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Curriculum Reinforcement Learning via Constrained Optimal Transport

Pascal Klink 1 Haoyi Yang 1 Carlo D’Eramo 1 Joni Pajarinen 1 2 Jan Peters 1

Abstract
Curriculum reinforcement learning (CRL) allows
solving complex tasks by generating a tailored
sequence of learning tasks, starting from easy
ones and subsequently increasing their difficulty.
Although the potential of curricula in RL has
been clearly shown in a variety of works, it is less
clear how to generate them for a given learning
environment, resulting in a variety of methods
aiming to automate this task. In this work, we
focus on the idea of framing curricula as inter-
polations between task distributions, which has
previously been shown to be a viable approach to
CRL. Identifying key issues of existing methods,
we frame the generation of a curriculum as a con-
strained optimal transport problem between task
distributions. Benchmarks show that this way of
curriculum generation can improve upon exist-
ing CRL methods, yielding high performance in
a variety of tasks with different characteristics.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 1998) has
celebrated great successes as a framework for autonomous
acquisition of desired behavior. With ever-increasing com-
putational power, this framework and the algorithms devel-
oped under it have allowed to create learning agents ca-
pable of solving non-trivial long-horizon planning (Mnih
et al., 2015; Silver et al., 2017) and control tasks (Akkaya
et al., 2019). However, these successes have highlighted
the need for certain forms of regularization, such as leagues
in the context of board games (Silver et al., 2017), a grad-
ual diversification of simulated training environments for
robotic manipulation (Akkaya et al., 2019) or a tailored
training pipeline in the context of humanoid control for soc-
cer (Liu et al., 2021). These regularizations can overcome
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shortcomings of modern RL agents, like poor exploratory
behavior – an active topic of research (Bellemare et al.,
2016; Ghavamzadeh et al., 2015; Machado et al., 2020).
One can view the aforementioned regularizations under
the umbrella term of curriculum reinforcement learning
(Narvekar et al., 2020), which aims to avoid the shortcom-
ings of modern (deep) RL agents by learning on a tailored
sequence of tasks. Such task sequences can materialize in a
variety of ways and they are motivated from many perspec-
tives in the literature (Andrychowicz et al., 2017; Florensa
et al., 2017; Portelas et al., 2019; Wöhlke et al., 2020).
A perspective of particular interest for this paper is to inter-
pret a curriculum as a sequence of task distributions that
interpolate between an auxiliary task distribution – with
the sole purpose of facilitating learning – and a distribu-
tion of target tasks (Klink et al., 2021). While algorithmic
realizations of this perspective have been successfully eval-
uated in the literature (Klink et al., 2020a;b; Chen et al.,
2021a), there also exist evaluations attesting those methods
a rather poor learning performance (Romac et al., 2021).
This discrepancy calls for a better understanding of why
these methods perform well in some scenarios - and why
they do not in others.
In this paper, we investigate the shortcomings of methods
that realize curricula as an interpolation between task dis-
tributions using the KL divergence as a measure of distri-
butional similarity. Based on the resulting insights, we pro-
pose to realize curricula as an optimal transport problem in
a parameterized task space subject to a performance con-
straint on the tasks probable under the curriculum. As we
discuss in the paper, this high-level concept implicitly in-
troduces empirically successful concepts observed in exist-
ing curriculum RL algorithms. Nevertheless, we also show
how it differs from these existing algorithms.
In experiments, we show that the proposed method matches
or surpasses the performance of existing baselines on a va-
riety of tasks. To summarize, this paper

1) highlights shortcomings of current curriculum RL al-
gorithms that realize curricula as interpolations be-
tween task distributions;

2) proposes to generate curricula by solving a con-
strained optimal transport problem;

3) discusses and evaluates the resulting algorithm in a va-
riety of experiments.
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2. Related Work
The focus of this work is on the generation of training cur-
ricula for reinforcement learning (RL) agents. Opposed to
supervised learning, where there is an ongoing discussion
about the mechanics and effects of curricula in different
learning situations (Weinshall & Amir, 2020; Wu et al.,
2021), the mechanics seem to be more agreed upon in RL.

Curriculum Reinforcement Learning: In RL, curricula
improve the learning performance of an agent by adapt-
ing the training environments to its proficiency, and with
that e.g. bypass poor exploratory behavior of non-proficient
agents. Applications are by now widespread and different
terms have been established. Adaptive Domain Random-
ization (Akkaya et al., 2019) uses curricula to gradually di-
versify the training parameters of a simulator to facilitate
sim-to-real transfer. Unsupervised environment discovery
(Dennis et al., 2020; Jiang et al., 2021b;a) aims to effi-
ciently train an agent which is robust to variations in the en-
vironment. Automatic curriculum learning methods (Flo-
rensa et al., 2017; Sukhbaatar et al., 2018; Florensa et al.,
2018; Portelas et al., 2019; Zhang et al., 2020; Racaniere
et al., 2020; Eimer et al., 2021; Klink et al., 2021) partic-
ularly focus on improving the learning speed and/or per-
formance of an agent on a set of desired tasks. Curricula
are often generated as distributions that maximize a certain
surrogate objective, such as learning progress (Baranes &
Oudeyer, 2010; Portelas et al., 2019), intermediate task dif-
ficulty (Florensa et al., 2018), regret (Jiang et al., 2021b),
or disagreement between Q-functions (Zhang et al., 2020).
Curriculum generation can also be interpreted as a two-
player game (Sukhbaatar et al., 2018). The work by Jiang
et al. (2021a) even hints at a link between surrogate objec-
tives and two-player games.
Opposed to these interpretations, other algorithms formu-
late the generation of a curriculum as an explicit interpola-
tion between an auxiliary task distribution and a distribu-
tion of target tasks (Klink et al., 2020a; 2021; Chen et al.,
2021a). As shown by Klink et al. (2021), such interpola-
tions can be formally linked to successful curricula in su-
pervised learning (Kumar et al., 2010), the concept of an-
nealing in statistics (Neal, 2001), and homotopic continu-
ation methods in optimization (Allgower & Georg, 2003).
In this paper, we reveal shortcomings of such interpolation-
based curriculum RL methods caused by the KL divergence
as a similarity measure between distributions over learning
tasks. Based on these insights, we propose a novel for-
mulation of interpolation-based curricula as a constrained
optimal transport problem.

Optimal Transport: Dating back to the work by Monge
in the 18th century, optimal transport has been understood
as an important fundamental concept touching upon many
fields in both theory and application (Peyré et al., 2019;

Chen et al., 2021b). In probability theory, optimal trans-
port translates to the so-called Wasserstein metric (Kan-
torovich, 1942) that compares two distributions under a
given metric, allowing e.g. for the analysis of probabilis-
tic inference algorithms as approximate gradient flows (Liu
et al., 2019) and providing well-defined ways of comparing
feature distributions or even graphs in computer vision and
machine learning (Kolouri et al., 2017; Kandasamy et al.,
2018; Togninalli et al., 2019). Gromov-Wasserstein dis-
tances (Mémoli, 2011; Vincent-Cuaz et al., 2022) even al-
low to compare distributions across metric spaces, which
has been of use e.g. in computational biology (Demetci
et al., 2020) or imitation learning (Fickinger et al., 2022).
In some sense, this paper can be seen as introducing cur-
riculum reinforcement learning as another application do-
main to which the powerful concept of optimal transport
can be applied. An important issue of applied optimal
transport is its computational complexity. In Appendix A,
we discuss computational aspects of optimal transport in
more detail.

3. Preliminaries
This section serves to introduce the necessary background
on (contextual) RL, curriculum RL, and optimal transport.

3.1. Contextual Reinforcement Learning

Contextual reinforcement learning (Hallak et al., 2015) can
be seen as a conceptual extension to the (single task) rein-
forcement learning (RL) problem

max
π

J(π) = max
π

Ep(τ |π)

[ ∞∑
t=0

γtr(st,at)

]
(1)

τ = {(st,at)|t = 1, . . .}

p(τ |π) = p0(s0)

∞∏
t=1

p(st|st−1,at−1)π(at−1|st−1),

which aims to maximize the above expected discounted re-
ward objective by finding an optimal policy π : S×A 7→ R
for a given MDP M=⟨S,A, p, r, p0⟩ with initial state
distribution p0 and transition dynamics p. Contex-
tual RL extends this objective to a space of MDPs
M(c)=⟨S,A, pc, rc, p0,c⟩ equipped with a distribution
µ:C 7→ R over contextual variables c ∈ C

max
π

J(π, µ) = max
π

Eµ(c) [J(π, c)] . (2)

The policy π : S×C×A 7→ R is conditioned on the contex-
tual parameter c. The distribution µ(c) encodes the tasks
M(c) that the agent is expected to encounter. Objective
J(π, c) in Eq. (2) corresponds to the objective J(π) in
Eq. (1) where, however, the initial state distribution p0, the
transition dynamics p as well as the reward function r of
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M are replaced by their counterparts in M(c). This con-
textual model of optimal decision making is well-suited for
learning in multiple related tasks as is the case in multi-task
(Wilson et al., 2007), goal-conditioned (Schaul et al., 2015)
or curriculum RL (Narvekar et al., 2020).

3.2. Curriculum Reinforcement Learning

On an abstract level, curriculum RL methods can be un-
derstood as generating a sequence of task distributions
(pi:C7→R)i under which to train an RL agent by maximiz-
ing J(π, pi) w.r.t. π. When chosen appropriately, solving
this sequence of optimization problems can yield a policy
that performs better on the target distribution µ(c) than a
policy found by maximizing J(π, µ) directly. The bene-
fit of such mediating distributions is particularly obvious
in settings in which initially random agent behavior is un-
likely to observe any meaningful learning signals, as e.g. is
the case in sparse-reward learning tasks.
CRL methods differ in the specification of pi. Often, the
distribution is defined to prioritize tasks that maximize cer-
tain surrogate quantities, such as absolute learning progress
(Portelas et al., 2019), regret (Jiang et al., 2021b) or tasks
of intermediate success probability (Florensa et al., 2018).
In this paper, we focus on CRL methods which model pi as
the solution to an optimization problem that aims to min-
imize a distance or divergence between pi and µ. One of
these approaches (Klink et al., 2020a;b; 2021) defines pi
as the distribution with minimum KL divergence to µ that
fulfills a constraint on the expected agent performance

min
p

DKL (p(c) ∥ µ(c)) (3)

s.t. J(π, p) ≥ δ DKL (p(c) ∥ q(c)) ≤ ϵ,

where δ is the desired level of performance to be achieved
by the agent π under p(c) and ϵ limits the maximum KL
divergence to the previous context distribution q(c). The
optimizer of (3) balances between tasks likely under the
(target) distribution µ(c) and tasks in which the agent cur-
rently obtains large rewards. The KL divergence con-
straint w.r.t. the previous context distribution q(c) prevents
large changes in p(c) during subsequent iterations, avoid-
ing the exploitation of faulty estimates of J(π, p) caused
by a limited amount of samples. Objective (3) can be
shown to perform an interpolation between the distribu-
tions pη(c)∝µ(c) exp(ηJ(π, c)) and q(c), given by

pα,η(c) ∝ (µ(c) exp(J(π, c))η)
α
q(c)1−α. (4)

The two parameters α and η that control the interpolation
are the Lagrangian multipliers of the two constraints in ob-
jective (3). We will later investigate the behavior of this
interpolating distribution.

3.3. Optimal Transport

The problem of optimally transporting density between
two distributions has been initially investigated by Monge
(1781). As of today, generalizations established by Kan-
torovich (1942) have led to so called Wasserstein dis-
tances as metrics between probability distributions defined
on a metric space M = (d, C) with metric d : C×C 7→ R≥0

Wp(p1, p2)=

(
inf

ϕ∈Φ(p1,p2)
Eϕ [d(c1, c2)

p]

)1/p

, p ≥ 1

Φ(p1, p2)= {ϕ : C×C7→R≥0|pi=(proji)#ϕ, i∈{1, 2}} ,

where (proj1)#ϕ(c1)=
∫
C ϕ(c1, c2) dc2 and (proj2)#ϕ is

defined analogously. The distance between p1 and p2 re-
sults from solving an optimization problem that finds a so-
called plan ϕ. This plan encodes how to equalize p1 and
p2 taking into account the cost of moving density between
between parts of the space C. This cost is encoded by the
metric d. In the following, we will always assume to work
with 2-Wasserstein distances under Euclidean metric, i.e.
p = 2 and d(c1, c2) = ∥c1 − c2∥2.

4. Strengths and Pitfalls of
Interpolation-Based CRL

This section serves to give a better understanding of both
the benefits of the interpolation-based CRL approach as
well as its problems. The insights of this section underline
why such a take on CRL is important and further motivates
the algorithm presented in the next section.

4.1. Convergence to µ(c)

A major motivation for explicitly expressing the context
distribution pi(c) as the result of a constrained (KL) di-
vergence minimization to a target distribution µ(c) is that
it ensures that the training ultimately focuses on the tasks
likely under µ(c). As we discuss now, this is not guaran-
teed for other existing CRL approaches at least when as-
suming a strong learner.
With a strong learner, we refer to one that is neither subject
to catastrophic forgetting nor negative interference. Hence
after training on a context ctrain and updating the policy π,
the new policy π′ is guaranteed to improve performance in
at least an ϵ-ball Bϵ(ctrain) around ctrain

∀c ∈ Bϵ(ctrain) : J(π, c) ≥ J(π′, c) + ∆, ∆ > 0,

while keeping at least the same performance on all other
contexts in C. Intuitively, this means that when train-
ing often enough on a context c, the learner will ul-
timately converge to the maximally achievable reward
J∗(c)=maxπ J(π, c). Nonetheless, the learner may still
improve its performance more rapidly in certain parts of
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c c c c c

δ = 0.95

J(π, c) µ(c) µ(c) exp(J(π, c))η arg minN (µ,σ) DKL(N (µ, σ)‖µ(c)) s.t. EN (µ,σ) [J(π, c)] ≥ δ
δ = 0.85 δ = 0.30 δ = 0.10 δ = 0.00

Figure 1. Interpolations (green) generated by optimizing Objective (5). Each row visualizes the interpolation to a different target density
µ(c) (blue) for varying expected performance thresholds δ (horizontal dotted line). The brown density is the result of optimizing
Objective (5) while restricting the distribution to a Gaussian. Without a parametric restriction, the green density assigns probability
density to distant parts of the context space (see δ = 0.3 in the bottom row).

the context space than others, so the need for a curriculum
is not ruled out by these assumptions.
Assuming a strong learner, one can argue that algo-
rithms that define the density pi(c) as a function that
monotonically increases with concepts like regret (Jiang
et al., 2021b;a) or learning progress (Portelas et al., 2019;
Baranes & Oudeyer, 2010) ultimately converge to a uni-
form distribution over C. Given that this argument needs
certain abstractions from the individual algorithms that
would unnecessarily lengthen this exposition, we refer the
interested reader to Appendix B. The main point is that
without a notion of µ(c), many existing CRL algorithms
aim to make the learner proficient on all of C. While this
is reasonable behavior in uninformed settings, this insight
hints towards an advantage of interpolation-based CRL
methods in scenarios that impose a target distribution µ(c)
different from the uniform distribution on the context space
U(C). The experiments in later sections will empirically
evince this supposition.

4.2. Interpolation

The benefits of explicitly encoding a target distribution
µ(c), however, come at a cost: The need to compute
DKL (p(c) ∥ µ(c)). Consequently, µ(c) has either been as-
sumed uniform over C to ease computation and optimiza-
tion of a weighted KL divergence objective (Chen et al.,

2021a), or been restricted to a Gaussian distribution (Klink
et al., 2020a;b; 2021). While empirically successful, these
design choices masquerade the pitfalls of the KL diver-
gence to measure distribution similarity in a CRL setting,
particularly when dealing with a target distribution that
does not assign uniform density over all of C.
Revisiting Eq. (4), we see that the SPRL algorithm by Klink
et al. (2021), that we take as an example for this discussion,
performs two nested interpolations, which can be obtained
as the solution to two individual sub-problem

µ(c) exp (J(π, c))
η(δ)

= argmin
p∈{q|Eq [J(π,c)]≥δ}

DKL (p ∥ µ)

(5)

p1(c)
α(ϵ)p2(c)

1−α(ϵ) = argmin
p∈{q|DKL(q∥p2)≤ϵ}

DKL (p ∥ p1) .

(6)

Note that we introduced the notation η(δ) and α(ϵ) to high-
light that the above equalities hold for appropriately chosen
values of η and α – which are determined by the values of δ
and ϵ. Figures 1 and 2 illustrate these two types of interpo-
lations. We see that the interpolation µ(c) exp(J(π, c))η

assigns probability density to contexts with high perfor-
mance in order to assign probability density to contexts that
are assigned high probability density by the target distri-
bution µ(c). However, this trade-off does not necessarily
result in focusing on contexts of intermediate agent perfor-

c c c c c

α = 0.00

p1(c)

p2(c)

p1(c)αp2(c)1−α

α = 0.25 α = 0.50 α = 0.75 α = 1.00

Figure 2. Interpolations (green) generated by optimizing Objective (6) for different values of ϵ (and with that α). In the top row, p1(c)
and p2(c) are Gaussian while in the bottom row, they assign uniform density over different parts of C.
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c c c c c

δ = 0.95

J(π, c)

µ(c)

pW (c)

δ = 0.85 δ = 0.30 δ = 0.10 δ = 0.00

Figure 3. Interpolations (green) based on optimizing Objective (7). Each row visualizes the interpolation to a different target density µ(c)
(blue) for varying performance thresholds δ (horizontal dotted line). The interpolation is approximately computed using the particle-
based approach described in Section 5 and visualized as a histogram. The interpolation encodes tasks that satisfy the performance
threshold δ and are close to the tasks likely under µ(c) in a metric sense.

mance and is furthermore highly dependent on the particu-
lar shape of µ(c). For both the Gaussian and uniform target
distribution in Figure 1, the agent is putting less probabil-
ity density on tasks of intermediate agent performance than
on tasks of highest or lowest performance in the case of
δ=0.3. Particularly for the uniform target distribution in
the bottom row of Figure 1, the agent never assigns signifi-
cant probability density to tasks in which the agent achieves
an intermediate level of performance.
The second type of interpolation in Figure 2 points to a
similar problem of the KL divergence in a CRL setting.
While for Gaussian distributions, interpolations of the form
p1(c)

αp2(c)
1−α gradually shift density in a metric sense,

this behavior is all but guaranteed for non-Gaussian distri-
butions. Looking at the interpolation between two uniform
distributions in the bottom row of Figure 2, we see that den-
sity is displaced from contexts c to contexts c′ with large
Euclidean distance ∥c − c′∥2. Such a behavior of the con-
text distribution can be problematic in CRL, as the extrap-
olation of successful behavior in a task M(c) to a similar
task M(c′) typically assumes that ∥c − c′∥2 is small. For
example when representing the policy π with a deep neural
network fθ(s, c), the behavior for a fixed state s typically
changes gradually as the context c changes.

Algorithm 1 Curricula via Optimal Transport (CURROT)

Input: Initial context dist. p̂W,0(c), target context dist.
µ(c), performance threshold δ, distance bound ϵ
for k = 0 to K do

Agent Improvement:
Sample contexts cj ∼ p̂W,k(c), j ∈ [1,M ]
Train policy π under cj and observe episodic rewards
Rj =

∑∞
t=1 rcj (st,at), j ∈ [1,M ]

Context Distribution Update:
Update buffers B+ and B− with {(cj , Rj)|j∈[1,M ]}
Estimate J(π, c) from B+ and B−
Optimize (7) using J(π, c) w.r.t. the N particles cpW ,i

to obtain p̂W,k+1

end for

5. Generating Curricula via Optimal
Transport

The previous section highlighted two problems with the in-
terpolation generated by CRL algorithms that minimize KL
divergence to a target distribution of tasks: The KL diver-
gence as a notion of similarity between distributions and
the expected performance constraint on the interpolating
task distribution. These two design choices can result in
the generated curriculum neglecting tasks of intermediate
agent performance and rather focusing on a mixture of triv-
ial and infeasible tasks whose contextual representations
are not close in a metric sense.
Consequently, we investigate the following alternative ob-
jective to generate an interpolating task distribution in a
CRL setting

pW(c) = argmin
p

W2(p(c), µ(c)) (7)

s.t. p(c) > 0 ⇒ J(π, c) ≥ δ ∀c ∈ C
W2(p(c), q(c)) ≤ ϵ.

The proposed objective replaces the KL divergence by
Wasserstein distances to take the metric structure of C into
account. Further, it replaces the expected performance con-
straint with a constraint that enforces the desired level of
performance in any context that may occur under the cur-
riculum distribution pW(c). Figure 3 visualizes the behav-
ior of this interpolation for the same setting as investigated
in Figure 1. We see that the curriculum now puts all prob-
ability density on the border of the desired agent capability
(i.e. the performance threshold δ) until reaching regions of
non-zero probability density under µ(c). At this point, the
curriculum matches the target density in those parts of C, in
which the performance constraint is fulfilled and continues
to concentrate all remaining density on the boundaries of
agent capability. Indeed, this behavior is similar to those
of CRL methods based on task-prioritization. However, it
retains the benefit of explicitly encoding a target task dis-
tribution µ(c). If we for example assume a binary reward
task and a performance threshold of δ=0.5, the distribution
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generated by Objective (7) is conceptually similar to the
idea of GOALGAN (Florensa et al., 2018), which prioritizes
tasks with an intermediate success rate (i.e. around 50%).
This small example suggests a link between interpolation-
based approaches to CRL and methods that prioritize learn-
ing tasks based on surrogate objectives such as success rate
(Florensa et al., 2017), regret (Jiang et al., 2021b), or learn-
ing progress (Portelas et al., 2019) to target learning tasks
at the boundary of agent capability. However, we consider
these investigations future work.
For the remainder of this paper, we focus on an empirical
evaluation of Objective (7). For this evaluation, we repre-
sent the curriculum distribution pW(c) by a set of N parti-
cles

pW(c) ≈ p̂W(c) =
1

N

N∑
i=1

δcpW ,i
(c),

where δcpW ,i(c) is a Dirac delta at cpW ,i. Apart from the
N particles, we maintain two context buffers B+ and B−
of size N . These two buffers get updated with the re-
sults of policy rollouts (c, Rc) during agent training, where
Rc=

∑∞
t=0 γ

trc(st,at) is the discounted cumulative return
obtained by the agent in context c. While B− is simply a
circular buffer that keeps the most recent N rollouts with
Rc below the performance threshold δ, B+ contains con-
texts c for which Rc ≥ δ. However, B+ is updated differ-
ently if full. Once full, we treat B+ as the particle-based
representation of a distribution p+(c) and replace rollouts
in B+ with new ones such that W2(p+, µ) is minimized.
This can be achieved by sampling N contexts from µ(c)
and solving an assignment problem (more details in Ap-
pendix C). After updating the context buffers, we update
the particles of p̂W by optimizing objective (7). Details on
this optimization can again be found in Appendix C. We

use the data in B+ and B−, to approximate J(π, c) via a
Gaussian Process (Williams & Rasmussen, 2006). A final
detail of the algorithm that we evaluate in the next section
is its behavior, if the agent performance on p̂W,0 is below
the performance threshold δ. In this case, we use a simple
randomized search method to find areas of C in which the
agent achieves returns above δ. This search procedure is
again detailed in Appendix C. While more elaborate meth-
ods for finding contexts c with J(π, c) ≥ δ could be used,
we found the employed simple method to be sufficient for
our purposes. Algorithm 1 summarizes the outlined CRL
algorithm (assuming that the initial agent performance on
p̂W,0 is sufficient).

6. Experiments
The experiments in this section serve to validate the iden-
tified benefits of the proposed interpolation-based CRL
method, which we will refer to as CURROT. We proceed by
showing that the method can generate curricula for differ-
ent target distributions µ(c) while avoiding problems aris-
ing from parametric restrictions on the context distribution
that e.g. SPRL imposes. We also show that even in scenar-
ios with target distributions uniformly covering C, the pro-
posed method significantly improves over previous evalu-
ations of interpolation-based CRL methods, matching and
surpassing the performance of best performing methods so
far. As baselines, we will evaluate ACL, GOALGAN, ALP-
GMM, VDS, PLR, and SPRL (Graves et al., 2017; Florensa
et al., 2018; Portelas et al., 2019; Zhang et al., 2020; Jiang
et al., 2021b; Klink et al., 2021) 1.

1Additional experimental details are provided in Appendix E.
Code is provided under: https://github.com/psclklnk/currot.
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Figure 4. a) Left: Success rate on the feasible subspace of C over learning epochs for different CRL methods in the sparse goal reaching
(SGR) task. We also include a uniform sampling baseline (referred to as Random) as well as an oracle baseline which only samples
the feasible tasks in the context space C. Right: Median tolerance of tasks generated by different CRL methods as well as the uniform
and oracle baseline. For both plots, mean and standard error are computed from 10 runs. b) Context distributions p̂W(c) for a run of
CURROT on the sparse goal reaching task for epochs 10, 60, 110 and 300. The area in which the agent starts each episode is highlighted
in red. Walls are shown in black. The position of the samples encodes the goal to be reached while the color encodes the tolerance with
which the goal needs to be reached.

https://github.com/psclklnk/currot
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Figure 5. Left: Discounted cumulative return over learning epochs obtained in the point mass environment under different curricula as
well as baselines that sample tasks uniformly from C (Random) or µ(c) (Default). Middle and Right: Median distance to the target
contexts of µ(c) for the two dimensions of the context space (i.e. gate position and -width). Statistics of the visualizations (mean and
standard error) are computed from 10 seeds.

6.1. Sparse Goal Reaching (SGR)

We first turn to a sparse-reward, goal-reaching environment
in which an agent needs to reach a desired position with a
high precision (Figure 4b). Such environments have e.g.
been investigated by Florensa et al. (2018). The contexts
c ∈ C ⊆ R3 of this environment encode the 2D goal posi-
tion as well as the allowed tolerance for reaching the goal.
Given that ultimately, the agent is tasked to reach as many
goals as possible with the highest precision, i.e. the lowest
tolerance, the target distribution µ(c) is a uniform distribu-
tion on a 2D slice of C in which the tolerance of each con-
text is minimal. The walls that are present in the environ-
ment (Figure 4b) render many tasks encoded by µ(c) infea-
sible and hence the curriculum needs to identify the feasible
subspace of tasks to achieve a good learning performance.
Figure 4a compares the performance of the different CRL
algorithms. We see that CURROT results in the best learn-
ing performance across all evaluated CRL methods. Only
an oracle, which trains the learning agent only on the feasi-
ble subspace of high-precision tasks, can reach higher pre-
cision. However, even compared to the oracle, we see an
increased learning speed of CURROT at the beginning of
training. Looking at the right plot of Figure 4a, we see that
CURROT continuously decreases the precision with which
the goals need to be reached. We suspect that the final gap
between tolerance in tasks generated by CURROT and µ(c)
is the cause for the lower final performance of CURROT
compared to the oracle. The baseline CRL methods sam-
ple tasks with comparatively high tolerance even towards
the end of training, which may explain the lower perfor-
mance on µ(c). This behavior is to be expected given our
discussion in Section 4.1 that algorithms like ALP-GMM,
PLR, or GOALGAN ultimately target a uniform distribution
over C. Interestingly, SPRL does not progress to high pre-
cision tasks but continues to sample tasks of high tolerance
in later training epochs. As we show in Appendix D, this
behavior is caused by the Gaussian context distribution of
SPRL converging to a quasi-uniform distribution over C as
it is otherwise not able to cover the non-Gaussian target

distribution of feasible high-precision tasks without encod-
ing a lot of infeasible tasks. Figure 4b shows the evolution
of particles for a run of CURROT. We see that the initially
high tolerance for reaching the goal is gradually decreased
over epochs, starting from goals close to the initial agent
position and then spreading to goals that are further away.

6.2. Point Mass

We now consider the point mass environment investigated
by (Klink et al., 2020a;b; 2021). As shown in Figure 6,
a point mass needs to be steered through a narrow gate to
reach a goal position on the other side of a wall. While
Klink et al. only considered a narrow gate at one specific
position as the target task, we investigate a version in which
a narrow gate is located at one of two opposing positions.
This is modeled by a bi-modal target context distribution
µ(c) that encodes the contexts c1=[−3 0.5] and c2=[3 0.5].
This distribution challenges the Gaussian restriction of the
context distribution in the SPRL algorithm. Figures 5 and 6
show a similar picture as in the sparse goal reaching task.
CURROT first identifies the easy tasks in which large gates

−3 3

4

C ⊆ R2

wg

pg

Figure 6. The point mass environment with its two-dimensional
context space. The target distribution µ(c) encodes the two gates
with width wg=0.5, in which the agent (black dot) is required to
navigate through a narrow gate at different positions to reach the
goal (red cross). The colored dots visualize a curriculum gener-
ated by CURROT for the point mass environment. Each dot rep-
resents a particle of the distribution p̂W(c). The color of the dot
indicates the epoch, where brighter colors indicate later epochs.
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(b) Bipedal Walker Stump Tracks (Mostly Trivial)

Figure 7. Final agent performances (measured in percentage of mastered tasks) on the bipedal walker stump track environment in task
spaces with (a) mostly infeasible and (b) mostly trivial tasks for different CRL methods. Please refer to (Romac et al., 2021) for a detailed
explanation of the setup (the evaluation was performed in the no expert knowledge setting). Note that all results except for the ones of
CURROT are taken from (Romac et al., 2021). Statistics of the CURROT performance have been computed from 32 seeds. Horizontal
lines between two methods highlight that their performance was significantly different according to a Welch’s t-test with p < 0.05. In
the mostly infeasible setting, CURROT is statistically significantly better than any other method. In the mostly trivial setting, CURROT

and ALP-GMM are statistically significantly better than all other methods.

rather centered in the middle need to be passed. Starting
from those easy tasks, it then creates a curriculum that
gradually moves the gate positions to the target ones and
decreases the width of the gates. As shown in Appendix D,
SPRL proceeds similarly, however only targeting one of the
two target gate configurations due to its restriction to a uni-
modal Gaussian distribution. Looking at Figure 5, we see
that the lack of notion of µ(c) does not allow the other CRL
algorithms to sample tasks of increasing similarity to the
two target tasks. While particularly ALP-GMM consistently
decreases the width of the sampled gates over epochs, it
does not necessarily focus on gates that are far away from
the center. While this behavior is reasonable and expected
given the analysis in Section 4, the visualization of final
policies learned with the different curricula in Appendix D
shows that this lack of focus on the target tasks leads to less
reliable and direct behavior. Summarizing, the first two en-
vironments showed the expected benefit of the proposed
interpolation-based CRL method in settings, in which µ(c)
is different from the uniform distribution on the whole con-
text space U(C). In the next environment, we move to a
setting in which this difference does not exist and further
SPRL has been shown to perform poorly compared to other
existing CRL methods.

6.3. Bipedal Walker Stump Tracks

A final environment for evaluation is the modified bipedal
walker environment introduced by (Portelas et al., 2019)
and extended in (Romac et al., 2021). In this environment
a bipedal agent needs to learn to maneuver over a track
of evenly spaced obstacles of a specified height (see Fig-
ure 8). The context of this environment encodes the spac-
ing of the obstacles as well as their height. The evalua-
tions by (Romac et al., 2021) attested the SPRL algorithm
a poor performance, often performing statistically signif-
icantly worse than a random curriculum. We revisit two

learning scenarios investigated by (Romac et al., 2021) in
this environment, in which CRL methods demonstrated a
particularly strong benefit over random sampling: a setting
in which most tasks of the context space are infeasible due
to large obstacles and a setting in which most tasks of the
context space are trivially solvable. Figures 7 and 8 show
the sampling distribution of CURROT as well as the result-
ing performance in comparison to other CRL methods al-
ready evaluated by (Romac et al., 2021). We see that CUR-
ROT performs either statistically significantly better or sta-
tistically insignificantly worse than the best method evalu-
ated by (Romac et al., 2021). These results highlight that
empirically successful curricula can be generated by fram-
ing CRL as an interpolation between context distributions,
even for uniform target context distributions.
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Figure 8. Sampling distribution p̂W(c) of CURROT on the bipedal
walker stump track environment in the no expert knowledge set-
ting in task spaces with (a) mostly infeasible and (b) mostly trivial
tasks. Brighter colors indicate samples that correspond to later
epochs of agent training. The small image visualize the obstacles
that are encoded by the corresponding contexts. For environment
details, please see (Romac et al., 2021).
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7. Conclusion
In this paper, we proposed a novel approach to curriculum
RL that generates a curriculum as an interpolation between
task distributions. Opposed to previous methods that aim
to minimize the KL divergence to a target distribution of
tasks, our method employs Wasserstein distances to mea-
sure the difference between the current- and the target task
distribution. As we showed, this introduces a notion of
metric between training tasks that is missing under the KL
divergence. Combined with a performance constraint on
the tasks generated by the interpolation, our approach gen-
erates curricula that focus on the boundary of agent com-
petence while being able to match non-uniform target dis-
tributions. Empirical evaluations highlighted the benefit of
the method, matching and surpassing the performance of
baseline algorithms. Our findings motivate a variety of fu-
ture investigations, such as establishing more detailed con-
nections between existing CRL approaches based on sur-
rogate objectives and the newly proposed one. Removing
approximations of the current algorithmic realization can
improve the fidelity of the interpolating task distribution.
Finally, the use of Wasserstein distances opens up a variety
of investigations into the use of different metrics to mea-
sure the distance between tasks. This promises particularly
efficient learning in non-Euclidean context spaces.
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A., and Peyré, G. Interpolating between optimal trans-
port and mmd using sinkhorn divergences. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2019.

Fickinger, A., Cohen, S., Russell, S., and Amos, B. Cross-
domain imitation learning via optimal transport. In
International Conference on Learning Representations
(ICLR), 2022.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for rein-
forcement learning. In Conference on Robot Learning
(CoRL), 2017.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. In
International Conference on Machine Learning (ICML),
2018.

Ghavamzadeh, M., Mannor, S., Pineau, J., and Tamar, A.
Bayesian reinforcement learning: A survey. Founda-
tions and Trends® in Machine Learning, 8(5-6):359–
483, 2015.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and
Kavukcuoglu, K. Automated curriculum learning for
neural networks. In International Conference on Ma-
chine Learning (ICML), 2017.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2021. URL https://www.gurobi.com.

Hallak, A., Di Castro, D., and Mannor, S. Con-
textual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

Jiang, M., Dennis, M., Parker-Holder, J., Foerster, J.,
Grefenstette, E., and Rocktäschel, T. Replay-guided
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and Borgwardt, K. Wasserstein weisfeiler-lehman graph
kernels. In Neural Information Processing Systems
(NeurIPS), 2019.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


Curriculum Reinforcement Learning via Constrained Optimal Transport

Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., and
Courty, N. Semi-relaxed gromov-wasserstein divergence
and applications on graphs. In International Conference
on Learning Representations (ICLR), 2022.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A.
R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Po-
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A. Computational Complexity of Optimal Transport
The benefits of optimal transport (OT) come at the price of a rather high computational burden caused by the need to
solve an optimization problem to compute the Wasserstein distance between two distributions. In practice, OT problems in
continuous spaces (such as the context spaces investigated in this paper) are often reduced to linear assignment problems
between sets of particles. Such assignment problems can be exactly solved with variations of the Hungarian algorithm with
a time complexity of O(n3) (Jonker & Volgenant, 1987). While this polynomial complexity ultimately leads to prohibitive
runtimes for large n, we can typically avoid this problem for curriculum RL. Given the often moderate dimensionality of
the chosen context spaces, a few hundred particles are typically sufficient to represent the context distributions. In our
experiments, we used 200 samples for 2-D spaces and 500 samples for 3-D spaces, leading to solving times of less than
100ms with the linear sum assignment function of the SciPy library (Virtanen et al., 2020) on an AMD Ryzen 9
3900X. Since the algorithm presented in Appendix C only solves one OT problem per context distribution update, the
computational costs of OT are rather small for the investigated environments.
Furthermore, approximations have emerged to tackle problems that require a large number of particles. For example,
the GeomLoss library (Feydy & Roussillon, 2019), that we use in our implementations, implements a variant of entropy-
regularized OT that has brought down the computation time of OT for sets of hundreds of thousands of samples to seconds
on high-end GPUs (Feydy et al., 2019). So-called sliced Wasserstein distances (Bonneel et al., 2015; Kolouri et al., 2019)
approximately solve the given OT problem by solving M OT problems in 1-D subspaces, reducing the time complexity to
O(Mn log(n)), where typically M ≪ n.

B. Context Distributions of CRL Methods
We start the discussion on context distributions of existing CRL methods by restating our assumptions about the learning
agent as well as the context space in which the curriculum is generated.

Assumption B.1. We assume a strong learner l : Π×C 7→ Π, i.e. a function that maps a given policy π ∈ Π and learning
task clearn ∈ C to a new policy π′ ∈ Π that fulfills

(∀c ∈ C : J(π′, c) ≥ J(π, c)) ∧ (∀c ∈ Bϵ(clearn) : J(π, c) < J∗(c) ⇒ J(π′, c) ≥ J(π, c) + ∆)

with J∗(c)= argmaxπ∈Π J(π, c), ϵ > 0 and ∆ > 0. An epsilon ball Bϵ(c) around a context c is defined as Bϵ(c) =
{c′ | ∥c − c′∥2 < ϵ}. Note that we assume a Euclidean space C, although the concept of epsilon balls naturally extend to
general metric spaces.

Assumption B.2. The context space C is a metric compact space in Rd.

Under above assumptions, we first consider the prioritized level replay (PLR) algorithm introduced by (Jiang et al., 2021b).
As the authors argue in a follow-up work, PLR can be interpreted to prioritize contexts c with large regret (Jiang et al.,
2021a)

Regret(π, c) = J∗(c)− J(π, c).

Assuming that p(c) of PLR is a monotonically increasing function of Regret(π, c) allows to argue that p(c) ultimately
converges to a uniform density over C for a strong learner. We will only make intuitive arguments here and leave detailed
proofs for future work. Given that C is a compact metric space, we know that every sequence in C has a converging sub-
sequence whose limit is in C. Consequently, we know that there exist contexts c ∈ C for which an increasing number
of samples fall into Bϵ(c) for any sequence of sampling distributions on C. Hence, there will – after a certain amount of
samples – exist contexts for which Re(π, c) is arbitrarily close to zero, causing PLR to prioritize the remaining contexts
c ∈ C. Continuing this line of thought, the learner will ultimately reach close to maximum performance across all of
C, causing Re(π, c) ≈ 0 everywhere in C. Consequently, the context distribution of PLR will ultimately converge to an
(approximately) uniform distribution over C. Similar arguments can be made for the GOALGAN or ALP-GMM algorithm.
As for PLR, there are some abstractions to be made from the algorithmic implementation of these algorithms and their
theory. For example, the absolute learning progress metric of ALP-GMM for a rollout (c, Rc)

ALP(c) = |Rc −Rcnn |

is computed using the previously completed rollout (cnn, Rcnn) with minimal distance ∥cnn −c∥2. This computation can be
seen as an approximation to the concept of prediction gain G(π, c) = J(π′, c)−J(π, c), i.e. the performance improvement
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resulting from learning in c (see e.g. Graves et al. (2017)). Clearly, G(π, c) = 0 for contexts c with J(π, c) = J∗(c). At
this point, the analysis reduces to the one of PLR, as p(c) of ALP-GMM is a monotonically increasing function of G(π, c).
In general, this analysis may be extended to any CRL algorithm that defines p(c) as a monotonically increasing function
of some quantity that decays to zero as J(π, c) approaches J∗(π).

C. Additional Implementation Details
As mentioned in the main paper, our implementation of Objective (7) relies on three key steps that we want to more closely
describe in this appendix: the update of the buffer B+, computing the next context distribution p̂W as well as searching for
contexts c with J(π, c) ≥ δ.

C.1. Updating B+

The buffer B+ =
{
(ci, Rci)

∣∣ci ∈ C, Rci ≥ δ, i ∈ [1, NB+ ]
}

contains NB+ episodes for which the agent obtained a return
above the desired performance threshold δ. In the algorithm, we limit the size of B+ to the number of particles N with
which we represent the context distribution pW . Initially, B+ is empty. After completing M episodes during agent training,
we add those of the M episodes (c, Rc) with Rc ≥ δ to B+. At some point, this leads to NB+

becoming larger than N . If
this happens, we sub-sample the episodes in B+ by solving the following assignment problem

min
π:[1,NB+

]×[1,N ]7→{0,1}

NB+∑
i=1

N∑
j=1

π(i, j)d(ci, cµ,j)

s.t. ∀j ∈ [1, N ] :

NB+∑
i=1

π(i, j) = 1, ∀i ∈ [1, NB+ ] :

N∑
j=1

π(i, j) ≤ 1,

where cµ,j ∼ µ(c) are N particles sampled from µ(c) and π : [1, NB+
] × [1, N ] 7→ {0, 1} is an indicator function

that represents the assignment between particles in B+ and the particles sampled from µ(c). This transport problem is a
variation of the seminal problem of Monge in which we need to select N particles from NB > N candidates to assign to
the target particles. In our implementation, we use the Gurobi optimization software (Gurobi Optimization, LLC, 2021) to
solve the above problem. We then select those N particles from B+, for which there exists a j ∈ [1, N ] with π(i, j) = 1.

C.2. Updating p̂W(c)

After updating the buffers B+ and B− with the M recently completed episodes and regressing the expected performance
J(π, c) from the information in B+ and B−, we update the position of the particles cpW ,i. To do this is in a computationally
feasible way, we first sample N particles cµ,j from µ(c) to obtain a particle-based representation of the target distribution
µ̂(c) = 1

N

∑N
j=1 δcµ,j (c). We then solve a classical Monge problem to obtain a permutation π : [1, N ] 7→ [1, N ] that

assigns particles of p̂W to particles of µ̂ and minimizes
∑N

i=1 d(cpW ,i, cµ,π(i)). We can then express the gradient flow of
pW(c) to µ(c) under our particle-based representation as

Tα
#p̂W =

M∑
i=1

δTα(cpW ,i), Tα(cpW ,i) = cpW ,i + α(cµ,π(i) − cpW ,i), α ∈ [0, 1]. (8)

The above particle flow moves the particles of p̂W along straight lines to the assigned particles of µ̂. The particular flow
arises from our use of the Euclidean metric. For other metrics, the particles would move along the induced geodesics.
Having parameterized the flow of the particle-based representation, we can define an approximate version of Objective (7)

min
α∈[0,1]N

(
1

N

N∑
i=1

d(Tαi(cpW ,i), cµ,π(i))
2

) 1
2

s.t. J(π, Tαi(cpW ,i)) ≥ δ

(
1

N

N∑
i=1

d(cpW ,i, T
αi(cpW ,i))

2

) 1
2

≤ ϵ.
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Figure 9. a) Visualization of the sampling distribution of SPRL in the sparse goal reaching (SGR) task. The color of the dots encode the
tolerance of the corresponding contexts and the position represents the goal to be reached under that tolerance. Walls are shown in black
and the red area visualizes the starting area of the agent. b) 10-, 50- and 90-percentile of the standard deviation of SPRL’s sampling
distribution on the sparse goal reaching task. The statistics have been computed from 10 seeds. c) Sampling distribution of SPRL in the
point mass environment for a given seed. The color indicates the iteration, where brighter colors correspond to later iterations.

This objective is computationally cheaper compared to Objective (7), since we only parameterize the individual particle
movements along the unconstrained gradient flow (8). This approximation to the gradient flow in the constrained setting
avoids the recomputation of the permutation π after each gradient step during the optimization and further makes the
decision variable α ∈ [0, 1]N independent of the dimensionality of the context space C. However, it reduces the fidelity of
the solution, as it overly constrains the movement of the particles along the pre-computed geodesics Tα(cpW ,i).

C.3. Searching for Contexts Satisfying δ

Depending on the learning scenario, the initial agent performance may be below δ for all or most of the initial episodes.
In this case, we want to first find tasks c in which the agent robustly achieves a performance of at least δ. Consequently,
our implementation contains an initial search procedure for such tasks that is triggered if not at least half of the first M
episodes (c, Rc) fulfill the desired performance threshold. During this procedure, B+ contains the best samples. When a
batch of M new episodes arrives, we add those episodes to the buffer whose return is at least as large as the median return
in B+ – and for each new episode added, remove the worst performing episode. The sampling distribution for the initial
search procedure is a (truncated) Gaussian Mixture Model

pB+(c) =

NB∑
i=1

wiN
(
c
∣∣ci, σ2

i I
)
, wi ∝ max(0, Rci −Rmed), σi = max

(
10−3, 2

δ −Rci

δ −Rmin

)
,

where Rmin is the minimum return observed over all episodes and Rmed is the median performance of the episodes currently
contained in B+. For simplicity of exposition, we assume that C = [0, 1]d, i.e. that the context space is a d-dimensional
hyper-cube of edge-length one. Consequently, a context c with a return of Rmin will have a standard deviation of two in
each dimension, which in combination with the Gaussian being truncated leads to spread-out sampling across the hyper-
cube. If the dimensions of C are scaled differently, a simple re-scaling is sufficient to use the above sampling procedure.
Once this search procedure has led to at least half of the samples in B+ being above the performance threshold δ, we switch
to the main algorithm outlined in the paper.

D. Additional Experimental Results
Figure 9 visualizes the behavior of SPRL in the sparse goal reaching (SGR) and point mass environments. We see that
for the SGR environment, SPRL increases the variance of the Gaussian context distribution to assign probability density
to the target contexts while fulfilling the expected performance constraint by encoding trivial tasks with high tolerance
(Figures 9a and 9b,). Given that the policy learned with SPRL performs worse than a policy learned under a curriculum
that uniformly samples tasks from the context space, it seems that this Gaussian approximation to a uniform distribution is
– at least for this environment – inferior. For the point mass environment, Figure 9c shows that the context distribution of
SPRL converges to one of the target tasks encoded by µ(c).
Figure 10 shows trajectories generated by agents that have been trained with different curricula in the point-mass environ-
ment. We see that directly learning on the two target tasks (Default) prevents the agent from finding the gates in the wall
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(a) Default (b) Random (c) SPRL (d) CURROT (e) ALP-GMM

(f) GOALGAN (g) ACL (h) PLR (i) VDS

Figure 10. Final trajectories generated by the different investigated curricula in the point mass environment. The color encodes the
context: Blue represents gates positioned at the left and red gates positioned at the right.

to pass through. Consequently, the agent minimizes the distance to the goal by moving right in front of the wall (but not
crashing into it) to accumulate reward over time. We see that random learning indeed generates meaningful behavior. This
behavior is, however, not precise enough to pass reliably through the wall. As mentioned in the main paper, SPRL only
learns to pass through one of the gates, as its uni-modal Gaussian distribution can only encode one of the modes of µ(c).
CURROT learns a policy that can pass through both gates reliably, showing that the gradual interpolation towards both target
tasks allowed to learn both of them. ALP-GMM and PLR also learn good policies. The generated trajectories are, however,
not as precise as the ones learned with CURROT. ACL, GOALGAN, and VDS partly create meaningful behavior. However,
this behavior is unreliable and hence leads to low returns due to the agent frequently crashing into the wall.

E. Experimental Details
This section discusses hyperparameters and additional details of the conducted experiments that could not be provided in
the main text due to space limitations.

E.1. Algorithm Hyperparameters

The two main parameters of the SPRL algorithms are the performance threshold δ as well as the allowed distance between
subsequent distributions ϵ. We did not perform an extensive hyperparameter search for these parameters but chose them as
follows: The performance threshold δ is chosen such that it is around 50% of the maximally achievable reward. We then
evaluated a larger and a lower value of the parameters and chose the best. For CURROT, the parameter ϵ is chosen such
that it is around 5% of the maximum distance between any two points in the context space. Since the context spaces in
the considered environments are d-dimensional intervals [l1, h1]× [l2, h2]...× [ld, hd], this means ϵ = 0.05∥h− l∥2. For
SPRL, we initialized ϵ with value of 0.05 used in the initial experiments by Klink et al. However, we realized that larger
values slightly improved performance. When targeting narrow target distributions, Klink et al. introduce a lower bound

SPRL CURROT

ENV. δ ϵ σLB DKLLB δ ϵ

SPARSE GOAL REACHING 0.6 .25 - - 0.6 1.5
POINT MASS 4 .25 [.2 .1875] 8000 4 0.5
BIPEDAL WALKER - - - - 180 0.5|0.4

Table 1. Hyperparameters of the SPRL and CURROT in the different learning environments. The ϵ parameter of CURROT is computed
according to the procedure described in appendix E. Note that for the bipedal walker environment, we do not provide the parameters for
SPRL as we rely on the results reported by (Romac et al., 2021).
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ALP-GMM GOALGAN ACL

ENV. pRAND nROLLOUT sBUFFER δNOISE nROLLOUT pSUCCESS η ϵ

SPARSE GOAL REACHING .2 200 500 .1 200 .2 0.05 0.2
POINT MASS .1 100 500 .1 200 .2 0.025 0.2

Table 2. Hyperparameters of the investigated baseline algorithms in the different learning environments, as described in appendix E.

on the standard deviation σlb of the context distribution of SPRL. This lower bound needs to be respected until the KL
divergence w.r.t. µ(c) falls below a threshold DKL as otherwise, the variance of the context distribution may collapse to
early, causing the KL divergence constraint on subsequent distributions to only allow for very small changes to the context
distribution. This detail again highlights the benefit of Wasserstein distances, as they are not subject to such subtleties due
to their reliance on a chosen metric. Table 1 shows the parameters of CURROT and SPRL for the different environments.
For ALP-GMM, the relevant hyperparameters are the percentage of random samples drawn from the context space prand,
the number of completed learning episodes between the update of the context distribution nrollout as well as the maxi-
mum buffer size of past trajectories to keep sbuffer. Similar to Klink et al. (2021), we chose them by a grid-search over
(prand, nrollout, sbuffer) ∈ {0.1, 0.2, 0.3} × {50, 100, 200} × {500, 1000, 2000}.
For GOALGAN, we tuned the amount of random noise that is added on top of each sample δnoise, the number of policy
rollouts between the update of the context distribution nrollout as well as the percentage of samples drawn from the success
buffer psuccess via a grid search over (δnoise, nrollout, psuccess) ∈ {0.025, 0.05, 0.1} × {50, 100, 200} × {0.1, 0.2, 0.3}.
For ACL, the continuous context spaces of the environments need to be discretized, as the algorithm is formulated as a
bandit problem. The Exp3.S bandit algorithm that ultimately realizes the curriculum requires two hyperparameters to be
chosen: the scale factor for the updates of the arm probabilities η and the ϵ parameter of the ϵ-greedy exploration strategy.
We combine ACL with the absolute learning progress (ALP) metric also used in ALP-GMM and conduct a hyperparameter
search over (η, ϵ) ∈ {0.05, 0.1, 0.2} × {0.01, 0.025, 0.05}. Hence, contrasting ACL and ALP-GMM sheds light on the
importance of exploiting the continuity of the context space. For ACL, the absolute learning progress in a context c can be
estimated by keeping track of the last reward obtained in the bin of c (note that we discretize the context space) and then
computing the absolute difference between the return obtained from the current policy execution and the stored last reward.
Implementing the ACL algorithm by (Graves et al., 2017), we had numerical issues due to the normalization of the ALPs
via quantiles. Consequently, we normalized via the maximum and minimum ALP seen over the entire history of tasks.
For PLR, the staleness coefficient ρ, the score temperature β as well as the replay probability p need to be chosen. We did
a grid-search over (ρ, β, p) ∈ {0.15, 0.3, 0.45}×{0.15, 0.3, 0.45}×{0.55, 0.7, 0.85} and chose the best configuration for
each environment.
For VDS, the parameters for the training of the Q-function ensemble, i.e. the learning rate lr, the number of epochs
nep and the number of minibatches nbatch, need to be chosen. Just as for PLR, we conducted a grid-search over
(lr, nep, nbatch) ∈ {10−4, 5×10−4, 10−3} × {3, 5, 10} × {20, 40, 80}. The parameters of all employed baselines are given
in tables 2 and 3.

E.2. Task Descriptions

We now detail on the individual experiments, such as context-, state- and action spaces as well as the employed RL
algorithms. As RL agents, we use SAC and PPO implemented in the Stable Baselines 3 library (Raffin et al., 2021)
for the sparse goal reaching and point mass environment. For the bipedal walker stump track environment, we use the SAC
implementation provided by (Romac et al., 2021).

E.2.1. SPARSE GOAL REACHING

For the sparse goal reaching task, the goal can be chosen within [−9, 9]× [−9, 9] and the allowed tolerance can be chosen
from [0.05, 18]. Hence the context space is a three-dimensional cube C = [−9, 9] × [−9, 9] × [0.05, 18]. The actually
reachable space of positions (and with that goals) is a subset of [−7, 7] × [−7, 7] due to the “hole” caused by the inner
walls of the maze. The target context distribution is a uniform distribution over tasks with a tolerance of 0.05

µ(c) =

{
1, if c3 = 0.05,

0, else.
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PLR VDS

ENV. ρ β p LR nEP nBATCH

SPARSE GOAL REACHING .45 .15 .55 5×10−4 10 80
POINT MASS .15 .45 .85 10−3 3 20

Table 3. Hyperparameters of the investigated baseline algorithms in the different learning environments, as described in appendix E.

The state s of the environment is given by the x- and y-position of the agent. The reward is sparse, only rewarding the
agent if the goal is reached. A goal is considered reached if the Euclidean distance between goal and position of the point
mass falls below the tolerance

∥s− [c1 c2]
T ∥2 ≤ c3.

The two-dimensional action of the agent corresponds to its displacement in the x− and y− direction. The action is clipped
such that the Euclidean displacement per step is no larger than 0.3.
We use the SAC algorithm for learning in this task. Compared to the default algorithm parameters of Stable
Baselines 3, we only changed the policy update frequency to 5 environment steps, increased the batch size to 512
and reduced the buffer size to 200.000 steps.

E.2.2. POINT MASS

The environment setup is the same as the one investigated by Klink et al. (2020b; 2021) with the only difference in the
target context distributions, which is now defined as a Gaussian mixture

µ(c) =
1

2
N
(
c1, 10

−4I
)
+

1

2
N
(
c2, 10

−4I
)
, c1 = [−3 0.5]T , c2 = [3 0.5]T .

In this environment, we use PPO with 4.096 steps per policy update, a batch size of 128 and λ=0.99. All other parameters
are left to the implementation defaults of the Stable Baselines 3 implementation.

E.2.3. BIPEDAL WALKER STUMP TRACKS

As mentioned in the main paper, we used the environment and SAC learning agent implementation provided by Romac et al.
(2021). We only interfaced CURROT to the setup provided by them, allowing to reuse the baseline evaluations provided
by Romac et al. (2021). The two settings (mostly infeasible and mostly trivial) differ in the boundaries of their respective
context spaces. The mostly infeasible setting encodes tasks with a stump height in [0, 9] and -spacing in [0, 6]. The mostly
trivial setting keeps the same boundaries for the stump spacing, however encodes stumps with a height in [−3, 3]. Since a
stump with negative height is considered as not present at all, half of the context space of the mostly trivial setting does not
encode any obstacles for the bipedal walker to master. The target context distribution µ(c) is uniform over the respective
context space C for both settings.


