ω. By Proposition 5.12, we now get

ˆ
∂Ω

|TΩEu − TX\Ωh| dH ≤ C(kEukBV(Ω*) + khkBV(Ω*)) < ∞.

By Proposition 5.11 we deduce that w = (Eu)χΩ + hχΩ*\Ω 2 BV(Ω*), and in fact we have w = uχΩ + hχΩ*\Ω 2
BVh(Ω). This completes the proof.

Remark 5.14. Note that in the latter part of the above proof we showed that, under the assumptions on the
space and on Ω, the spaces BV(Ω) and BVh(Ω) ⇢ BV(Ω*) can be identi�ed.
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