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Several models have been suggested to explain the fast gamma-ray variability observed in blazars,
but its origin is still debated. One scenario is magnetic reconnection, a process that can efficiently
convert magnetic energy to energy of relativistic particles accelerated in the reconnection layer. In
our study, we compare results from state-of-the-art particle-in-cell simulations with observations
of blazars at Very High Energy (VHE, E > 100 GeV) gamma-rays. Our goal is to test our model
predictions on fast gamma-ray variability with data and to constrain the parameter space of the
model, such as the magnetic field strength of the unreconnected plasma and the reconnection layer
orientation in the blazar jet. For this first comparison, we used the remarkably well-sampled VHE
gamma-ray light curve of Mrk 421 observed with the MAGIC and VERITAS telescopes in 2013.
The simulated VHE light curves were generated using the observable parameters of Mrk 421,
such as the jet power, bulk Lorentz factor, and the jet viewing angle, and sampled as real data.
Our results pave the way for future model-to-data comparison with next-generation Cherenkov
telescopes, which will help further constrain the different variability models.
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1. Introduction

Blazars are active galactic nuclei (AGN) whose jet is seen closely aligned with our line of
sight [1]. They are observed to be extremely variable in various time scales across the entire
electromagnetic spectrum [2–6], but in the VHE gamma-rays the source of their variability is
still largely unknown. Magnetic reconnection offers one possiblity to explain the fastest observed
VHE variations consisting of flares of only some hours even down to some minutes [7, 8]. In
our study, we consider the model presented in [9]. According to it, non-thermal emission is
produced in plasmoids, i.e. quasi-spherical structures forming in current sheets during magnetic
reconnection. The emission produced in plasmoids can be strongly variable up to the highest
gamma-ray energies. To simulate this process, they combined 2D particle-in-cell (PIC) simulations
of relativistic reconnection with a time-dependent radiative transfer code, which we utilize also in
our study.

In order to develop and introduce our method, we used only one particularly well-sampled
light curve of Mrk 421 (Fig. 1) observed in a simultaneous campaign by MAGIC and VERITAS
in VHE gamma-rays, and also by NuSTAR in X-rays in 2013 [10]. We use only the VHE data in
our study. The data set consists of about 200 hours of observations in three energy bands, 200-400
GeV, 400-800 GeV, and >800 GeV, obtained during nine consecutive nights. The data observed by
VERITAS have been scaled to match the level of MAGIC data as described in [10]. The analysis
presented here can also be applied to light curves of other sources as well as other energies and time
scales.

This proceedings article is structured as follows. In Section 2, we give a brief description of
the simulation setup. In Section 3, we explain the steps taken to compare the simulated and the
observed data, and in Section 4.1, we highlight one of the developed analysis methods. In Section 4,
we state the findings of Section 4.1 analysis, in Section 5, we discuss the consequences of these
results, and finally in Section 6 we summarize our findings.

2. Simulation setup

In order to compute the simulations individually for Mrk 421, observable parameters were
collected from the literature if available. These parameters include the jet power % 94C , bulk
Lorentz factor Γ 9 , viewing angle of the jet \>1B, synchrotron peak frequency, W<0G of the particle
distribution, and magnetization of the jet f. The values used for the simulation setup are given in
Table 1. Ideally, these parameters help us to constrain the free parameters to realistic ranges and
to obtain results that resemble the observed data. A more detailed description of the simulation
setup is given in [9]. Simulations of different jet scenarios were produced by altering the angle of
the reconnection layer (current sheet) with respect to the jet axis between 0 and 180 degrees, the
observing angle of the jet between 0 and 8 degrees, and for three different magnetic field strengths,
B = 0.1 G, 1 G, 10 G, all in all, obtaining 285 different reconnection scenarios. The results presented
in this paper are only for B = 0.1 G.
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Figure 1: Real light curves of Mrk 421 in three energy bands of 200-400 GeV, 400-800 GeV, and >800 GeV
observed by MAGIC and VERITAS in 2013 ([10]).

3. Analysis

Before the simulated light curves were compared with the observed data, they had to be treated
in various ways to obtain light curves that resemble the observed ones. In observations, there are
numerous things that prevent us from getting a continuous, precise signal from the source such
as the visibility of the source throughout the day and year, readout times of the instruments, and
different sources of error. All of these had to be taken into account before the comparison. The
most important aspect of this treatment was producing fake light curves from simulated data by
binning them with similar integration times as the observed data, and creating gaps in the data by
utilizing the observed times of the real data. Figure 2 shows an example of one simulated light
curve after it has been treated to resemble the observed light curve.
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Table 1: Observed jet parameters collected from the literature for Mrk 421.

log(% 94C ) [erg/s] Γ 9 \>1B [deg] SED peak [Hz] W<0G f

43.19 4 0-8 1.66E+016 9.5E+05 50

In our analysis, we aim to combine severalmethods of comparing the simulated and the observed
data sets in terms of the flux amplitudes and time scales. These methods include comparisons of
flux distributions, fractional variability, and variability time scales of detected flares. The detailed
description of each method is left for Jormanainen et al. (in prep.), but the flux distribution
comparison is already introduced in the next Section.

4. Results

4.1 Flux distribution comparison

Because our observed light curves include seasonal and daily gaps, we need to introduce these
also into the simulated light curves. As the simulations were not always exactly the same length as
the real data, and we do not know, which part of the simulated light curves would correspond to the
observed portions, the starting time of the observed times were shifted randomly to sample the full
range of the simulated light curve. This was repeated a thousand times for one simulation scenario
to obtain 1000 "observations" of one simulated light curve. Because the simulated fluxes were
often 100-1000 times lower than the observed fluxes, the light curves were normalized by dividing
with the mean flux of the full light curve in order to make the comparison of flux distributions
meaningful. The normalized flux distributions of the observed and the simulated light curves were
then compared using the two-sided Anderson-Darling test and requiring at least a 95% significance
for the acceptance of a match. Figure 3 shows an example of one such comparison. In the upper
panel, the normalized light curves are plotted on top of each other, the observed light curve in the
>800 GeV band shown in green and the simulated light curve of the same energy range in pink. In
the lower panel, the flux distributions are overplotted and the p-value of the Anderson-Darling test
for this particular comparison is shown, in this case indicating a match. The number of matching
distributions per 1000 sampled light curves was computed for each simulation scenario.

We calculate the number of matches for each energy band, and because the number of matches
in different energies were often not the same, the smallest number of matches out of the three
energy bands was selected to be shown as a result for each simulated scenario. The percentages of
matching distributions were plotted as histograms for each observation angle \>1B. Figure 4 shows
examples of such histograms for each observation angle \>1B = 0, 2, 4, 6, and 8 degrees. From
these histograms we can see the range of reconnection layer angles that gives matching distributions
depends on the observation angle.

5. Discussion

As can be seen fromFigure 4, already our preliminary results show that it is possible to find such
combinations of jet parameters that produce simulated light curves that resemble the observations
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Figure 2: An example of a simulated light curve after the data has been treated for the comparison. This
includes for example binning the data to 15-minute bins as well as introducing observational gaps.

of Mrk 421, although the distributions are fairly wide. In [10], the variability of Mrk 421 was also
studied using a similar reconnection model. They only used one set of simulation parameters where
f = 10 Γ 9 = 14 , and \>1B = 2.1°. They analyzed both the fluxes and flux doubling time scales and
found a range of reconnection layer angles of 30 − 90° to be the best match with the observations.
Comparing to our results of \>1B = 2° we also find matches from layer angles of 30 − 60° but also
from 0°, 110°, and 130°. However, we note that we have not yet analyzed the variability time scales,
which may make the range of matching parameters more narrow.

As it was pointed out in Section 4.1, the fluxes of our simulated light curves were often 100-
1000 times lower than observed. Due to this mismatch, we decided to run a new set of simulations
with tweaked input parameters to upscale the simulated fluxed but trying to maintain the variability
and time scale behaviour of the simulations presented in this paper. The parameters that were
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Figure 3: The upper panel shows a comparison of the normalized light curves, the observed data shown in
green and the simulated data in pink. The lower panel shows the comparison of the flux distributions and the
p-value of the Anderson-Darling test computed for the two distributions.

changed were the bulk Lorentz factor and the reconnection layer half length L by increasing them
by a factor of three. These will be presented in Jormanainen et al. (in prep.).

6. Summary

In this paper, we present a first look of our study where we have compared simulated light
curves obtained from relativistic magnetic reconnection models to observed data. We use one
source, Mrk 421, to introduce our method. One part of our analysis method is the comparison of
the flux distributions, which we present in this proceedings article. We find ranges of reconnection
layer angles for each jet orientation that produce matching flux distributions with our observed data.
In our future paper, we will describe our full analysis method that we aim to use also for other
sources in different time scales and energies.
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Figure 4: Histograms showing the reconnection layer angles for each jet orientation that produce matching
distributions with the observed data. The number of matching simulations is given as a percentage of the
1000 different samplings (see text for details).
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