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ABSTRACT Recently, reconfigurable intelligent surfaces (RISs) gained notable consideration due to their
ability to provide efficient and cost-effective wireless communication networks. However, this powerful
concept often suffers from simplistic modeling which underestimates such features of RIS as the resonant
frequency dispersion and strong angular dependency of the reflection phases for both TE and TM
polarizations of the incident wave. The angular and polarization instability of the reflection phase is a
fundamental restriction of RISs, especially restrictive if the operation frequency band is broad. In this paper,
we address this challenge for a binary RIS performed as a metasurface. We have studied the reflection phase
frequency dispersion (RPFD) analytically that allowed us to engineer the needed angular and polarization
properties of the RIS. Our RIS is a self-resonant grid of Jerusalem crosses located on a thin metal-backed
dielectric substrate. Adjacent crosses are connected by switchable capacitive loads. We have shown the
advantage of our metasurface compared to switchable mushroom-field structures and meta-gratings of
resonant patches. An RIS is also fabricated and measured, and the experimental results corroborate well
our numerical full wave simulations and analytical predictions.

INDEX TERMS Reconfigurable intelligent surface (RIS), wireless communication, angular stability.

I. INTRODUCTION
Evolution of telecommunications shifts wireless networks
to higher frequencies. This shift can be attributed to a
number of factors, including more reliable and safer com-
munications, growing capacity requirements, more accurate
localization of objects, and the demand for low-latency
communication [1], [2], [3]. Novel frequency ranges – the
millimeter-wave (mmWave) and terahertz (THz) ranges –
allow much larger bandwidth, and much higher peak data
rates for the fifth-generation (5G) and sixth generation
(6G) cellular networks [4], [5]. Despite the benefits of
mmWave communication, it still suffers from fundamental
drawbacks, including large path loss which requires high

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

power transmitters, high atmospheric absorption, parasitic
multi-path interference, and shadowing by obstacles [6],
[7]. Consequently, reaching smart, robust, and, above all,
dynamic Line of Sight (LOS) communication, necessitate
migrating toward the software-definedmodel for future, more
reliable wireless communications.

In this framework, reconfigurable intelligent surfaces
(RISs) have appeared as an optimistic enabling technology
to empower future wireless networks [8], [9]. A RIS is
a compact and low-power alternative to the relay base
stations. RIS is analogous to a conventional reflect-array
used in high-frequency antenna techniques so that to shape
the radiated beam. It is an array of small, low-cost, and
passive (though tunable) reflecting elements [10]. Compared
to relays deployments and cell-free massive MIMO which
increase the network power consumption, RISs grant such
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fundamental benefits as consuming small power (spent only
for tuning the reflection phase of the elements), lower
hardware complexity, lower cost, no self-interference, and no
backhaul requirements [11]. Meanwhile, adaptive shaping of
the wireless channels hasmade the RIS a promising candidate
for smart radio environments [12], [13]. Recently, RISs
have been used to realize the binary frequency shift-keying
(BFSK) transmitter [14], multi-modulation schemes [15],
IRS- assisted full-duplex wireless communications [16],
MIMO-assisted networks [17], and non-orthogonal multiple
access (NOMA) communication network [18].

Often, the RIS paradigm is considered within the pro-
grammable metasurface concept [6]. Metasurfaces (MSs) are
defined as thin layer periodic arrangements of unit cells
formed by thin sub-wavelength resonators [19], [20], [21].
Since the unit cell is much smaller than the wavelength, the
metasurface (though resonant) can be treated as an effectively
continuous surface enabling the smooth coordinate depen-
dence of the reflection phase. The gradient of the reflection
phase with respect to the tangential coordinate allows one to
deflect the incident wave i.e. tomanipulate the direction of the
reflected wave. To deflect the incident beam with the angle
θ to the deflection angle θr , one needs to use the MS whose
reflection phase linearly varies from 0 to 2π within the period
D. This period is determined by the two angles as [22]:

D =
λ

| sin θ − sin θr |
. (1)

Here the angle θr is considered negative when the reflected
wave vector is tilted to the same side as the incident wave
vector with respect to the normal (i.e. the retro-reflection case
corresponds to θr = −θ) [23], [24].

Of course, the continuous linear coordinate dependence
of the reflection phase 8R(x) = 2πx/D is the ideal case.
In reality, one may engineer unit cells of size 1x offering
the discrete change of the reflection phase 18R = 2π1x/D
from cell to cell within one period. In conceptual papers such
as [23] and [24], this gradual reflection phase variation was
done via variation of the resonating element size from cell
to cell within the period (non-tunable). For RIS, the same
result was achieved using electronically controlled lumped
loads (tunable) whereas the scattering elements in each unit
cell were the same [25], [26], [27], [28], [29], [30].

This approach identifies a RIS to the MS with multiple
discrete digital states and allows one to engineer the needed
scattering pattern [29]. When the incidence angle changes
or the reflection angle needs to be changed, one can change
the biasing mechanism of the unit cells so that to properly
change the phase shift 18R between two adjacent unit
cells, and the period D changes accordingly. These tunable
loads should be reactive to avoid the strong absorption of
the incident signal (which needs to be reflected and not
absorbed).

The drawback of this technical solution is its high cost.
To achieve multiple values of the reactive loads in each
element of the MS reliably and without parasitic losses,

an expensive electronic circuitry is needed, especially if the
operating frequencies are high and parasitic losses in the
loads are noticeable. The simplest and cheapest version of
the RIS that is performed as an MS is the binary MS: two
values of the load e.g. capacitances C1 and C2 that grant two
reflection phases – those with the phase difference18R = π .
This approach allows the unit cell to mimic two digital states
– ‘0’ and ‘1’. Being easier to implement and cheaper to
fabricate and exploit, especially at the biasing point, binary
MSs have got a hot topic status in the modern literature on
RISs [2], [16], [25].

It can be thought that the replacement of ametasurfacewith
multiple states (multi-bit) of a unit cell by a metasurface with
only two states (binary) should result in a drastic worsening of
its diffraction pattern. Let the unit cell size a equal λ/10 and
θr = 30◦. Then the period D equals 2λ and there are 20 unit
cells in the period. In the multiple-state approach, we may
use 20 different values of the loading capacitance. Thus,
we seemingly mimic the linear reflection phase coordinate
dependence 8R = 2πx/D by the step-wise function with
the step as small as 360◦/20 = 18◦ and as narrow as λ/10.
Meanwhile, in the binaryMS, the reflection phase varies with
the step as large as π and as wide as D/2 = λ. In the period,
10 unit cells are in the state of ‘0’, and 10 unit cells are in
the state of ‘1’. This seems to be a much worse model of
the reflection phase linear coordinate dependence. However,
it is not so! The controllable deflection of the incident beam
for the binary MS is not much worse than that granted by
the 20-states unit cells. That fine-tuning of the unit cells
implies, in fact, not the local reflection phase but the local
surface impedance. The reflection of the incident wave by an
array of unit cells is a collective process. It is determined not
by the surface impedance of the given unit cell but by the
distribution of the surface impedance in the effective spot of
radius λ/2 around it. This is why periodical MSs formed by
large groups of ‘0’-state unit cells alternating with the similar
groups of ‘1’-state unit cells grant nearly the same quality of
the diffraction angle as that granted by finely tuned periodical
MSs (see e.g. in [30], [36], [37]). Albeit, it is obvious that due
to the symmetry, the other deflected waves will be created at
θ = −θr . By changing the number of the same unit cells in
each group, the deflection angle can be tuned based on the
generalized reflection law.

The tendency to further simplify the RISs resulted in the
appearance of so-called periodical meta-gratings (MGs) [22].
Elements of a meta-grating have the tangential sizes of the
order of λ/2. One element of the MG replaces a group of
several unit cells of the MS performing the presumably same
functionality [22], [31]. It was shown that MGs comprising
three resonators per periodDmay grant the needed deflection
with the same quality of the diffraction pattern as that of
a metasurface with a number of subwavelength unit cells
per the same period [32], [33], [34]. The MG can be binary
as well. Then the resonators of the MG are all identical
and the difference between their responses is ensured by the
switchable load [35].
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Though the progress of RIS in the literature is indisputable,
there are still dark points in this field. The majority of
papers about RIS-assisted communications use simplistic
informational and theoretical tools. Often they model the
RISs by ideal phase shifters neglecting the inherent electro-
magnetic behavior of the MSs, their dispersion, their angular
instability, the non-locality of their reflection coefficient
etc. [36], [38], [39], [40]. These optimistic models can not
expose the RISs behavior in real wireless communication
systems. Conceptual papers that correctly treat RISs from the
electromagnetic point of view, consider them operating at a
single frequency.Meanwhile, 5G telecommunication systems
and especially prospective 6G systems demand broadband
operation. In practice, the relative frequency band is needed
with relative width as large as 20% (i.e. ±10% around the
central frequency). Is 18R close to π in such broadband
frequency? These reflecting surfaces are resonant and their
refection phase strongly varies versus frequency. Does it vary
similarly in both states ‘0’ and ‘1’? This issue was not studied
in the available papers on binary MSs and MGs.

Another point is the angular stability of the reflection
phase. It is a fundamental factor to keep the reconfigurable
and real-time channel estimation [41], [42]. The frequency
dispersion of the reflection phase may drastically change
when the incidence angle changes. Moreover, for the given
incidence angle θ , this change may be different for the
TE-incident wave and for the TM-incident one. If so, the
operation of the RIS (even broadband) for one direction of
the incident beam will be destroyed when another beam will
impinge on it from another polarization.

Formerly, some papers have brought forward the angular
stability of resonance using high impedance surfaces (HIS).
However, only partial stabilization has been obtained since
most of them are dedicated to angular stability of just the
single resonance frequency or for one polarization, see e.g.
in [43], [44], [45], [46], [47], [48], and [49]. For a properly
operating RIS, we need not simply the stable resonance
versus the incidence angle. Our goal is to keep the states
‘0’ and ‘1’ within the wide band of the incidence angles and
broadband of frequencies. Moreover, we need to achieve this
robustness for both TE- and TM-polarizations of the incident
wave. This is the problemwe theoretically solve in the present
paper. Our study reveals that the angular stability of the RPFD
besides the stability of resonance frequency also demands
the stability of the slopes. As a proof of concept, several
illustrative examples are corroborated through numerical
simulations and analytical models. Finally, by performing
sets of experimental measurements, the angular and polar-
ization stability of our proposed RIS in a broad range of
frequency bands are well verified. The authors believe that the
presented study is anticipated to expand the applications of
switchable digital metasurfaces and especially appealing for
the practical implementation of RISs. Since our study solves
the RIS’s angular sensitivity, a drawback that is neglected
in the literature up to now, it can pave the way for practical
real implementation of RIS-based wireless communication.

II. PROBLEM FORMULATION
A. BROADBAND OPERATION OF A BINARY METASURFACE
First, let us show that the operational band should either com-
prise the resonance frequencies ω01 and ω02 corresponding
to both states ‘0’ and ‘1’ or be located in between these
resonances.

The thickness of the MS in the whole range of our interest
frequency is small, i.e. the substrate between the top grid and
the ground plane is optically thin. Since it is metal-backed,
it means that its surface impedance Z− is inductive [50],
does not matter is it a simple dielectric layer or a composite
one. Let the needed MS be implemented as a periodic
planar grid of metal elements located on the top of such the
inductive substrate. Then its surface impedance is calculated
as follows [50]:

Zs =
ZgZ−

Zg + Z−
=

(rgr− − XgX−)+ j(rgX− + r−Xg)
r6 + jX6

, (2)

where Zg is the sheet impedance of the grid taking into
account the presence of the substrate, Z− is the surface
impedance of the metal-backed substrate, Xg and X− are
imaginary parts of Zg and Z−, rg and r− are real parts of Zg
and Z− determined by losses (since our MS is not absorbing,
we adopt that rg � Xg, r− � X−). Also, in (2) we have
denoted r6 = rg + r−, X6 = Xg + X−.
In accordance to (2), the surface impedance Zs is that of the

termination of the transmission line emulating free space and
represents a parallel connection of the inductive impedance
Z− and Zg. If Zg is also inductive, there is no resonance and
we cannot noticeably change the reflection phase with the
loading inductance. The only way to achieve a drastic change
of the reflection phase via loading is to assume thatXg in (2) is
capacitive, and in the operational band it should intersect with
the resonance band in which Zg resonates with Z−. Beyond
the resonance band, Zs is low and operates nearly as a shortcut
of the transmission line mimicking free space. Therefore,
at low and high frequencies, its reflection phase is close to
π independently of the load value. At the resonance, the MS
behaves like a perfect magnetic wall (PMW), i.e. 8R = 0 in
the state ‘0’ at frequency ω01 and 8R = 0 in the state ‘1’
at frequency ω02. Since the cases 8R = π and 8R = −π

are not distinguishable, it is reasonable to plot the reflection
phase-frequency dispersion (RPFD) so that8R varies from π
at low frequencies to−π at high frequencies. In the resonance
band, function 8R(ω) is approximately linear.
Now let us think about how to achieve nearly 180◦

phase difference between two states of the reflection
phase-frequency dispersion if the frequency band of opera-
tion [ω−, ω+] is broad. In Fig. 1, we qualitatively show all
possible cases for the figure formed by two states of RPFD.
In the real application, each of these two RPFDs should
correspond to the local reflection coefficient of a group of
unit cells in the same state. We should have in mind that the
size of this group is D/2 which is of the order of λ. However,
in the present work, we assume that this is the reflection phase
of an infinite uniform MS. Therefore, the group of identical
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FIGURE 1. a) Unsuitable figure of the two-states RPFD. The slopes of two RPFDs are noticeably
different. (b) Unsuitable figure of the two-states RPFD. The slope of the RPFDs is small, but the
resonance frequencies ω01 and ω02 are not sufficiently different. (c) Unsuitable figure of the two-states
RPFD. The slope of the RPFDs is large and the resonance frequencies ω01 and ω02 are not sufficiently
different. (d) Unsuitable figure of the two-states RPFD. The resonance frequencies ω01 and ω02 are
properly chosen, but the slope of two RPFDs is too large. e) The willow-leaf figure of two-states RPFD.
The slope of the RPFDs is small and the resonant frequencies are properly chosen. In all figures (a-e)
dashed vertical lines show the edges of the operation band ω− and ω+.

unit cells should be large enough, which implies a strongly
subwavelength period a.Wewill design theMS to respect this
condition, but the model of the local reflection coefficient of
a periodic binary MS will be verified in our next work. The
aim of the present work is to synthesize the infiniteMSwhose
two-states RPFD ensures the broadband operation, weakly
sensitive to the incidence angle and wave polarization.

Now let us see which type of the two-states RPFD
grants the broadband operation. The first condition is
an approximate equivalence of the slopes of two RPFDs
corresponding to states ‘0’ and ‘1’. In Fig. 1(a) we show the
situation when these slopes are noticeably different. In this
case, the broadband operation is not achievable. Even if we
engineer 18R = π at the central frequency of the operation
band, it will be larger than we need in one half of the band and
smaller in another half. The second condition is the sufficient
difference between the resonant frequencies. In the opposite
case, i.e. when (ω02 − ω01) � (ω+ − ω−), we also cannot
achieve the broadband operation. In fact, if the slope of RPFD
is small, we come to the situation illustrated by Fig. 1(b),
when 18R � π in the whole operation band. If the slope
of the RPFD is large, we have the figure shown in Fig. 1(c),
when 18R is also much smaller than π . The resonance
frequencies are engineered properly when ω01 is rather close
to ω−, and ω02 is rather close to ω+. However, this is not the
guarantee of the broadband operation. In Fig. 1(d), we show
the case when the slope of the RPFD is high. Then, in themost
part of the operation band 18R ≈ 2π . Only in Fig. 1(e),
the correct RPFD corresponds to the broadband operation
of a binary MS is shown. We have called it ‘‘willow-leaf’’
two-states RPFD.

Our target is to design a RIS that keeps the same willow-
leaf two-states RPFD when the incident angle θ varies within

the maximally large band of angles 0 ≤ θ ≤ θmax for both
TE and TM polarizations.

B. ANGULAR AND POLARIZATION STABILITY OF THE
WILLOW-LEAF DISPERSION FIGURE
For certainty, we specify the relative width of the operation
band as 20% i.e. (ω+ − ω−)/(ω+ + ω−) = 0.1, and put the
maximal allowed deviation of the reflection phase difference
18R from the target value 180◦ equal to 40◦.
Ensuring the sufficient separation of the resonance

frequencies ω01 and ω02 is easy. It is granted by the
proper choice of the lumped loads. To achieve the angular
stability of these frequencies, we have to analyze the
angular dependence of the grid impedance and the substrate
impedance for both TE and TM polarizations. In a qualitative
approximation, the resonance corresponds to the equation
Xg(ω, θ) + X−(ω, θ) = 0. The solution of this equation
does not depend on θ in two cases. First, when the angular
dependence of Xg and X− is the same (that is hardly possible
for both polarizations). Second, when the θ - dependent terms
cancel out in the resonance equation. Assume, that this is
possible to implement for both polarizations.

After we have achieved the angular stability of the
resonance frequencies for TE and TM cases, the next task is
to achieve the low slope of the RPFDs, the same for two states
and weakly varying versus θ . To understand how to obtain it,
let us express the reflection coefficient R of a MS in the given
state (‘0’ or ‘1’) via the surface impedance Zs and incident
angle θ for TE and TM polarization cases. In accordance
to [50] we have:

RTE =
ZTEs cos θ − η
ZTEs cos θ + η

, RTM =
ZTMs − η cos θ
ZTMs + η cos θ

, (3)
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where η =
√
µ0/ε0 is the free-space wave impedance. The

reflection coefficient of a MS is obviously depending on θ .
This is so because in accordance to (2), Zs is the parallel
connection of Zg and Z−. For the metal-backed substrate
(with or without vias), the angular dependence of Z− does
not allow to achieve ZTEs ∼ cos−1 θ simultaneously with
ZTMs ∼ cos θ without making the resonance frequency ω0
(at which Zs = ∞ in the lossless approximation) dependent
on θ . Meanwhile, the angular stability of the resonance for
the given state of the MS is the most important condition of
the willow-leaf figure’s robustness. This observation means
that the ideal angular stability of the reflection coefficient is
not achievable. Since the absolute value of rTE,TM is nearly
equal unity, it means that the angular stability of the reflection
phase can be only approximate.

The reflection phase in the TM and TE cases can be
expressed, respectively, by:

8TM
R = arctan

(
XTMs

rTMs − η cos θ

)
− arctan

(
XTMs

rTMs + η cos θ

)
(4)

8TE
R = arctan

(
XTEs cos θ

rTEs cos θ − η

)
− arctan

(
XTEs cos θ

rTEs cos θ + η

)
(5)

Here, in accordance to notations introduced above,
XTE,TMs and rTE,TMs are imaginary and real parts of
ZTE,TMs , respectively. At the resonance frequency, we have
XTE,TMs = 0 i.e. the reflection phase nullifies.

The slope of the RPFD for any incidence angle is basically
determined by the frequency derivative of8R at the resonance
frequency. For the TM case we have:

8′R(ω0, θ) =
X ′s(ω0, θ)

[rs(ω0, θ)− η cos θ ]
−

Xs′(ω0, θ)
[rs(ω0, θ)+ η cos θ]

.

(6)

Deriving (6), we used the standard formula arctan′[y(x)] =
y′(x)/[1 + y2(x)] and the fact that Xs(ω0) = 0. Since at
the resonance frequency the surface resistance attains its
maximum and rs(ω0) � η the slope of RPFD in accordance
to (6) takes form:

8′R(ω0, θ) ≈
2X ′s(ω0, θ)η cos θ

r2s (ω0, θ)
. (7)

The slope independency on θ can be granted e.g. by con-
dition r2s (ω0, θ) ∼ cos θ and X ′s(ω0, θ) = const(θ ).

Meanwhile, for the TE-case we have

8′R(ω0, θ) =
X ′s(ω0, θ) cos θ

[rs(ω0, θ) cos θ − η]
−

X ′s(ω0, θ) cos θ
[rs(ω0, θ) cos θ + η]

.

(8)

Even though rs(ω0) � η, for large incidence angles
cos θ � 1 and the value η/ cos θ obviously becomes of the
order of rs(ω0, θ). Near θ = π/2, there is obviously the
angle for which rs(ω0, θ) cos θ = η. At this angle,
the RPFD has a singular frequency derivative. The jump of

the reflection phase versus frequency is the implication of
the resonance because in the non-resonant case rs < η at
any frequency and for any incidence angle. For a resonant
metasurface, the angular stability of the RPFD slope for
θ ≈ π/2 illuminated by TE-polarized or non-polarized
waves is not achievable. Therefore we should restrict our
consideration by modest angles, e.g. assuming θmax = π/4,
we will have rs(ω0) cos θ � η. Then the slope of the RPFD
as follows from (8) equals to

8′R(ω0, θ) ≈
2X ′s(ω0, θ)η
r2s (ω0, θ)

. (9)

If rs(ω0) does not depend on θ the slope of RPFD is
angle-independent for modest angles and TE-polarization.

It is difficult to simultaneously ensure r2s (ω0, θ) ∼
cos θ for the angle-independent slope in the TM case
and r2s (ω0, θ) = const(θ ) for the TE case. However,
we formulated the criterion for 18R so that the relative
deviations ±20% are allowed. The same refers to the
deviations of the RPFD slope. When θ ≤ π/4 cosine
function is weakly varying and the problem can be simplified.
In accordance to (7) and (9) we have to engineer both X ′(ω0)
and rs(ω) independent on θ for both polarizations. This is a
feasible task and below we manage it.

The next task is to make this reflection phase slope nearly
the same and modest for the two states RPFD. It means that
we have to make the slope of the unloaded and loaded Xs(ω)
at two frequencies ω01 and ω02 nearly the same and modest.
Consider the state ‘0’. In the approximation of the simple
LC-resonance that is adequate for qualitative estimations,
we have for the surface reactance in the state ‘0’ X (0)

s (ω) ≈
ωL − 1/ωC1. Meanwhile, for the surface reactance in the
state ‘1’ we have X (1)

s (ω) ≈ ωL − 1/ωC2. In both cases, the
frequency derivative of the reactance is equal to

X ′s(ω01,02) = L +
1

ω2
01,02C1,2

= 2L,

since ω−201,02 = LC1,2. So, the same slope of the reflection
phase in two states is automatically secured if we make the
switchable load capacitive. Next, the slope of the RPFD is
angle-independent if the effective inductance of the MS does
not depend on the incidence angle. We will see that it is
possible for θ < θmax and incident wave polarizations if
the sensible value for θmax is specified. Finally, this slope is
obviously low if the resonance band of the MS is broad. This
is clear from the qualitative plots in Fig. 1.

So, our task is feasible – it is possible to engineer the
willow-leaf dispersion figure which would be robust in a
reasonably wide band of incidence angles for non-polarized
waves.

III. INVESTIGATION, RESULTS AND DISCUSSION
A. THE BRIEF SUMMARY
Fig. 2(a) illustrates our main achievement. OurMS comprises
the grid of Jerusalem crosses connected by pin-diodes. The
grid is located on top of a thin metal-backed dielectric layer
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FIGURE 2. a) Sketch representation of the proposed binary RIS. The insets depict the willow-leaf
dispersion figure for θmax when the structure is illuminated by the TE and TM polarized waves incident
in different planes. (b) Willow-leaf dispersion figure for one incidence angle which corresponds to
18R equal to (180± 40)◦ within the frequency band of relative width 20%. (c) First MS we have
studied with the aim to obtain the willow-leaf dispersion figure – the so-called mushroom structure.
The black circles in the point out the vias, the black bars are switchable capacitive loads. (d) 3D view
of the group of meta-atoms – Jerusalem crosses connected by switchable capacitive loads.

with a rather low permittivity. The willow-leaf dispersion
figure with angular and polarization stability (insets) up to
the angle θmax = 45◦ was theoretically obtained for it.
In Fig. 2(b) we show the dispersion figure in the scale
which allows one to inspect 18R. We see that 18R is equal
to (180± 40)◦ (the target value and bounds are shown by
horizontal lines) within the frequency band of relative width
20%. Our MS is a kind of high-impedance surface (see e.g.
in [50]) whose grid is self-resonant, though at the resonance
frequencies ω01,02, it operates in the capacitive regime.

Not every high-impedance surface may offer such a
result. We started our investigation with the analysis of
the most popular microwave high impedance surface called
the mushroom-field MS or simply the mushroom structure.
A body of literature is dedicated to the advantages of
mushroom structures, their numerous applications, and
specific features which can be engineered in these structures
via variation of the design parameters (see e.g. in [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53]). In the
mushroom structure, the top grid is an array of small patches
connected to the ground plane by vias piercing the substrate.
However, in the next subsection, we show that this structure
is in principle not suitable to achieve the goal of the present
paper. Then we show that the proposed grid of Jerusalem
crosses grants the needed properties if its parameters are
properly chosen (the details are in Appendix). We try to
answer the question whether it is possible to replace a group
of our meta-atoms (Jerusalem crosses) with a single element
with resonant sizes i.e. is it possible to transit from the MS
to the MG? We do not give the final answer since our best
result for the MG is much worse than that offered by our
MS. In this paper, we verify the results of our analytical

model by full-wave numerical simulations and experimental
measurements in which the agreement is excellent.

B. THE MUSHROOM-FIELD METASURFACE
In the mushroom structure, the period a is much smaller than
λ, and the thickness h of the substrate is of the same order
as the period or smaller. The gap between the patches is as a
rule much smaller than the period (g � a). The loading can
be performed by lumped capacitors connecting the adjacent
patches.

According to [46], the grid impedance of an array of the
square patches located on the dielectric susbtrate for TE and
TM cases, respectively, is as follows:

ZgTM = −j
ηeff

2α
, ZgTE = −j

ηeff

2α
(
1− sin2θ

2εeff

) . (10)

In equations (10), εeff is the effective permitivity value of the
uniform host medium, ηeff is the wave impedance of the host
medium, and α denotes the grid parameters and for square
array of patches can be obtained as:

εeff =
εr + 1

2
, ηeff =

√
µ0/ε0εeff ,

α =
keff a
π

ln

(
1

sin
(πg
2D

)) (11)

Period a and gap g are shown in Fig. 2, keff is the wave
vector of the host medium and equals to keff = k0

√
εeff . The

loading capacitance Cl connected each pair of the adjacent
patches and is simply added to the effective capacitance of
the unloaded grid [52]. The last one can be easily retrieved
from (10) because α is proportional to ω.
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FIGURE 3. Analytical simulation of the willow-leaf dispersion for a mushroom structure with low permittivity substrate
when the structure is illuminated by (a) TM and (b) TE polarized waves.

The surface impedance Z− of the substrate is calculated
involving the theory of so-called the wire medium or wire
metamaterial sandwiched between the patch array and the
ground plane. Usually, these wires (vias) are very thin and
in the TE case (electric field is orthogonal to these wires) do
not interact with the wave refracted into the substrate. Then
for any incidence angle, we may write (see e.g. [50]):

Zs−TE = jωµ0h. (12)

For the TM polarized waves, the situation is different. Let
us first consider the metal-backed substrate in the absence of
the vias. Then, in accordance to [46], we have:

Z−TM = jωµ0h

(
1−

sin2θ
εr

)
. (13)

Since ZTMg does not depend on θ , the angular dependence of
ZTMs cannot be compensated and the angular stability of the
resonance is achieved only if εr � 1. In the presence of the
vias we achieve the angular stability of the resonance for all
angles, because in accordance to [46], we have:

Z−TM = jωµ0h. (14)

On the other hand, for the TE case, the angular stability of
the resonance can be achieved if εeff � 1. What does this
angular stability demand for εr? How this is compatible with
the requirement of the modest slope of the RPFD? In order
to understand it, we performed the calculations of RPFD of
mushroom structures for different values of the permittivity
and different sets of design parameters. In order to broaden
the resonance band, we assumed that the dielectric substrate
is lossy. The result for the dispersion figure is closest to the
target willow-leaf shape for the following set of parameters:
εr = 2(1-j0.2), a = 5mm, g = 0.1mm and h = 6mm.
The analytically calculated reflection phase diagram of the
structure for the TM field is depicted in Fig. 3(a). Here the
incidence angle varies up to 60◦ and the angular stability is
achieved. For all θ up to 60◦, we have 140◦ < 18R < 220◦

in the band of frequencies broader than 20%. The two states
of the pin diode needed to create the willow-leaf shape are
set as C1 = 0 (when the grid capacitance is that between the
adjacent patches) and C2 = 0.23 pF.

Meanwhile, the result for the TE case presented in
Fig. 3(b) shows the noticeable shift of both resonances
even for θ = 20◦. Though the low value of the substrate
permittivity offers the willow-leaf shape for all angles, the
angular stability is not achievable in the TE case even for a
narrow band of frequencies. We do not report the full-wave
simulations confirming these analytical calculations, because
the reliability and very high accuracy of the used analytical
model have been validated theoretically and experimentally
in the already cited works.

The angular stability of the dispersion curve is possible
with the high permittivity for the mushroom structure,
but the willow-leaf shape will be lost. Fig. 4(a-c) depicts
the reflection phase dispersion of the mushroom structure
with the same geometrical parameters as above illuminated
by TE polarized waves. Three different values of the
substrate relative permittivity were chosen to show the
evolution of the RPFD versus both incidence angle and
permittivity. By increasing the permittivity, we stabilize
the resonance frequency but the resonance becomes too
narrow-band and the willow-leaf dispersion figure becomes
impossible.

The best result of our extensive analytical simulations of
the mushroom structures is presented in Fig. 5. It corresponds
to the rather high substrate permittivity εr=9(1-j0.02), when
C1 = 0 and C2 = 0.38 pF. The other parameters are the
same as above for a fair comparison. The criterion for 18R
for the non-polarized incident wave is fulfilled only in the
range 2.2-2.4 GHz (8.5% relative bandwidth instead of 20%).
We have concluded that for the mushroom structures the
angular stability of the TE-polarized reflection phase is not
compatible with the broadband operation.

C. THE GRID OF JERUSALEM CROSSES ON TOP OF A
METAL-BACKED SUBSTRATE
The analytical model of the MS we have proposed as a binary
RIS was developed in work [54]. The angular stability of
this MS was not studied in [54], and in this paper we do it.
According to [54], the grid impedance of the planar array
of Jerusalem crosses in the case of a small gap g between
them can be calculated, for the TM and TE incident waves,
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FIGURE 4. One-state (C1 = 0) RPFD for the mushroom structure for three values of the substrate
permittivity: (a) εr =2, (b) εr =9(1-j0.02), (c) εr =50(1-j0.002) in the TE incidence case. The resonance is not
robust with respect to θ in (a,b) and is robust but narrow-band in (c).

FIGURE 5. Willow-leaf dispersion figure and 18R for the mushroom structure with the permittivity of the substrate
εr =9(1-j0.02), when the structure is illuminated by (a) TE and (b) TM polarized waves. Horizontal lines show the target value
of 18R and its allowed bounds.

respectively, as follows:

ZgTM = j
ηeff α

2

(
1−

sin2θ
2εeff

)
+

1
jωCg

,

ZgTE = j
ηeff α

2
+

1
jωCg

(15)

Here α is the parameter of the grid of strips calculated in
accordance to (11) with the replacement g → w (w is the
strip width), Cg is the sum of the effective capacitance of the
unloaded grid Ceff , and the capacitance of the pin diode Cl .
The effective capacitance of the grid Ceff takes into account
the interaction between all elements of the crosses [55]:

Ceff =
2
π
εε0d

[
log cosec

(πg
2a

)
+ F

]
, (16)

F =
Qu2

1+ Q(1− u)2
+

(
du (3u− 2)

4λeff

)2

Q =

√
1−

(
d
λeff

)2

, u = cos2
gπ
2d
, λeff =

2π
keff

(17)

Parameters d, g,w as well as the period a are shown
in Fig. 2(d).

We see that Zg is independent of θ in the TE case. In the TM
case Zg depends on θ , however, in the Appendix we show that
this dependency in the dispersion equation cancels out with
the angular dependency of the substrate. The approximate
parallelism of the ‘0’ state RPFD to the ‘1’ state RPFD
is ensured by the capacitive impedance of the grid at the
resonance frequency (see above). The modest slope of the
RPFD is granted by the broad resonance band for εr � 10.
The study of the angular stability of the resonance frequency
for an arbitrary load is presented in Appendix. The presence
of the vertical vias in the substrate is not needed for the
angular stability of RPFD. Both analytical and full-wave
simulations confirmed that vertical vias, in this case, would
be only harmful.

Fig. 6 shows the analytical simulations of the willow-leaf
figure for several incidence angles in the TE case, and
Fig. 12 shows the corresponding results for the TM case. The
parameters of our MS are as follows: period a = 5 mm,
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FIGURE 6. The two-states RPFD of our RIS and phase difference 18R in the TE case for (a) θ =0, (b) θ = 20◦, (c) θ = 45◦
and (d) θ = 60◦.

FIGURE 7. The two-states RPFD of our RIS and 18R in the TM case for (a) θ =0, (b) θ = 20◦, (c) θ = 45◦ and (d) θ = 60◦.

length of the strip d = 2 mm, strip width w = 0.2 mm,
and gap between the crosses g = 0.1 mm. For a fair
comparison to the mushroom structure, we have selected the
same substrate of the thickness of h = 6 mm. Then the
operation band is close to that of the mushroom-field MS.
The two states of the lumped element were set as C1 = 0 and
C2 = 100 fF. A so small loading capacitance is an advantage
of our structure. Using available switches based on pin-
diodes, one may easily obtain the loading capacitance of this
magnitude in the ON state and zero capacitance in the OFF
state, whereas the parasitic losses and inductances will be
negligibly small [58].

Referring to phase differences (black dotted lines) depicted
in Figs. 6(a-c) and 7(a-c), our criteria of the operation
bandwidth in which 140◦ < 18R < 220◦ are fulfilled up to
θ = 45◦ for both polarizations. Similar results can be shown
for other sets of the design parameters and different frequency
ranges if we respect the condition εr � 10.

To validate our analytical results, we performed extensive
full-wave numerical simulations using CST Microwave
Studio (version 2020). We utilized the Floquet solver with
periodic boundary conditions in the grid plane, whilst an
open boundary condition is applied along the normal. For
the aforementioned set of design parameters the willow-leaf
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FIGURE 8. Comparison between analytical (Matlab) and full-wave (CST) simulations of the willow-leaf shapes for our
RIS: (a) analytical TM case, (b) full-wave TM case, (c) analytical TE case, (d) full-wave TE case.

dispersion shapes simulated in both Matlab and CST are
presented in Fig. 8. The incidence angle varies in these
simulations from 0 to 45◦ degrees for both incident wave
polarizations. The agreement between our analytical calcu-
lations and full-wave simulations is excellent. In general,
the accuracy of our analytical model validated by full-wave
simulations turned out to be surprising.

D. DISCUSSION
In this paper, we have suggested and theoretically studied
the broadband RIS which operates in the binary regime for
a wide range of incidence angles and both polarizations of
the incident wave. The RIS is performed as an MS loaded
by pin-diodes. The MS can be fabricated using only planar
technology since the substrate does not comprise vias. The
size of the unit cell at the central frequency of the operation
band is as small as a = λ/12.

A question remains whether it is possible to replace a group
of unit cells in the same state ‘0’ or ‘1’ occupying one half of
the periodD of a periodical RIS by a single scattering element
i.e. is it possible to transit from the MS to the MG. We have
studied this issue and did not find a suitable MG. When the
horizontal dimensions of the scattering element of the top
grid approach λ/2, its resonance band becomes dependent
on θ and different for the TE and TM cases. The angular and
polarization stability was achieved for an array of resonant
patches [56], [57] sufficiently distanced from one another,
however, it was achieved only in a narrow frequency band.
Fig. 9(a) sketches the 3D view of 2 × 2 unit cells. The unit
cell size is close to λ/2 in the range 2.1 − 2.5 GHz, whereas
the patch size, a equals the gap between the patches and is
close to λ/2. For a fair comparison, the substrate material and
thickness h were chosen the same as those in our RIS, i.e.

Arlon AD255C, h = 6 mm. The two states resulted from the
loading capacitance C2 = 43 fF, whereas C1 = 0. In 9(b-d)
we show the phase difference18R for three incident angles:
θ = 20◦, θ = 35◦ and θ = 45◦. For θ = 20◦ the criterion
of the broadband operation is approximately satisfied: the
phase difference is in the target range 140◦ < 18R <

220◦ in the band of a relative with near 18%. However, for
θ = 35◦ this band shrinks to 10%, and for θ = 45◦ the
structure does not work. Thus, our criteria of operation are not
fulfilled.

To our opinion, the advantage of the MS compared
to the MG in what concerns the angular stability is the
different nature of the resonance. In the MS the capacitive
top grid resonates with the inductive substrate. The angular
dependence of the grid reactance can be compensated by the
angular dependence of the substrate inductance. In the MG
every patch is a cavity resonator [56], [57] and we do not
see how to compensate for the angular dependence of its
resonance.

IV. FABRICATION AND MEASUREMENTS
To validate the performance and precision of our proposed
method, a prototype array of 37 × 37 unit cells is fabricated
to mimic the periodic boundary conditions in our full-wave
simulations. The total size of the prototypes is 296×296mm2

(Fig. 10(b)). Our proposed angle and polarization-insensitive
RIS is composed of a grid of Jerusalem crosses on top of a
metal-backed substrate. We have to change the capacitance
between each adjacent grid so that a phase difference is
guaranteed for a broad range of our interest frequency.
It is possible to achieve this phase difference either by
changing the capacitance of the pin diodes or by changing
the structural capacitance. Because of the ease in fabrication
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FIGURE 9. a) 3D view of four unit cells of the meta-grating-based RIS. the geometrical parameters are as follows:
period D=60mm, patch size and the gap between the patches a = 30 mm, substrate thickness h = 6 mm. (b)-(d)
Full-wave simulations of 18R for both TE (blue curves) and TM (red curves) cases, whereas θ is equal to (b) θ = 20◦,
(c) θ = 35◦ and (d) θ = 45◦.

FIGURE 10. (a) Schematic view of the measurement setup in the anechoic chamber for evaluating the RIS phase
response. (b) Photo of the fabricated RIS prototype. (c) Demonstration of three sets of measurment for each
incident angle and polarization. (d) 3D view of the experimental setup.

and the tolerance between the nominal capacitance values
of pin diodes (as well as the disparities between their
actual value and their circuit model value), we designed two
RISs with different structural capacitances. The geometrical
parameters of the RISs are as follows: RIS_1 (a=8mm,
d=4mm, g=0.2mm, and w=0.2mm), and RIS_2 (a=8mm,
d=1mm, g=0.5mm, and w=0.2mm). The substrate is Arlon
AD255C with relative permittivity εr=2.6(1-j0.0014) and

thickness of h=1.016mm. Due to our fruitful investigation in
the Appendix, a lower value of substrate permittivity results
in a broader range of operation for our willow-leaf figures.
In line with our investigation, we use an air gap equal to
7mm between the substrate and ground plane. Now, our RIS
can work between 4.7-6.5 GHz (32% of a frequency band)
when the incident angle changes up to θ = 45◦ degrees under
dual-polarized waves (see Fig. 11).
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FIGURE 11. Comparison between CST full wave and measurement results of the two-states RPFD of our fabricated RISs
(RIS_1, and RIS_2) and phase difference 18R from 4-8 GHz in TE case for (a) θ = 0◦, (b) θ = 15◦ and (c) θ = 30◦. The results
for the TM case are presented in (d-f) when the incident angle equals to (d) θ = 0◦, (e) θ = 15◦ and (f) θ = 30◦.

Fig. 10 shows the measurement setup and fabricated
prototype. To prevent any possible interference from the envi-
ronment, the measurements were performed in a microwave
anechoic chamber (Fig. 10(d)) using a vector network
analyzer (VNA, Rohde & Schwarz ZVB 20), and two linearly
polarized horn antennas covering the frequency range of
4 to 8 GHz. The schematic demonstration of themeasurement
setup is depicted in Fig. 10(a). To fulfill Floquet port
excitation, the transmitting and receiving horn antennas were
carefully adjusted symmetrically on both sides of the normal
axis of the RIS with the angle of α◦. The distance between
the sample and antennas is set 4.25 meters to guarantee
a quasi-plane wave excitation. Due to the restrictions of
our experimental setup, for extreme incident angles, most
of the transmitted power would be absorbed by the Radio
absorbing coating. Therefore, the measurements have been
done for three incident angles of θ = 0, θ = 15◦, and
θ = 30◦. For each incident angle and each linear polarization,
three measurements were done including the reflection
coefficient without our sample, reflection coefficient with
the screen, and reflection coefficient with the sample. Then
using the time gating method [59], the results have been
converted. Next, by using a direct Fourier transform of the
converted results and normalization to the result of the free
space measurement, the true reflection coefficients versus
frequency were obtained.

In Fig. 11, the solid lines and dashed lines represent
the results of the CST simulations and the experiment
respectively. As can be observed, the simulated and measured
willow-leaf dispersion figures, as well as phase differences,
are in a good agreement. The finite size of our sample did
not result in a disagreement thanks to the subwavelength
size of the proposed unit cell (a ≈ λ/7), that made our
sample in its absorbing surround operating similarly to an
infinite array illuminated by a plane wave. Eventually, the

angular and polarization insensitivity of our proposed RIS in
a broad range of frequencies (32% of bandwidth) is validated
through simulations and measurements which proves the
effectiveness of the proposed theoretical analyses.

V. CONCLUSION
In summary, in this paper, we have solved analytically the
problem of the angular instability of a binary RIS operating
in a broadband regime. We started our solution from the
formulation of the target shape of the two-states reflection
phase-frequency dispersion that we called it as the willow-
leaf figure. This figure should be robust with respect to the
variation of the incidence angle. We have shown that for all
incidence angles for the TE-polarization of the incident wave
it is impossible. However, for the angular range −45◦ ≤
θ ≤ +45◦ it is possible to achieve the robust operation
for both TE and TM cases in the frequency band of 20%
relative width. Conventional metasurfaces such as mushroom
structures are not suitable for this. We also did not manage to
attain the goal with a meta-grating of resonant patches. But
the grid of Jerusalem crosses on top of a thin metal-backed
dielectric substrate granted the needed frequency and angular
behavior for both polarizations of the incident wave. The
binary operation is offered by pin diodes connecting the
adjacent crosses and changing the structural capacitance.
Full-wave simulations have shown the excellent agreement
with the analytical model. Finally, by performing a set of
measurements, the angular and polarization stability of our
proposed RIS in a broad range of frequency band was
verified.

The advantage of our MS is its simplicity – unlike
mushroom structures, there are no vias. It makes our MS
promising for scaling to the mmWave range via proportional
reduction of all dimensions. In the present paper, we reported
the microwave calculations only because the experiment
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in the microwave range is simpler than the mmWave
experiment and we plan to do it prior to engineering the
mmWave RIS.

We plan to study how our MS deflects the realistic wave
beam. Recall, that we assumed the reflective properties of
a big group of our unit cells to be the same as those
of the infinite uniform MS that we have studied above.
This assumption allowed us to use the periodic boundary
conditions. In the next stage, we will consider the anomalous
reflection of our MS in the binary regime when the period D
of the loading is given by (1). Then this assumption will be
validated.

We believe that leveraging our technique will meet the
prospective industrial demands and will be helpful in the
embodiment of ‘‘smart radio environment’’ of the near future.

APPENDIX 1
In this Appendix, we prove that a self-resonant grid of
Jerusalem crosses on a thin metal-backed dielectric layer
manifests the angular stability of the resonance frequency for
both polarizations of the incident waves.

From (2) we obtain formulas valid for both TE and TM
cases:

rs =
(rgr− − XgX−)r6 + (rgX− + Xgr−)X6

r26 + jX
2
6

, (18)

Xs =
(XgX− − rgr−)X6 + (rgX− + Xgr−)r6

r26 + jX
2
6

(19)

Eq. (19) implies the resonance at the frequency ω0 which
satisfies to:

(XgX− − rgr−)(Xg + X−)+ (rgX− + r−Xg)(rg + r−) = 0

(20)

In general, this equation does not reduce to
(Xg+X−) = 0 as it is adopted in the theory of high-impedance
surfaces (see e.g. in [50]). Only if the resonance band is
narrow i.e. when both Rg and R− are very small, Eq. (20)
really yields to (Xg+X−) = 0. However, this is not our case.
The modest slope of the RPFD implies the broad resonance
band of the targeted MS. We need a modest slope of RPFD
that demands the modest values of both Xg(ω0) and X−(ω0).
It means that we cannot neglect rg,− compared to Xg,− in the
equation (20). This is the reason why the θ -dependent terms
of the grid impedance Zg and of the metal-backed substrate
impedance, Z− may enter into the resonance equation with
opposite signs.

Adopting that the dielectric losses in ourMS dominate over
the Ohmic losses, we consider the metal grid as perflectly
conducting and take into account the loss tangent of the
substrate, assuming εr = ε′ − jε′′, where ε′ � ε′′.

For the grid impedance of the Jerusalem crosses and for the
surface impedance of the substrate in the TE-case we have:

ZTEg =
jηα
2
+

1
jω0Cg

, ZTE− = r− + jω0µ0h. (21)

FIGURE 12. The magnitude of the two states of willow-leaf figures for
normal and θ = 45◦.

Here the first formula reproduces (15) and the second formula
results from the dielectric loss:

r− = ε′′µ0ωh
(kh)2

3
. (22)

This relation is absent in the theory of our MS [54], but
it follows from formula (7) of [54] if we apply the Taylor
expansion to the function tan(Kzh)/Kz entering that formula.
Here, Kz is the normal component of the refracted wave
vector in the substrate, and |Kzh| � π/2, because the
substrate is thin and its permittivity is low. Since θ does
not enter our formulas we see that the metasurface based on
Jerusalem crosses has no problem with angular stability of
the resonance for the TE-polarization case.

For the TM-case we have to take into account the dielectric
loss when we calculate the grid impedance:

XTMg =
ηα

2

(
1−

sin2θ
ε′ + 1

)
−

1
ωCg

(23)

rTMg =
ηα

2
ε′′sin2θ
ε′ + 1

(24)

The surface impedance of the grounded substrate can be
calculated as [54]:

ZTM− = jωµ0
tanKzh
Kz

(
1−

sin2θ
ε

)
(25)

which results in the following relations for the reactance and
resistance of the substrate:

XTM− = ωµ0h

(
1−

sin2θ
ε′

)
(26)

rTM− = ωµ0hε′′
[
(kh)2

3

(
1−

sin2θ
ε′

)
+

sin2θ
ε′

]
(27)

Since (kh)2 � 1, expression (27) can be simplified and
takes the form

rTM− = r− + ωµ0hε′′
sin2θ
ε′

, (28)

where r− is given by (22). Let the dielectric constant ε′ be
not very high, e.g. lies in the limits ε′ = 2 − 4. Then for
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FIGURE 13. The schematic view of the approach for biasing the grid of Jerusalem crosses.

the small incidence angles satisfying sin2 θ < (kh)2ε′/3 the
resonance frequency cannot be noticeably different from that
corresponding to θ = 0 simply because these angles are
very small. Now, consider the moderate angles which are
sufficiently large so that to write for them sin2 θ � (kh)2ε′/3.
For these angles (28) evidently reduces to

rTM− = ωµ0hε′′
sin2θ
ε′

(29)

Introducing notations

ξ0 =
ηα

2ω
, ξ1 =

ξ0

ε′ + 1
, ψ0 = µ0h, ψ1 =

ψ0

ε′
,

we may rewrite formulas (23), (24), (26) and (29) as

XTMg = ξ0ω −
1
ωCg
− ξ1ωsin2θ (30)

rTMg = ε′′ξ1ωsin2θ, (31)

XTM− = ψ0ω − ψ1ωsin2θ, rTM− = ε
′′ψ1ωsin2θ. (32)

Substituting expressions (30), (31) and (32) into Eq. (20),
we obtain an equation(
(ξ0 − ξ1sin2θ )ω −

1
ωCg

)[(
(ξ0 − ξ1sin2θ )ω −

1
ωCg

)
× (ψ0 − ψ1sin2θ )ω + (ψ0 − ψ1sin2θ )2ω2

+
ψ1ωsin2θ
ω2C2

g

−(ε′′)2(ξ21 + ψ
2
1 ) · ω

2sin4θ
]
− (ε′′)2(ξ21 + ψ

2
1 )

× (ψ0 − ψ1sin2θ )ω3sin6θ = 0 (33)

The terms proportional to sin2 θ and sin4 θ , enter this equation
with different signs. They cancel out (for both sin2 θ and
sin4 θ ) on condition ψ1 = ξ1 (terms with Cg cancel out
automatically). Note that condition ψ1 = ξ1 simultaneously
equates rg to r− and the angle-dependent part of Xg to
that of X−.
In fact, in (33) there are also terms proportional to sin6 θ

and sin8 θ which do not cancel out. However, for ε′ > 2 and

θ ≤ π/4 these terms can be neglected. Thus, an approximate
condition of the angular stability of resonance frequency for
sufficiently small θ can be written in the form

ε′a log
2a
πw
= π (ε′ + 1)h (34)

This condition is respected in our design solution. Notice,
that our result is valid only for moderate values of ε′.
If ε′ ≥ 5 − 10, the angles satisfying to the condition
sin2 θ < (kh)2ε′/3 are not small and we cannot be sure
a priori that the resonance for these incidence angles is the
same as for θ = 0. Moreover, for these angles rg cannot be
equated to r− i.e. we cannot achieve the compensation of the
angle-dependent terms in (20) and the angular stability of the
resonance frequency for the TM case will be not possible.

APPENDIX 2
In this Appendix, we will show the amplitude profiles of the
two states of willow-leaf figures for normal and θ = 45◦.
For the ON state, the resistance of the pin diode is considered
7 ohms while for the OFF state it is negligible and equal to
zero. Based on the simulation results, the reflection from the
metasurface is above 0.99which shows the perfect reflectivity
of our surface.

APPENDIX 3
This Appendix shows the potential method of biasing the
grid of Jerusalem crosses for our uniform metasurface. Noted
that our structure was not reconfigurable, but by inserting pin
diodes it can be tunable. As depicted in Fig. 13 the biasing
may be done with a simple configuration. The blue and red
color spots show the connections of the positive and negative
poles. This biasing scheme does not need any vias. For theON
state, the voltage should be applied to the positive poles. Since
the capacitances of the pin diodes have a series connection,
a small amount of voltage is enough to turn the diodes ON.
On the other hand, for the OFF state, there is no need to
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apply a voltage. This simple configuration allows our uniform
metasurfaces to work as a tunable device between two states.
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