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ABSTRACT Massive multiple-input multiple-output (mMIMO) technology is a way to increase spectral
efficiency and provide access to the Internet of Things (IoT) and machine-type communication (MTC)
devices. To exploit the benefits of large antenna arrays, accurate channel estimation through pilot signals
is needed. Massive IoT and MTC systems cannot avoid pilot reuse because of the enormous numbers
of connected devices. We propose a pilot reuse algorithm based on channel charting (CC) to mitigate
pilot contamination in a multi-sector single-cell mMIMO system having spatially correlated channels. We
show that after creating an interference map via CC, a simple strategy to allocate the pilot sequences can
be implemented. The simulation results show that the CC-based pilot reuse strategy improves channel
estimation accuracy, which subsequently improves the symbol detection performance and increases the
spectral efficiency compared to other existing schemes. Moreover, the performance of the CC pilot
assignment method approaches that of exhaustive search pilot assignment for small network setups.

INDEX TERMS Channel charting, massive MIMO, pilot reuse, pilot contamination.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (mMIMO)
technology is a key enabler for the Internet of Things

(IoT) and massive machine-type communication (mMTC)
systems [1], [2], [3], [4], [5]. It supports the access of
huge numbers of connected devices through the spatial
multiplexing of the user equipments (UEs). Furthermore,
the effects of small-scale fading and uncorrelated noise have
been shown to asymptotically vanish in mMIMO, signifi-
cantly improving spectral and energy efficiencies for such
systems [6], [7], [8]. However, to exploit spatial multiplexing
and the benefits of channel hardening, accurate channel
estimation through pilot signals is needed.
IoT and mMTC systems are characterized by sporadic

UE activity, uplink-dominated transmissions, and small

packets [3], [5], [9]. The design of access techniques to
support the huge numbers of such devices is still an open
challenge [10]. As opposed to conventional networks con-
necting mostly human users, the large number of UEs in
mMIMO systems precludes the allocation of orthogonal pilot
sequences to all of them [5], [11]. Different approaches such
as the intelligent reuse of orthogonal pilot sequences and the
use of non-orthogonal pilot sequences have been proposed to
cope with the shortcoming of orthogonal resources. The first
approach is the subject of this work. A related pilot sequence
allocation problem appears also in non-orthogonal multiple-
access (NOMA) systems [12] for which our approach can
bring new insights as well.
Pilot reuse can be employed within the same cell to

acquire the required channel state information (CSI) and
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avoid excessive signaling, overcoming the lack of resources
in mMIMO systems at the cost of pilot contamination known
also as pilot collision. The contamination or collision of
pilot sequences is the interference caused by reusing the
same pilot sequence across different UEs to estimate the
uplink channels, and it typically affects neighboring cells of
a cellular network [13]. Particularly, when the number of
antennas tends towards infinity, the ultimate limiting phe-
nomenon affecting the performance of mMIMO systems is
the pilot contamination [6]. To tackle the pilot contamina-
tion and improve both spectral and energy efficiency, several
approaches exploiting the propagation environment through
spatial multiplexing have been proposed [14], [15].

A. RELATED WORK
To address the shortage of resources and mitigate the
pilot contamination problem in multi-user mMIMO systems,
superimposed pilots have been studied in [16], [17]. Instead
of time-division multiplexing of pilot symbols to estimate the
channels and data, pilots are sent to the base station (BS)
along with the data, not in dedicated time slots. In [17],
Lago et al. proposed a mixed approach where first a set
of orthogonal pilot sequences is sent, to latter improve the
accuracy of the channel estimation, and then superimposed
pilot symbols are sent to estimate the uplink channels. The
results showed that this approach can improve spectral effi-
ciency as compared to purely superimposed or orthogonal
pilot schemes.
The design of pilot sequences is considered in [18] to

mitigate pilot contamination. Van Chien et al. proposed
a framework where the pilots are linear combinations of
orthogonal pilot sequences acting as basis vectors, and
the resulting non-combinatorial optimization problem aims
to find suitable weight coefficients for the basis vectors.
Xu et al. [19] utilized deep learning to find such weight
coefficients. They formulated a pilot power loading problem
to minimize the sum mean square error (MSE) of chan-
nel estimation. They have shown that the proposed method
improves the sum MSE as compared to other existing meth-
ods by employing a deep neural network to learn the
MSE-minimizing optimal power allocation to each pilot
symbol.
In addition to the aforementioned approaches, the

pilot contamination can be alleviated by exploiting the
spatial correlation of channels, as presented in [20].
Muppirisetty et al. [21] proposed a location-aided pilot allo-
cation algorithm, which assumes the knowledge of UEs’
physical locations and distribution of the scatterers to esti-
mate the covariance matrices and, subsequently, to suppress
pilot contamination. They consider an integer linear problem
to assign the pilots. Their results show that the normalized
channel estimation error approaches the interference-free
scenario. A similar approach, yet using angle-of-arrival
(AoA) information for allocating the pilot sequences was
proposed in [22]. Therein, first the UEs are grouped within
the cells to alleviate intra-cell pilot contamination. UEs

in the same group cannot use the same pilot sequence.
Next, an algorithm matches the groups with strong potential
interference in the neighboring cells into a group collection.
Then, a pilot allocation algorithm assigns orthogonal pilot
sequences to UEs with strong inter-cell interference. The
potential mutual interference is measured on an undirected
weighted graph, with vertices representing the UEs in each
collection and the edges representing the interference. The
main practical limitation of such location-aware pilot assign-
ment methods is the requirement of knowledge about UEs’
physical locations.
Another class of solutions, which do not require the

explicit knowledge of UEs’ positions, utilizing the spatial
correlation to avoid pilot contamination includes [23], [24],
[25], [26]. In [26], a pilot reuse strategy called statistic
greedy pilot scheduling (SGPS), based on the second-order
statistics of the channels, was proposed aiming at minimizing
the MSE for both channel estimation and signal detec-
tion. The SGPS algorithm seeks to assign orthogonal pilot
sequences to UEs with similar channel covariance matrices,
according to a metric based on the covariance matrix dis-
tance (CMD) [27], resulting in significant improvement in
terms of spectral efficiency as compared to the orthogonal
pilot allocation without reuse.
Nguyen et al. [28] proposed to maximize the minimum

weighted sum spectral efficiency by applying a pilot allo-
cation algorithm and a transmission power control policy,
aiming to diminish pilot contamination and to mitigate
interference for the data transmission, respectively. In [29],
Ma et al. utilize sparse Bayesian learning to estimate the
channels’ spatial signatures. Then, in the channel train-
ing phase, UEs with non-overlapping spatial signatures
are grouped and assigned with the same pilot sequence,
mitigating the overall pilot contamination.
Recently, we proposed a pilot reuse scheme in [30], [31]

that utilizes channel charting (CC)1 to exploit the spatial
information existing in the CSI to allocate and reuse orthog-
onal pilot sequences so as to alleviate pilot contamination.
CC is a framework proposed in [32] to estimate the relative
positions of devices in an unsupervised manner. The CC
maps the information obtained from the measured long-term
CSI at the BS into a low-dimensional chart, in which the rela-
tive positions of UEs are preserved. The multi-cell extension
of [30], [31] is considered in [33]. Our results [30], [31], [33]
show that CC can be utilized to mitigate pilot contamination
and improve the channel estimation accuracy.

B. CONTRIBUTIONS
In this paper, we address the problem of pilot assignment
in a single-cell multi-sector mMIMO system with spatially
correlated channels by employing pilot reuse of a set of
orthogonal sequences. The interference in mMIMO systems
is often related to the spatial configuration of UEs, especially

1. CC is interchangeably used for “channel charting” and “channel chart”
throughout the paper.
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to their angular position in relation to the BS. Therefore, a
description of the whole azimuth plane is very important
to characterize the interference among UEs. As directional
antennas are usually employed in cellular systems, a multi-
sector deployment is needed to provide coverage to the whole
angular domain. Furthermore, the multi-sector arrangement
allows us to get rid of the mirror angle phenomenon
presented in uniform linear arrays (ULAs) [34, p. 240] or
uniform planar arrays (UPAs).
We formulate a pilot allocation optimization problem that

aims at minimizing pilot contamination by exploiting the
spatial correlation of the UEs’ channels through their second-
order statistics. The formulated problem is, in general, hard
to solve due to its combinatorial nature, which makes the
complexity grow exponentially with the number of UEs and
linearly with the number of available pilot sequences. To
this end, we propose a practical solution based on CC to
create a map that reveals the amount of interference between
the UEs by mapping those with strong channel correla-
tion closer than those with weak one. We show through
simulation experiments that a simple pilot allocation strat-
egy can be employed if an appropriate interference map is
designed. Numerical results show that the intelligent CC-
based pilot reuse method mitigates pilot contamination and
greatly increases spectral efficiency. In a toy example, for a
small network setup with few UEs deployed, the proposed
method approaches the performance of exhaustive search.
The main contributions of this paper are summarized as

follows:

• We formulate a pilot allocation problem to opti-
mally reuse a pool of orthogonal pilots in single-cell
multi-sector mMIMO systems with spatially correlated
channels.

• We propose a CC method that translates the amount of
interference between the UEs into a low-dimensional
chart, creating an interference mapping. The higher the
potential interference between two UEs, the closer they
reside on the map.

• We propose to improve the interference map generated
by CC by allowing a variable number of dimensions
for CC. The extra degrees of freedom in CC allows us
to construct more reliable interference mappings.

• We develop a CC-based greedy pilot allocation algo-
rithm that exploits the spatial correlation of the UEs,
embedded in the interference mapping. The pilot assign-
ment algorithm aims at maximizing the distances
between the UEs on the interference map that use the
same pilot sequence to mitigate pilot contamination.

• Simulation results show that the proposed pilot alloca-
tion can cope with pilot contamination, i.e., it increases
channel estimation accuracy and uplink achievable rate,
or equivalently, reduces the symbol error rate.

The use of second-order statistical information to allocate
the pilot sequences or to retrieve UEs’ spatial information

is not a completely new idea. In [26], the covariance matri-
ces were fed to a pilot allocation algorithm that computes
a CMD-like feature and greedily assigns orthogonal pilot
sequences, trying to minimize the interference with the set
of UEs previously addressed. However, the novelty in our
work lies in the design of an UE-interference map of the
radio environment through CC. The UE-interference map
reveals the big picture of the interference in the cell, which
allows employing a low-complexity pilot allocation strategy
to mitigate pilot contamination.
The present paper builds on our initial works [30], [31].

Herein, we take a more elaborate approach to the stud-
ied pilot contamination problem. We start by deriving an
objective function to assess the overall amount of pilot
contamination in the network, which works as a proxy func-
tion for the end performance metrics. Using this objective
function, we approach the pilot contamination problem and
the associated pilot reuse strategy by formulating a rigor-
ous optimization problem that aims to minimize the amount
of pilot contamination. This optimization problem is subse-
quently used as a basis to utilize meta-heuristics and propose
the CC-based pilot reuse algorithm. Furthermore, to increase
robustness of the proposed method to the changes in the UEs’
density, here we propose the use of an adaptive number of
dimensions for CC.

C. PAPER OUTLINE
The rest of the paper is organized as follows. Section II
presents the system model for the multi-sector single-cell
communication system. The channel estimation and the
problem formulation are presented in Section III. The CC
framework to retrieve a radio interference map is proposed
in Section IV. In Section V, the proposed pilot alloca-
tion strategy utilizing the CC-based interference mapping is
devised. The simulation results are presented and discussed
in Section VI, and Section VII concludes the paper.
Notation: Boldface lowercase letters, x, denote column

vectors and boldface uppercase letters, X, denote matrices.
The superscripts (·)T, (·)*, and (·)H denote transpose, con-
jugate, and conjugate transpose, respectively. The average
value of x is x̄. The multivariate circularly symmetric com-
plex Gaussian distribution with covariance matrix R and
mean x is denoted as CN (x,R). The n×n identity matrix is
presented as In. The vector of all entries 1 is denoted as 1.
The element-wise product between A and B is expressed as
A� B. The expected value of x is denoted as E[x]. The
�2-norm and the Frobenius norm are denoted as ‖ · ‖2 and
‖ · ‖F, respectively. The trace of X is denoted as tr (X).

II. SYSTEM MODEL
We consider a mMIMO uplink communication scheme with
a set N = {1, . . . ,N} of N single-antenna UEs uniformly
distributed within a cell, from which only K < N are ran-
domly active at any given time. In order to focus on
the development of pilot assignment strategies to improve the
channel estimation accuracy, and, subsequently, enhance the
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FIGURE 1. The uplink channel between a single-antenna UE and a BS equipped with
S = 3 M-element ULAs. The multi-path components are concentrated in a ring around
the UEs.

system performance, we assume that the BS knows the set
of active UEs at each transmission instant. This assumption
can be invoked by the fact that there exists a multitude of
compressed sensing based approaches, e.g., [5], [35], [36],
to detect the set of active UEs, and thus, we leave it outside
of the scope of this paper.
The cell is divided into S sectors.2 The BS receives the

UEs’ transmitted signals through S ULAs3 each having M
antenna elements. The array response vector for a ULA is
given by

ar(θ) =
[
1, e−j2π�r cos(θ), . . . , e−j2π(M−1)�r cos(θ)

]T
, (1)

where �r is the normalized spacing between the antenna
elements in units of wavelengths and θ is the AoA, i.e.,
the incident angle of the received signal on the antenna
array [39, Sec. 7.2.1]. The ULA geometry causes reso-
nance at certain angle pairs, a phenomenon known as
mirror angles [34, p. 258]. Multi-sector processing allows
the proposed CC-based method to handle the ULAs’ mirror
angles effect by combining the signal from different arrays,
thus, granting coverage to UEs at the whole extent of the
angular domain, [0, 2π ].

We adopt the one-ring channel model that assumes the
multi-path components are concentrated around the UEs
while the BS is in an elevated position, thus lacking scat-
terers in its proximity. Each multipath reaches the antenna
array from a particular angle within a ring close to the UE,
which makes the channels spatially correlated with indepen-
dent gains and phase rotations [34, p. 236]. Fig. 1 depicts
the channel model between a UE and the BS. Accordingly,
the uplink channel vector for user n ∈ N at the ULA of
sector s ∈ S = {1, . . . , S} is modelled as a superposition of

2. In practical systems, the outdoors coverage area is usually divided
into three or six sectors of 120◦ or 60◦ [37]. We consider S = 3 in the
examples.

3. The extension to UPAs is straightforward [38].

FIGURE 2. Illustration of transmission phases in the considered TDD system. At the
beginning of each coherence block, τ symbols are sent to estimate the channel.

L propagation paths as

hn,s = 1√
L

L∑
l=1

√
βn,s,lαn,s,lar

(
θn,s,l

)
, (2)

where αn,s,l is the complex gain of the lth path, which is
assumed to be an independent and identically distributed
(i.i.d.) complex Gaussian random variable with zero mean
and E[|αn,s,l|2] = 1. The large-scale propagation effects and
the BS antenna gain in the channel are captured in βn,s,l ∈ R.
Any path loss model can be used to model βn,s,l, here, we
consider the free-space path loss model as described in [40,
eq. (2.7)], which is defined as

βn,s,l =� 10
GA(θn,s,l)

10

(
λ

4πdn

)2

, (3)

where λ is the wavelength and dn is the distance between UE
n and the BS. In (3), GA(θn,s,l) ∈ R represents the antenna
gain through the lth path for user n at the ULA of sector s,
and is given in dB by [37], [41, Table 7.1-1]

GA
(
θn,s,l

) = GAmax−min

[
12

(
θn,s,l

θ3dB

)2

, Amax

]
, (4)

where GAmax is the maximum antenna gain, θ3dB is the
half power beamwidth, Amax is the maximum attenuation
in dB at the ULAs. Above, θn,s,l is the AoA of the lth
path, l = 1, . . . ,L. The AoA for the L paths between UE n
and ULA s can be modelled as i.i.d. random variables with
uniform distribution U(θmin

n,s , θ
max
n,s ), with θ

min
n,s = θ̄n,s −

√
3σθ

and θmax
n,s = θ̄n,s +

√
3σθ . Here, θ̄n,s ∈ [0, 2π ] is the incident

angle between UE n and the ULA of sector s, σθ is the
angular standard deviation, which specifies the AoA interval,
An,s = [θmin

n,s , θ
max
n,s ], for the possible incoming multi-path

components arriving from UE n at the ULA of sector s.
We consider a time-division duplex (TDD) system, as

depicted in Fig. 2. We assume that during one coherence
block, the channels are time-invariant and flat fading. For
TDD systems, downlink and uplink channels are symmetric,
i.e., the downlink channel can be inferred at the BS from
the uplink one [39]. At each coherence block, the set of
active UEs transmit τ known symbols to the BS for channel
estimation. Right after transmitting the pilot symbols, the K
active UEs transmit their data to the BS. Then, the remain-
ing time within the coherence block is used for downlink
communication.

VOLUME 3, 2022 2393
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III. CHANNEL ESTIMATION AND PROBLEM
FORMULATION
The UEs are assigned with pilot sequences taken from a pool
of τ orthogonal sequences. However, due to a vast number
of UEs in mMIMO networks, we assume that τ � N, so that
global pilot reuse is employed in the cell area. Consequently,
in the channel estimation phase, the same pilot is shared on
the average by K/τ UEs. Let K = {1, . . . ,K} ⊆ N represent
the set of active UEs at a given transmission interval. Let
T = {1, . . . , τ } be the set of indices of the available pilot
sequences. UE k ∈ K transmits a pilot signal ψk = √puφπk ,
where pu is the power of each pilot symbol, πk ∈ T is the
index of the pilot sequence assigned to UE k, and φπk ∈ C

τ

is the corresponding pilot sequence, with power τ , taken
from the orthogonal pilot book � = [φ1, . . . , φτ ] ∈ C

τ×τ .
We define the set of interfering UEs to UE k as Ik, i.e.,
Ik = {j | j ∈ K \ {k}, πj = πk}.

A. CHANNEL ESTIMATION
The compound channel hk ∈ C

MS between UE k ∈ K and
the BS is given by

hk =
⎡
⎢⎣
hk,1
...

hk,S

⎤
⎥⎦, (5)

with covariance matrix Rk = E[hkhHk ] ∈ C
MS×MS. The lin-

ear minimum mean square error (LMMSE) estimator is
deployed at the BS to jointly estimate the channel vec-
tors of the active UEs across the S sectors. Here, because
the channels are Gaussian distributed, the MMSE esti-
mator reduces to the LMMSE estimator [42, Sec. 12.3].
Importantly, Yin et al. [43] showed that the MMSE estimator
can recover the channel estimates as in an interference-
free scenario given that the covariances’ signal subspaces
are orthogonal. In our framework, this orthogonality raises
from the restricted angles of the multipaths impinging on
the receive antenna from each UE according to the one-ring
channel model.
We assume that the channel covariance matrices of all

UEs (active and inactive ones), i.e., Rn = E[hnhHn ], n ∈ N ,
are known at the BS. This may be a challenging assumption
for medium/high mobility UEs but is still feasible [20]. In
practice, an initial training phase is required to obtain the
first estimates of the covariance matrices. Several techniques
to obtain the covariance matrices are explored in [20] and in
the references therein. For instance, the BS can keep updat-
ing each Rn based on the estimated channel, i.e., the BS can
approximate the covariance matrices by their sampled ver-
sions. Although a low-mobility scenario is readily applicable
for the proposed method (e.g., electricity and water metering,
environmental monitoring, building automation, city light-
ning, etc.), it is not stringently restricted to this scenario.
Namely, the only requirement is that accurate channel statis-
tics are available, meaning that for medium/high mobility,
the statistics need to be updated more frequently.

The received signal for channel estimation at the BS,
Y ∈ C

MS×τ , can be written as

Y = H�̌ + N, (6)

where H = [h1, . . . ,hK] ∈ C
MS×K is the channel matrix for

the active UEs, �̌ = [ψ1, . . . , ψK]T ∈ C
K×τ is the pilot

signal matrix, and N = [n1, . . . ,nτ ] ∈ C
MS×τ is the noise

matrix. We model the noise as an i.i.d. complex Gaussian
random variable n ∼ CN (0, σ 2

n IMS), where σ
2
n is the noise

power at each antenna element.
The LMMSE estimate of the channel between UE k and

the BS, hk in (5), is given as [26]

ĥk = RkQ
−1
k ypk, (7)

where ypk ∈ C
MS represents the processed received signal

for UE k after correlating the received signal with the pilot
sequence assigned to UE k, i.e.,

ypk =
1

puτ
Yψ∗k ,

= hk +
∑
j∈Ik

hj

︸ ︷︷ ︸
Pilot Interference

+ 1

puτ
Nψ∗k , (8)

and Qk = E[ypk(y
p
k)

H] ∈ C
MS×MS is the covariance matrix of

the processed received signal, given as

Qk = Rk +
∑
j∈Ik

Rj + σ 2
n

puτ
IMS. (9)

Due to the orthogonality principle of the MMSE esti-
mator [42, Sec. 12.4], the channel estimation error is
independent of ĥk and given by h̃k = hk − ĥk ∈ C

MS. Thus,
the error covariance matrix for user k is given by [26]

Rh̃k
= Rk − RkQ

−1
k Rk, (10)

and the corresponding MSE by

MSEk = tr
(
Rh̃k

)

= tr

⎛
⎝Rk − Rk

(
Rk +

∑
j∈Ik

Rj + σ 2
n

puτ
IMS

)−1
Rk

⎞
⎠. (11)

To obtain an interference-free estimate of hk, a vector basis
for the set of matrices {Rj|j ∈ Ik} must be orthonormal to a
basis vector for Rk. As proven in [43], this condition is ful-
filled, for an asymptotic regime (M→∞), if the multipath
components of the interfering UEs lay outside the AoA
interval for UE k, Ak,s in all sectors s. In that case, the
interfering signals will fall in the null space of Rk, and the
MSE is going to be purely noise-limited. Therefore, the AoA
intervals – or equivalently the eigenstructure of the channel
covariance matrices – will determine the impact of the pilot
contamination with large-antenna arrays [26], [43].
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B. PROBLEM FORMULATION
The massive number of devices in mMIMO systems pre-
vents the allocation of unique orthogonal pilot sequences to
all UEs, which necessitates pilot reuse. Pilot contamination
affects the capability to mitigate interference during the data
transmission phase due to the reduced estimation quality
and the statistical dependence of the channel estimates [34,
p. 252]. Furthermore, the strongest interference is usually
caused by UEs within the same cell [34, p. 246]. Therefore,
the coordination of pilot assignment becomes essential for
intra-cell pilot reuse systems.
The expression in (8) makes the effect of the pilot reuse

on the channel estimation accuracy evident. However, we
can avoid pilot contamination by assigning orthogonal pilot
sequences to the UEs with non-orthogonal channels, i.e.,
tr

(
RH
nRj

) 
= 0. In practice, it is not likely that the covariance
matrices for distinct UEs are fully orthogonal, i.e., that their
channels are spatially uncorrelated. Nevertheless, as shown
in [43], it is still possible to mitigate pilot contamination
between the UEs that have non-overlapping AoA intervals,
i.e., Ak,s ∩Aj,s = {∅},∀k 
= j, and ∀s. This behavior is also
reported in [34, p. 341] as the asymptotic spatial orthog-
onality between covariance matrices, and it can be written
as

lim
M→∞

1

M
tr

(
RH
nRj

) = 0, ∀ n 
= j, (12)

where tr
(
RH
nRj

)
is the standard inner product on C

M×M ,
measuring the orthogonality between Rn and Rj.
Essentially, the pilot allocation algorithm must assign

orthogonal pilot sequences to UEs with potentially strong
interference. Thus, we can minimize the pilot contamina-
tion effect by wisely assigning the pilot sequences such that
UEs with overlapping AoA intervals get orthogonal pilot
sequences.
As motivated above, the angular separation between two

UEs is closely related to their degree of orthogonality. An
intuitive measure to assess the UEs’ orthogonality level is
presented in [26], based on the inner product of the covari-
ance matrices. Similarly, we define the normalized channel
spatial correlation between UEs n and j as

δ
(
Rn,Rj

) = tr
(
RH
nRj

)

‖Rn‖F‖Rj‖F . (13)

The spatial correlation between two UEs expresses how
orthogonal the channels for the pair of UEs are, or how close
these UEs are in the angular domain. The higher the corre-
lation between the channel covariance matrices, the closer
the UEs are in the angular domain, and the lower is the
orthogonality between their channels.
To exploit the spatial characteristics of the channels

for large antenna systems presented in (12), we formulate
the pilot assignment problem to suppress the interference
from UEs that share the same second-order statistics. More
precisely, when UEs n and j share a pilot, we measure
their contribution to the networks’ pilot contamination by

δ(Rn,Rj); otherwise, the contribution is zero. Thus, we aim
at minimizing the total amount of pilot contamination in the
network through the optimization problem

minimize
{πn∈T }Nn=1

1
τN(N−1)/2

∑
n∈N

∑
j>n δ

(
Rn,Rj

)
φT
πn
φπj , (14)

where the optimization is over the UE-to-pilot index map-
ping, i.e., over the N integer variables πn, each taking
values on {1, . . . , τ }. The pre-summation factor normalizes
the effect of changing the number of UEs and the length
of the pilot sequences, but do not affect the minimization
problem. Note that, due to orthogonality of the pilot code-
book, the inner product φT

πn
φπj acts as an indicator function

taking the value τ if πn = πj and 0 otherwise. Thus, the
cost per UE pair (n, j) is always either δ(Rn,Rj) or 0. With
this logic, to minimize (14), one should assign orthogonal
pilots, distinct indices, to UEs with strong spatial correla-
tion. It is also worth noting that the normalization of the
inner product in (13) ensures fair pilot assignment for UEs
with poor channels, as the interference level is normalized
for each pair of UEs.
Problem (14) can be understood as a vertex coloring

problem on an edge-weighted graph, and as such it is NP-
hard [44]. For small-to-moderate-sized networks, the optimal
pilot assignment can be found via exhaustive search, but
for larger networks, sub-optimal algorithms have to be used.
From [45], it is known that solving weighted graph problems
with simplified local search algorithms can lead to far-from-
optimal solutions. Motivated by this, we search for practical,
yet efficient metaheuristics to allocate pilot sequences. We
devise a two-stage method to find a practical solution to (14)
by the following procedure. The first stage utilizes CC to
retrieve an interference map of the UEs, determined by the
coefficients δ(Rn,Rj) in (13). In particular, we tailor the
underlying interference pattern into a lower dimensional map
so that this map subsequently allows performing a simple
greedy pilot assignment strategy conforming to the struc-
ture of the optimal solution of (14): assign orthogonal pilot
sequences to UEs with strong pair-wise interference. In what
follows, the proposed interference mapping is presented in
Section IV, and the proposed pilot assignment method is
presented in Section V.

IV. CHANNEL CHARTING TO RECOVER AN
INTERFERENCE MAP
In this section, we introduce a CC method to retrieve a
UE-interference map from the information embedded in the
coefficients δ(Rn,Rj) in (13). Recall from above that this
represents the first (and crucial) stage of our proposed solu-
tion to problem (14): the generated CC-based interference
map will be the main input to the second stage, i.e., for the
actual pilot assignment algorithm presented in Section V.

The standard CC, as presented in [32], aims at reconstruct-
ing a low-dimensional embedding from the CSI features so
as to be a good representation of the spatial geometry of
UEs. Here, we want to create a map that preserves the angu-
lar neighborhood in a low-dimensional chart, building on the
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fact that the angular separation between UEs represents their
inter-UE interference, which is measured by (13). The target
is to map spatially correlated UEs, with potentially strong
interference, close in the interference map.
Clearly, the features to generate the interference mapping

must contain spatial information about the UEs, particu-
larly, their angular positions. To this end, the second-order
statistics of CSI, i.e., the covariance matrices Rn, n ∈ N ,
available at the BS are good candidates to create CC map.
Beyond carrying the required information, they possess desir-
able characteristics such as varying over larger time scales
as compared to the instantaneous CSI. However, if one
cannot properly estimate the channel covariance matrices,
the UE-interference map may not reflect the true potential
interference between UEs, which degrades the performance
of the proposed method. Rapid and abrupt changes in
the channel geometry may cause significant variations in the
covariance matrices. Such cases are not in the scope of the
current paper, but form an important item for further study.
The CMD metric [27] measures the normalized orthogo-

nality between two covariance matrices, which makes it a
good candidate as a feature for the optimization problem
in (14). Accordingly, the (n, j)-th element of the feature
matrix F ∈ R

N×N generated from the covariance matrices of
UEs n and j is

[F]n,j = 1− δ(Rn,Rj
)
, (15)

where δ(·, ·) is the normalized channel spatial correlation
of (13). The more the signal spaces of Rn and Rj over-
lap, the larger the interference between UE n and j, and
the smaller is the distance measured by (15) [27]. Because
of its normalization factor, it can also be interpreted as
an angular distance between the UEs. The n-th column of
F = [f1, . . . , fN] ∈ R

N×N , fn ∈ R
N , represents the feature or

dissimilarity vector that contains the distance of UE n to all
N UEs, including itself.
After acquiring the feature matrix F, the last step to get

CC is to apply a function C on fn, n ∈ N , to map the set
of UE features to a lower dimensional chart,

C : fn �→ zn, (16)

where zn ∈ R
C is the point in the C-dimensional CC corre-

sponding to feature fn, where typically C � N. Apart from
providing a lower dimensional representation of the mutual
interference between UEs, which may help to visualize an
interference pattern, the dimensionality reduction (DR) tech-
nique maps the features to the dimensions that have the most
relevant attributes to characterize the interference. The DR
technique is essential to alleviate the distance concentration
effect. This phenomenon reduces the difference in distance
between near and far neighbors as the features’ dimension-
ality increases, causing problems for algorithms that rely
on nearest neighbor search – the category in which our
pilot allocation algorithm falls into [46], [47]. Therefore,
DR techniques will be applied, as described next.

A. DIMENSIONALITY REDUCTION TECHNIQUES
Ultimately, we wish to design a function C in (16) that
maps the feature vectors fn, n ∈ N , into a lower dimen-
sional chart such that similar features are mapped close
while highly dissimilar features are mapped far away in
the chart. Several DR techniques have been used to gen-
erate CCs [30], [31], [32], [48], [49], [50]. Here, two
DR techniques are briefly presented: 1) principal compo-
nent analysis (PCA) and 2) Isomap, which will be the
DR technique used in our numerical experiments. PCA is
a very robust and easy-to-implement algorithm, as it per-
forms a linear mapping from the feature domain to CC,
which, in turn, may be a limiting factor for non-linear
embeddings. On the other hand, Isomap can handle more
complex scenarios because it is not restricted to linear
mappings.

1) PRINCIPAL COMPONENT ANALYSIS

PCA is a widely used algorithm, which performs a lin-
ear projection of high-dimensional data onto a subspace of
lower dimension [51]. The main idea behind PCA is to
find the components that maximize the variance of the pro-
jected data. Let C = IN − 1

N 11
T ∈ R

N×N be the centering
matrix. An interference map is then formed by applying sin-
gular value decomposition on the covariance of the centered
feature matrix, K = FTCF ∈ R

N×N , and retrieving the coor-
dinates in the C-dimensional space with the largest variance
values implying the maximum interference [52]. Thereby,
we obtain the CC points, ZC = [z1, . . . , zN] ∈ R

C×N , via
PCA as

ZPCA
C = [√

λ1u1, . . . ,
√
λCuC

]T
, (17)

where λ1, λ2, . . . , λC are the C largest eigenvalues of K and
u1,u2, . . . ,uC are the associated eigenvectors.

Although PCA has shown good performance for single-
sector scenarios [30], its linearity reduces its capability to
achieve good mapping in more challenging scenarios, like
the 3-sector deployment considered herein. Thereby, more
sophisticated DR techniques are required.

2) ISOMAP

Isomap is a DR technique that aims to preserve the geodesic
distance or the curvilinear distance measured over the higher
dimensional space between the features [53]. The geodesic
distance is computed by constructing a neighborhood graph
G, in which every UE is connected with its ν nearest
neighbors, where the integer ν is a design parameter [54].
The first step of the Isomap algorithm is to find the ν

closest (neighboring) UEs for each UE in the feature domain,
represented by F ∈ R

N×N . To find the ν neighbors of UE
n, we look for the ν + 1 smallest elements in fn. Then, we
construct a weighted graph G based on neighbor information.
The weights in G connecting two vertices, i.e., UEs, that are
deemed to be among the nearest neighbors correspond to the
distances in F between these two UEs, whereas the weights
of non-nearest neighbors are set to a large number. Note
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FIGURE 3. Channel charting mapping using Isomap. (a) shows the physical location of 40 UEs colored based on their AoA to the BS. The BS, represented by the black
triangle, is equipped with S = 3 ULAs, each having M = 64 antenna elements. (b)–(d) represent the CC mapping of (a), for C = 1, C = 2 and C = 3 dimensions, respectively.

that G is a directed graph, i.e., UE j may not be in the
neighborhood of UE n, even if UE n is in the neighborhood
of j.
After acquiring the graph G, one needs to compute the

geodesic distances across G using a shortest path algorithm,
such as Dijkstra [55] or Floyd’s [56] algorithm. The out-
put of the shortest path algorithm is a dissimilarity matrix
F′ ∈ R

N×N which consists of geodesic distances computed
along the nearest-neighbor graph.
The last step of Isomap consists of applying classical

multidimensional scaling (MDS) to the dissimilarity matrix
F′ [53]. To start with this, we compute the doubly centered
dissimilarity matrix K′ = − 1

2C(F
′ � F′)C. Next, we extract

the CC coordinates by taking the eigenvalue decomposition
of K′. Let λ′1, λ′2, . . . , λ′C be the C largest eigenvalues of K′
and u′1,u′2, . . . ,u′C the associated eigenvectors. Finally, the
CC mapping, when utilizing Isomap as the DR technique,
is obtained as

ZISO
C = [√

λ′1u
′
1, . . . ,

√
λ′Cu

′
C

]T
. (18)

The dimensionality of the final embedding affects the
accuracy of the representation of the features in the lower
dimensional chart. This is illustrated in Fig. 3. In Fig. 3(a),
N = 40 UEs are uniformly distributed in a 1 km2 cell and
colored with respect to their AoAs to the BS. Figs. 3(b), (c),
and (d) depict the CC mapping obtained for C = 1, C = 2
and C = 3 dimensions, respectively. Here, one can clearly
see that the accuracy of the angular domain representation
increases as C increases.

In quantitative terms, the accuracy of the CC embedding
is measured by the residual variance between the feature
distances in the high-dimensional space, F in (15), and in
the CC domain, DZC = [d1, . . . ,dN] ∈ R

N×N . The (n, j)-th
entry of the distance matrix DZC is computed as the �2-norm
of the difference between the CC points zn and zj, i.e.,
[DZC ]n,j = ‖zn − zj‖2. Therefore, the residual variance of
the CC mapping is given by

r
(
F,DZC

) = 1−
∑N

n=1

(
fn − fn

)T(
dn − dn

)
√
Var(F)Var

(
DZC

) , (19)
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FIGURE 4. Illustration of the proposed CC-based pilot allocation algorithm. (a) shows the physical locations of 512 UEs deployed in a cell with S = 3 ULAs and (b) depicts the
pilot assignment for a fraction of the UEs, detailed in the zoomed region. (c) shows the same deployment as in (a), yet highlighting only the set of active UEs and (d) shows the
corresponding pilot assignment.

where Var(F) =∑N
n=1(fn − fn)T(fn − fn) and

Var(DZC ) =
∑N

n=1(dn − dn)T(dn − dn). Note that the
second term in (19) is the Pearson’s correlation coefficient
for the vectorized distance matrices F and DZC [57, p. 157].
In Section V, the residual variance is utilized to find a
good compromise between the number of dimensions of
CC and the accuracy of the features’ representation in the
CC, which impacts the performance of the proposed pilot
assignment algorithm.

V. PILOT REUSE ALGORITHM
To minimize the total amount of pilot contamination as for-
mulated in (14), we propose a pilot reuse strategy that
exploits the interference map generated through CC, as
presented in Section IV, to assign orthogonal pilot sequences
to UEs inducing potentially strong mutual interference. The
pilot sequences are allocated to all UEs regardless of their
activity pattern. Therefore, reassignment is needed only if
the network setup or the UEs’ relative positions vary consid-
erably. Because the interference pattern depends on the UEs’

relative positions, if the latter changes, the pilot sequences
must be reassigned to accommodate the new interference
pattern. In practice, the relative positions of UEs are related
to their physical positions, namely their angular positions.
Therefore, if the UE mobility is high, the pilot allocation
algorithm has to be re-executed more frequently. To han-
dle cases where few devices join or disconnect from the
network, out-of-sample CC [58] along with a pilot allo-
cation margin could be implemented to avoid re-creating
the whole UE-interference map and reassigning all the pilot
sequences.
Furthermore, we propose an adaptive CC to recover

the interference map with a flexible number of dimen-
sions. This additional flexibility in the UE-interference
map increases the robustness of the method to changes
in the UEs’ density by preserving the meaningful struc-
tures embedded in the features while discarding unnec-
essary dimensions. That improves the CC interference
map representation, in particular, for low-density (sparse)
deployments.
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A. CC-AIDED PILOT ASSIGNMENT
The proposed CC-aided pilot reuse scheme for single-cell
mMIMO deployments is divided into two main phases: 1) the
acquisition of the UEs’ interference map, and 2) the low-
complexity nearest neighbor pilot assignment algorithm.

1) ADAPTIVE CC INTERFERENCE MAP

To generate the interference map with adaptive dimensions,
we apply Isomap with the same principles as described in
Section IV-A. However, instead of fixing C from the begin-
ning, we propose to start with a small number of dimensions
and increase it to meet the two mapping accuracy crite-
ria described below. In practice, we start with C = 1 and
increase the dimensionality of the resulting embedding only
if the residual variance of CC given by (19) is higher than
a threshold ε or if it varies less than ξ from increasing
C, i.e., r(F,ZC) > ε or |r(F,ZC)− r(F,ZC−1)| > ξ . The
thresholds ε and ξ are design parameters to tune the num-
ber of dimensions underlying the interference information
embedded on F. To shed some light, based on our empiri-
cal observations, ε = 0.0001 and ξ = 0.0001 present a good
compromise between the number of dimensions required and
the residual variance to represent the features’ embedding.
Also, the numerical results will show that the number of
dimensions required to have an accurate interference map
depends on the density of UEs.

2) GREEDY PILOT ALLOCATION

The problem still remains weighted graph coloring, and thus
NP-hard, but with distances computed in reduced dimen-
sions. Intuitively, finding a solution has become easier, as
the applied DR mechanism reduces the effect of the bulk
of small interferences and enhances the large interferences,
thus reducing the probability of falling to a bad local min-
imum. We apply greedy allocation of orthogonal pilots
to the nearest UEs (neighbors) in the CC domain, as
described in Algorithm 1 and depicted on the flow chart
in Fig. 5. Having acquired an interference map where the
strongly interfering UEs are mapped closer than the weakly
ones, the main idea of the proposed pilot assignment algo-
rithm is to allocate the pilot sequences in an ordered way,
φ1, φ2, . . . , φτ , φ1, φ2, . . ., aiming at maximizing the dis-
tances between the same pilot sequences on the interference
map. This is equivalent to maximizing the AoA distances
between UEs that have the same pilot sequences. We delve
into details of the proposed algorithm in the following.
To start the pilot allocation, the first orthogonal pilot

sequence, φ1, is assigned to a randomly chosen UE. In
sequence, the next pilot sequence is assigned to the unas-
signed UE with the smallest Euclidean distance to the
previously allocated user, i.e., φ2 is allocated to the UE
n that minimizes ‖zn − zn′ ‖22, where n′ is the index of the
previously allocated UE to φ1. This process is repeated until
all orthogonal pilot sequences have been allocated. From this
point onward, the pilot sequences are to be reused by allo-
cating the first sequence, φ1, to the closest unassigned UE

FIGURE 5. Flow chart of the proposed nearest neighbor pilot allocation algorithm.
The algorithm greedily allocates the pilot sequences to maximize the distance
between the same pilot sequences in the CC domain.

from the precedent allocated user. This process is repeated
until all UEs have been assigned a pilot sequence.
Fig. 4 exemplifies the pilot allocation algorithm proce-

dure for a cell with N = 512 UEs. Fig. 4(a) shows the
UEs’ real positions, which are colored based on their AoA
with respect to the BS, and Fig. 4(b) shows the respec-
tive two-dimensional CC, when Isomap is used as the
DR technique. The proposed pilot allocation procedure, as
described in Algorithm 1, is exemplified at the zoomed
region in Fig. 4(b). Figs. 4(c) and (d) illustrate the effect
of UEs’ activity on the pilot assignment for a random set
of active UEs. Comparing Fig. 4(b) and Fig. 4(d), one can
see that the UEs’ activity does not affect the pilot assign-
ment. Moreover, comparing Fig. 4(b) with Fig. 3(b), we see
that a two-dimensional CC may be a good representation
of the angular relationship between UEs when their density
in the cell is high. This evidences that the density of UEs in
the cell affects the capability of Isomap to accurately map
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Algorithm 1: Nearest Neighbor Pilot Allocation
Input: 1) The set of UEs N = {1, . . . ,N}, 2) the

index set of orthogonal pilots T = {1, . . . , τ },
and 3) the suitable features zn, n ∈ N .

Output: A pilot assignment � = [ψ1, . . . , ψN]T.
1 Initialize the set of unassigned UEs N un = N , and the

set of unassigned pilots T un = T .
2 Select a random UE n and initialize the auxiliary

variable n′ with it, i.e., n′ = n.
3 Assign φ1 to user n and update the set of unassigned

UEs and pilots, i.e., N un← N un \ {n} and
T un← T un \ {1}.

4 Initialize the auxiliary variable: p = 2.
5 while N un 
= ∅ do
6 if T un = ∅ then
7 Reinitialize: T un = T and p = 1.
8 end
9 Assign pilot φp to user n, i.e., ψn = φp, that

satisfies n = arg min
n∈N un

‖zn − zn′ ‖2.
10 Update the set of unassigned UEs,

N un← N un \ {n}, and the set of unassigned
pilots, T un← T un \ {p}.

11 Update n′ = n and p = p+ 1.
12 end

the underlying interference pattern among the UEs into a
low-dimensional chart.

B. COMPLEXITY ANALYSIS
We evaluate the total complexity order of the proposed
algorithm through O(·) notation as: 1) the complexity of gen-
erating the adaptive CC interference map through Isomap and
2) the complexity of allocating the pilot sequences using the
nearest neighbor pilot algorithm, presented in Algorithm 1.

The complexity of generating the CC through Isomap is
divided into computing the feature matrix F in (15), finding
the ν nearest neighbors, computing the shortest paths across
the neighborhood graph G, and performing classical MDS.
The cost of computing the CMD distances between all the
UE pairs in the MS-dimensional space is O(M3S3N2). The
complexity to find the ν nearest neighbors is O(νN2). To
compute the shortest paths across the graph G using Floyd’s
algorithm (used in the simulations) requires O(N3). Note
that the complexity to compute the shortest paths can be
reduced to O(νN2 log(N)) using Dijkstra’s algorithm [59].
Lastly, the complexity of computing the doubly centered
matrix K′ and its eigenvalue decomposition is O(N3) [60].

The complexity of the pilot allocation algorithm in Fig. 5
is given as the cost to compute the pair-wise distances
between the N CC points in the C-dimensional embedding,
which has the complexity O(CN2), and then finding the
closest unassigned UE which has complexity O(N2).

TABLE 1. Algorithm complexity analysis.

In summary, the complexity order of running the proposed
algorithm is O((M3S3 + ν + C + 1)N2 + 2N3). As compar-
ison, the complexity of SGPS [26], AoA UE grouping [22],
and CMD-based [31] pilot allocation algorithms are also
summarized in Table 1. The proposed method has the same
order of complexity as the CMD method, up to a scalar
factor, namely ν + C. AoA UE grouping has a much lower
complexity than the other baseline methods, only O(N2).
For scenarios where the total number N of UEs is much
larger than the number of antenna elements M times the
number of sectors S, the complexity of the proposed method
is lower than that of SGPS. Also, assuming that the CC
interference map is utilized for other network management
purposes, thereby already available, the cost of assigning the
pilots is only that of applying the greedy pilot assignment
algorithm, which has order of complexity O((C + 1)N2).

VI. SIMULATION RESULTS
We consider a mMIMO MTC system with N = 512 UEs uni-
formly distributed within a 1 km2 cell area, where K = 64
UEs are simultaneously active at any given transmission
interval. The BS is equipped with S = 3 ULAs each hav-
ing M = 64 critically spaced antenna elements (�r = 0.5).
The propagation channel between each UE and the BS is
modelled as the superposition of L = 200 paths with a fixed
angular standard deviation σθ = 10◦, unless otherwise speci-
fied. The maximum antenna gain in (4) is GAmax = 0 dB, the
maximum attenuation is Amax = 30 dB, and the half-power
beamwidth is θ3dB = 65◦ [41]. Isomap DR is used. The
residual variance thresholds are ε = 0.0001 and ξ = 0.0001.
Binary phase shift keying (BPSK) is used for the pilots and
quadrature phase shift keying (QPSK) for the data trans-
mission. The main simulation parameters are summarized in
Table 2.

Channel estimation accuracy is evaluated in terms of the
normalized MSE

NMSE CE =
E

[
‖Ĥ−H‖2F

]

E
[‖H‖2F

] . (20)

The expected value is estimated through Monte Carlo sim-
ulation so that the NMSE is approximated by normalized
average square error, but we use the acronym NMSE for
clarity in the sequel. We adopt the robust MMSE receiver
derived in [26, Eq. (27)], which considers that only chan-
nel estimates are known by the BS and, thus, takes into
account the channel estimation error. This receiver combin-
ing structure is known for minimizing the MSE for symbol
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TABLE 2. Simulation parameters.

detection (MSE SD) and maximizing the instantaneous SINR
simultaneously [26], [34]. Therefore, the performance of the
proposed method is also evaluated in terms of MSE SD, and
average achievable uplink rate per UE

rk = E
[
log2 (1+ γk)

]
, (21)

where the UE-specific SINR γk, when employing the robust
beamforming, is given by

γk = ĥHk

⎛
⎝∑
j 
=k

ĥjĥHj +
K∑
p=1

Rh̃p
+ σ

2

pu
IM

⎞
⎠
−1

ĥk. (22)

Five baseline pilot assignment methods are considered:

• “Random”: This method assigns the orthogonal pilot
sequences uniformly at random while respecting the
pilot reuse factor, i.e., the same pilot sequence is
reused the minimum required times when allocating
one sequence to each UE.

• “SGPS”: The statistical greedy pilot scheduling (SGPS)
developed in [26], which relies on the knowledge of
the channel covariance matrices and mitigates the pilot
contamination by grouping the UEs with high spatial
correlation and assigns them orthogonal pilot sequences.

• “AoA UE grouping”: A multi-cell pilot assignment
method proposed in [22] adapted to the single-cell sce-
nario. This method relies on the exact UEs’ positions
to group the UEs based on their AoA. The orthogo-
nal pilot sequences are randomly allocated within each
group.

• “Real position”: This method assumes knowledge of
the exact physical locations of UEs to compute the
angular distances and then applies our nearest neigh-
bor pilot allocation algorithm presented in Algorithm 1.
Note that this method acts as a lower bound to the
proposed one, since it utilizes the real positions of the
UEs instead of the relative ones provided by CC.

• “CMD”: The CMD-aided pilot assignment method
employs the nearest neighbor pilot allocation algorithm
(Algorithm 1) directly in the feature matrix, F in (15),

FIGURE 6. Normalized mean square error for channel estimation versus the angular
standard deviation. More directive channels, i.e., narrower angular spread captured by
σθ , give better channel estimates because the pilots are less likely to interfere with
each other.

without using any DR technique. This baseline demon-
strates the benefit of applying a DR technique in the
proposed features.

Fig. 6 presents the performance of the proposed method
in terms of NMSE CE for a fixed SNR value of 10 dB
and the angular standard deviation σθ ranging from 4 to
16 degrees. As expected, a smaller angular standard devi-
ation yields a lower channel estimation error. This occurs
because the more directive the UEs’ channels are, the lower
is the interference one UE causes to another. Here, we can
see that the proposed method works well for a moderate
and large angular spread of channels, beating all benchmark
methods for σθ ≥ 8◦, but loses to SGPS algorithm when σθ
becomes very narrow. Nonetheless, for such a small angular
spread, the performance of the proposed method is as good
as the real position benchmark. As reported in [61], reason-
able values for the angular standard deviation are between
6◦ and 21◦. Therefore, we opted for presenting all the
subsequent results for σθ = 10◦. Although the CMD-based
method greatly improves the performance as compared to the
random pilot allocation and AoA UE grouping, it underper-
forms compared to the proposed method for all considered
angular spreads of channels, highlighting the advantages of
preprocessing the features by applying a DR technique.
Fig. 7 shows how the dimensionality of the CC affects

the performance of the proposed method in terms of NMSE
CE and MSE SD for σθ = 10◦ and pilot length τ = 64.
The behaviors of the NMSE CE and MSE SD are shown
in Fig. 7(a) and Fig. 7(b), respectively, as a function of the
threshold parameter ε for the residual variance in (19). Also,
the average dimensionality of the interference map generated
by CC is displayed on the top of the curve. In Fig. 7(a), we
can see that the performance of the pilot allocation is quite
robust to changes in ε, i.e., large changes on ε have small
effects on the NMSE CE. Therefore, one can reduce the
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FIGURE 7. NMSE CE and MSE SD versus threshold parameter ε that controls the
dimensionality of CC. The average CC dimension is shown for each value of ε on the
top of the curve.

dimensionality of the interference map to decrease compu-
tational complexity and storage requirements without losing
much in performance. In Fig. 7, ξ assumes the same value
as ε except for ε = 0.1 and ε = 0.5 where it takes the values
0.01 and 0.1, respectively. Here, one can see that both the
NMSE CE and MSE SD reach a point of diminishing returns
by reducing ε at ε = 10−4. Therefore, we use ε = 10−4 and
ξ = 10−4 in the subsequent simulations.
Fig. 8 shows the NMSE CE and MSE SD as a function of

the SNR for distinct pilot lengths, namely τ = {32, 64, 128}.
One can see that the pilot allocation strategy has a stronger
impact at high SNR regimes, where the interference from
UEs reusing the same pilot sequence becomes stronger. Note
that for large pilot reuse factors, i.e., when the same pilot
sequence is reused several times, the gap between the NMSE
CE of the methods decreases, like shown in Fig. 8(a). This

effect is explained by the exhaustion of the capability of
reducing interference, to the extent that even the optimal pilot
allocation cannot avoid pilot contamination. That happens
because for cases with high reuse of the pilot sequences, the
likelihood of UEs with overlapping AoA intervals sharing the
same pilot sequence increases. Furthermore, a lower bound
for the MSE SD is also presented for benchmark, which is
achieved considering perfect CSI knowledge in the LMMSE
receive combining. It can be seen that the proposed CC-
based method approaches the real position baseline while
beating all other methods for moderate and high pilot reuse
factors, N/τ = 8 and 16, respectively. On the other hand,
for a small pilot reuse factor N/τ = 4, SGPS outperforms
the proposed method.
The effect of increasing the number of antenna elements

on the NMSE CE is presented in Fig. 9. For fixed SNR and
pilot length, one can see that adding more antennas at the BS
does not provide additional gains after some threshold. This
is due to the fact that the interference is associated with the
propagation characteristics of the environment, such as ASD.
Thus, increasing the resolvability of the signals via a larger
antenna array at the BS may not help distinguish between the
UEs’ signals. In fact, it can even be prejudicial depending
on the pilot assignment strategy adopted, as for the CMD-
based method in this particular setup. This happens because
for large antenna arrays more samples are needed to get an
accurate covariance matrix [62]. By comparing CMD-based
method with CC-based method, it is clear that preprocess-
ing the features before feeding them to the proposed pilot
allocation algorithm drastically improves the performance.
Fig. 10 shows the uplink achievable rate as a function

of the pilot length for SNR = 10 dB. One can notice that
the CC-based method performs very well, approaching the
real position based pilot allocation. However, its performance
slightly degrades as compared to SGPS for τ > 70 symbols,
i.e., when the pilot reuse factor N/τ decreases below 7. Yet,
in this regime, the proposed method performs as well as the
real position one.
The performance of the proposed method is also eval-

uated against the exhaustive search pilot allocation for a
toy scenario in Fig. 11. Conducting the exhaustive search
throughout the orthogonal pilot sequences finds the opti-
mum pilot assignment for (14). In this example, we consider
N = 10 UEs, all active, deployed in a cell with M = 16 and
S = 3 ULAs. To illustrate the effect of the interference on the
MSE, we also plot the NMSE CE of the exhaustive search
method for the noise-free scenario, i.e., σ 2

n = 0. It is clear
from this result that the performance is interference-limited,
conditioned on the superposition of UEs’ AoA intervals.
All the methods other than AoA UE grouping and random
pilot allocation perform close to the exhaustive search pilot
assignment. The proposed method performs very similarly to
the CMD method. That happens, because, for such a small
setup with few UEs, more CC dimensions are required to
meet the maximum residual variance criterion, ε ≤ r(F,ZC).
That means a low value of C cannot properly reflect the
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FIGURE 8. NMSE CE and MSE SD versus the SNR for distinct pilot reuse factors, N/τ = {16, 8, 4}, respectively, and for different pilot assignment algorithms. (a) and (d) τ = 32,
(b) and (e) τ = 64, and (c) and (f) τ = 128.

FIGURE 9. NMSE CE versus the number of antennas M for N = 512, K = 64, τ = 64,
SNR= 10 dB.

UEs’ mutual interference, which is seen here by comparing
the performance of the proposed method with the CC-based
method with fixed C (CC-based, C = 2). Thus, CC mapping
keeps increasing the number of dimensions to meet the ξ
and ε criteria, pushing the performance closer to the one
presented by the CMD method.

VII. CONCLUSION
This paper addressed the pilot contamination problem in
single-cell multi-sector mMIMO systems. We proposed

FIGURE 10. Achievable sum rate for K = 64 active UEs versus pilot length at 10 dB
SNR. For σθ = 10◦ and different pilot assignment algorithms.

a novel pilot allocation algorithm based on a CC-aided
interference map of UEs to cope with the pilot contami-
nation caused by pilot reuse in mMIMO systems. The pilot
sequences are assigned so that the angular distances between
the UEs that share the same pilot sequence are maximized,
which aims at minimizing the interference between UEs. The
proposed CC-based pilot allocation algorithm showed sig-
nificant improvements in terms of channel estimation error,
symbol detection error, and achievable uplink rate when com-
pared to existing pilot allocation schemes. In a toy example
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FIGURE 11. The NMSE and MSE-SD as function of SNR and the CDF of the uplink rate per UE, respectively for N = 10, K = 10, τ = 4, σθ = 10◦ , and M = 16.

with few UEs, the performance of the proposed method gets
close to the optimal exhaustive search pilot allocation and
approaches the real position benchmark for large pilot reuse
ratios.
Several avenues for further research remain. The exten-

sion of the schemes to the multi-cell setup with cooperative
multi-point processing or a cell-free architecture would be
of interest. The mMTC literature for grant-free access has
also other solutions (such as the use of non-orthogonal pilot
sequences) to solve the pilot collision problem. Sequence-
design-based solutions for joint channel estimation and UE
activity detection with CC could be a fruitful approach for
system design.
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