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ABSTRACT
With the rapid advancement in automatic speech recognition and
natural language understanding, a complementary field (paralin-
guistics) emerged, focusing on the non-verbal content of speech.
The ACM Multimedia 2022 Computational Paralinguistics Chal-
lenge introduced several exciting tasks of this field. In this work, we
focus on tackling two Sub-Challenges using modern, pre-trained
models called wav2vec2. Our experimental results demonstrated
that wav2vec2 is an excellent tool for detecting the emotions be-
hind vocalisations and recognising different types of stutterings.
Albeit they achieve outstanding results on their own, our results
demonstrated that wav2vec2-based systems could be further im-
proved by ensembling them with other models. Our best systems
outperformed the competition baselines by a considerable margin,
achieving an unweighted average recall of 44.0 (absolute improve-
ment of 6.6% over baseline) on the Vocalisation Sub-Challenge and
62.1 (absolute improvement of 21.7% over baseline) on the Stuttering
Sub-Challenge.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Infor-
mation systems → Multimedia and multimodal retrieval.

KEYWORDS
Computational Paralinguistics, Vocalisations, Stuttering, wav2vec2,
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1 INTRODUCTION
With the advancement of automatic speech recognition (ASR) and
synthesis models, paralinguistic solutions become ever more im-
portant. The field of paralinguistics focuses on recognising how
something was said instead of what was said. This year the ACM
Multimedia Computational Paralinguistics Challenge introduced
several interesting tasks [16]. This work focuses on tackling two of
the sub-challenges, namely, the Vocalisation and Stuttering tasks
by employing various modern techniques and adapting them to the
special needs of each challenge.

The Vocalisation (VOC-C) Sub-Challenge seeks an answer to
the question of how well can we recognise emotions from non-
verbal vocal expressions. The added difficulty is the considerable
mismatch between the released training (female speakers) and test
(male speakers) data, provided by the Variably Intense Vocalizations
of Affect and Emotion (VIVAE) Corpus [13, 14]. While the model
needs to be trained on female vocalisations, during evaluation,
it will receive sounds from male vocalisations. The approaches
developed for this task could be valuable for building more accurate
spoken emotion recognition systems.

In the Stuttering Sub-Challenge, a selected part of the Kassel
State of Fluency corpus (KSF-C) [5, 6] is given to the participants.
The aim is to develop solutions that can monitor the speech of stut-
tering people, and provide feedback about the types of disfluencies
recognised in their speech. Such systems would be excellent tools
for speech therapy and computer-assisted pronunciation training.

Pre-trained models attracted considerable attention in the field
of paralinguistics as most datasets are relatively small compared
to speech recognition datasets. The existing solutions employ a
wide range of approaches. One common technique is to use the
pre-trained systems as feature extractors before training simple
classifiers like Support Vector Machines (SVM), an example of this
being the baseline solutions using DeepSpectrum [3]. Another pop-
ular approach is to pre-train an autoencoder using the audio files
and use its embeddings as input for a classifier [11]. Lastly, one can
use pre-trained models and fine-tune them on the small paralin-
guistic data, for example in [17], various image classifier networks
were adapted to detect mask-wearing from speech.

In this work, we follow this trend and rely on pre-trained models.
In contrast with previous systems, we do not employ networks pre-
trained as image classifiers but rather use state-of-the-art wav2vec2
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models [4]. These wav2vec2 models are pre-trained in an unsuper-
vised manner using large audio datasets, and after some fine-tuning
on a limited supervised set they were shown to achieve excellent
performance. Some works were already done to employ these net-
works on emotion recognition tasks, showing that they have po-
tential uses in paralinguistics [15]. Our empirical results confirm
that wav2vec2 is a viable tool for paralinguistic problems, but we
need to be careful in selecting the right base model for fine-tuning.
Furthermore, we found that despite their good performance, they
are far from being the perfect tool. Combining them with other
models results in even more accurate systems.

2 METHODS
2.1 wav2vec2 audio classifier
In recent years, pre-trained solutions have become popular for par-
alinguistic tasks, and we could observe a significant shift toward
end2end neural solutions [8]. A considerable shortcoming of most
pre-trained approaches is that they employ unrelated, mostly image
classifier models. To alleviate this, we test if fine-tuning the state-
of-the-art wav2vec2 models could lead to better results [4]. These
models are generally pre-trained on a large unsupervised audio
dataset and fine-tuned on a small set to perform ASR, excelling in
low-resource scenarios [2, 19] and on out-of-domain data [20]. In
this work, we experimented with several models shared on Hug-
gingFace and use them as audio classifiers.

To fine-tune the wav2vec2 models, we used the Sequence Classi-
fication interface, which simply connects a new output layer to the
averaged pooled context vector as explained in [9]. Only the feature
extractor was frozen during training (in most cases) which allowed
the model to adjust its transformer and, consequently, the context
vectors for the given task. Our previous experiences on pronuncia-
tion evaluation tasks confirmed that this approach is better than
using the wav2vec2 as a static feature extractor [10]. All wav2vec2
models were fine-tuned using one GPU (NVIDIA RTX 2080 Ti or
Tesla V100), with a batch size of 8, and the initial learning rate was
set to 3e-5. For more technical details about our systems see our
code repository 1.

2.2 VGGish + TCN audio classifier
The large pre-trained models serve as powerful feature extractors,
which with small amount of fine-tuning data can be adapted to a
broad range of tasks. The development of such pre-trained models
using large-scale audio data has allowed for extraction of more
robust audio features. One such architecture is the VGGish [12],
trained on large amount of YouTube videos, which later became
the YouTube-8M dataset [1]. The VGGish features have been suc-
cessfully incorporated in various audio classification tasks, such as
sound event detection [7, 18], showcasing the benefit of large-scale
pre-training.

Even though the VGGish embeddings can be directly used for
classification, we further processed them using a Temporal Convolu-
tional Network (TCN) [11], consisting of convolutional blocks with
dilated connections. This way, the embeddings are more adapted for
the specific task. The adaptation is done by first extracting VGGish

1https://github.com/aalto-speech/ComParE2022

embeddings from each 1 second interval and then processing those
embeddings using the TCN. In the cases where the audio length
is less than a second, the audio is zero-padded to reach 1 second
length.

2.3 Data augmentation
The dataset for vocalisation task (6 class problem) consists of around
625 training samples, falling into the low-resource category. Fur-
thermore, the mismatch between training (6 female speakers) and
testing data (2 male speakers) makes the task even more challeng-
ing. To reduce the mismatch between training and testing splits,
we artificially created male versions of the training samples by low-
ering the fundamental frequency. This doubled our training data,
resulting in 1250 samples. The dataset for stuttering task consists
of 4601 speech segments (3 seconds length) from 37 German speak-
ers, containing 7 categories of stuttering and some non-disfluent
samples. More details about the datasets can be found in [16].

3 EXPERIMENTS AND RESULTS
3.1 Vocalisation
For the Vocalisation task, five different wav2vec2 models were in-
vestigated. The first one was a pre-trained medium-sized (300M
parameters) network (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑀 no ASR). In order to see if the
intermediate fine-tuning helps, we also selected a multilingual ASR
version of the first one (𝑤𝑎𝑣2𝑣𝑒𝑐2∗

𝑀
). Furthermore, two additional

models were selected, multilingually pre-trained wav2vec2 solu-
tions fine-tuned for German ASR (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑀
and 𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
).

The selection of these two models was motivated by the fact that
these models use data containing vocalisations from German speak-
ers [16]. The main difference between the two German models is
their size, the𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
containing three times more parameters

than 𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝑀
. Lastly, we also experimented with applying a

wav2vec2 fine-tuned for emotion recognition (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑒𝑟
𝑀
). More

details about these models can be found in our codes 1.
On the non-augmented data, it is observed that the models fine-

tuned for ASR performed better than the raw pre-trained models,
see table 1 (development dataset). Furthermore, it can be seen that
the German ASR models yielded considerably better results than
the multilingual models. The best result is achieved by the model
that was trained for emotion recognition before being fine-tuned on
this data. These observations highlight the importance of selecting
the most suitable model for the task.

Besides the pre-trained wav2vec2 models, we additionally exper-
imented with the pre-trained VGGish model as a feature-extractor.
Initial investigations revealed that VGGish features alone gave poor
performance on the development set. Due to that, we additionally
processed the embeddings using the TCN (model 6 in table). By
utilising only the non-augmented data, we observed that the system
is falling behind all the wav2vec2 models by a significant margin,
see table 1. By applying the augmentation techniques described
in section 2.3, we observed a notable improvement, bringing this
approach closer to the wav2vec2 solutions. To save time, we only
trained 𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑀
on the augmented data, but it did not show

an improvement. A possible explanation could be that the large
wav2vec2 was able to overfit on the augmented data and thus lost
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Table 1: Development set (dev) UARs (unweighted average
recall) on the Vocalisation task.

Model Orig. Male-like Augmented

1.𝑤𝑎𝑣2𝑣𝑒𝑐2𝑀 no ASR 35.5 – –
2.𝑤𝑎𝑣2𝑣𝑒𝑐2∗

𝑀
37.3 – –

3.𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝑀

39.5 37.6 38.9
4.𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
39.4 – –

5.𝑤𝑎𝑣2𝑣𝑒𝑐2𝑒𝑟
𝑀

41.3 – –
6. vggish+TCN 32.1 35.6 35.0

baseline (BoAWs) 39.6 – –

Table 2: Final dev and test UARs on the Vocalisation task.
The test results are the performances of re-trained models
on all labelled data (merged train and dev sets).

Model Dev Test

𝑤𝑎𝑣2𝑣𝑒𝑐2𝑒𝑟
𝑀

41.3 34.5
combination of 3 and 6 42.0 44.0
combination of 5 and 6 43.9 38.0
combination of 3, 5 and 6 46.2 41.2

baseline (BoAWs) 39.6 37.4

performance on the original female development set. Further, the
analysis of the predicted labels from both 𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑀
and VG-

Gish+TCN models showed that the system trained on the whole
augmented data matches more closely the true labels class distri-
bution on 4 out of 6 classes. Due to that, in the rest of the paper
experiments are carried out with the models trained on the whole
augmented data.

Table 2 shows the results of the submitted systems for the test set
(along with results on dev set). First of all, we selected the best sin-
gle non-augmented model (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑒𝑟

𝑀
) (see table 1), which proved

to have overfitted to the female voices in the training and dev sets
and had a below-baseline performance on the test set. To avoid
such issues, in the other submissions, we opted to combine the
models with the augmented VGGish+TCN. On the development
set, we observed considerable improvements due to this combina-
tion, however, the same trend is not true for the test results. The
performance of the ensembles containing 𝑤𝑎𝑣2𝑣𝑒𝑐2𝑒𝑟

𝑀
(indicated

as 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 5 𝑎𝑛𝑑 6) proved to be poorer than just combin-
ing the monolingual𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑀
and the augmented VGGish+TCN

(combination of 3 and 6). Overall we can see that ensembling with
the augmented model (i.e., 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 3, 5 𝑎𝑛𝑑 6 in the ta-
ble) leads to the best performance on the development set, but not
on the test set due to the gender mismatch. The best system (i.e.,
𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 3 𝑎𝑛𝑑 6) outperformed the baseline on the test set
by a considerable margin, achieving an UAR of 44.0, an absolute
improvement of 6.6%.

3.2 Stuttering
In the Stuttering Sub-Challenge, we employed the same mono-
lingual 𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑀
model, which proved to be the best for the

Vocalisation task. In addition, we experimented with a smaller
model (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑆
) pre-trained and ASR fine-tuned purely on Ger-

man speech, containing three times less parameters compared to
𝑤𝑎𝑣2𝑣𝑒𝑐2𝑀 . These models outperformed the baseline solutions, as
can be seen in table 3 (for the dev set). Next, we turned our attention
to model size and training different parts of the architecture. We ob-
served having more trainable parameters is important, the largest
model (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
) even benefited from training the CNN part

(full train) at the expense of the training times (UAR of 59.3 with
an absolute improvement of 31.2% over baseline). The most impor-
tant model part proved to be the Transformer, freezing its weights
yielded extremely bad results. In addition, the model pre-trained
solely on German speech (𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑆
) provided competitive per-

formance (UAR of 51.2, an absolute improvement of 23.1% over
baseline) regardless of the lower number of parameters and amount
of pre-training data compared to other wav2vec2 systems.

Upon closer inspection of the predicted classes, we observed
that most models struggle to detect certain classes. The two least
recognised classes are word repetitions and garbage sentences, the
two rarest classes accounting for only 2% of the training data each.
Regardless of the rarity of these disfluencies, their low recognition
rate is somewhat expected since the averaged pooled embeddings
do not necessarily contain any high-level linguistic information
needed for the detection of these phenomena. This observation
motivated us to explore other solutions, which process texts hoping
that such a system would achieve higher accuracy.

As an initial step, we used the𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝑀

system to transcribe
the recordings and processed the ASR transcript with numerous
models. Althoughwe tried variousmethods and features on the ASR
transcripts, in the end, a straightforward solution yielded the best
results. The main weakness of most systems was that they struggled
to differentiate between garbage and non-disfluent samples. We
observed that the length of the ASR transcripts greatly differ for
these categories. Our solution exploits this fact to re-classify some
of the audios recognised as non-disfluent and re-classify them as
garbage if the length of their transcript was below a threshold
(determined using the transcripts of training data).

Table 4 shows the performance of the final models for the dev
and test sets of Stuttering challenge. From the table, it can be ob-
served that the big wav2vec2 model significantly outperformed the
medium one on both sets. With the additional post-processing of
replacing some of the non-disfluent labels with garbage, based on
the transcript length, we gained further improvement, achieving
an UAR of 62.1 and 61.3, an absolute improvement of 21.7% and
33.2% over baseline on test and dev sets, respectively. Lastly, we
tried various ensembles of the two wav2vec2 models and the TCN
network. Unfortunately, none of the ensembles managed to outper-
form the best model, signalling that the text-based corrections are
more vital for this task, and they require further investigation.

4 CONCLUSIONS
In this work, we presented wav2vec2-based paralinguistic solu-
tions for two sub-tasks of the ACM Multimedia Computational
Paralinguistics Challenge, namely the Stuttering and Vocalisation
Sub-Challenges. Our results demonstrated that carefully pre-trained
wav2vec2 models are superior alternatives to models pre-trained
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Table 3: Dev UARs on the Stuttering task.

Model input Dev UAR

TCN vggish 26.4
𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝑆
audio 51.2

𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝑀

audio 50.1
𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
audio 54.5

𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝐿

full train audio 59.3
𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
frozen Transf. audio 14.3

baseline DeepSpect. 28.1

Table 4: Final dev and test UARs on the Stuttering task.

Model Dev Test

𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝑀

50.1 57.1
𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒

𝐿
full train 59.3 61.5

+ text-based correction 61.3 62.1

𝑤𝑎𝑣2𝑣𝑒𝑐2𝑑𝑒
𝐿

full train + TCN 58.7 –
+ text-based correction 61.1 61.9
ensemble of all 3 59.7 –
+ text-based correction 60.7 –

baseline (DeepSpectrum) 28.1 40.4

on image classification tasks. Furthermore, we demonstrated the
importance of choosing the right model for the task at hand. We
showed that it is beneficial to leverage a model fine-tuned for a
similar downstream task or on a dataset from a close domain rather
than a raw pre-trained one. We found that performing an ASR
finetuning before the paralinguistic one is highly beneficial. On the
monolingual tasks, model size does matter when pre-trained on
the same acoustic data. Also, models initially tuned for monolin-
gual ASR achieved higher scores, and we saw that a smaller model
pre-trained on monolingual data is able to provide competitive per-
formance compared to larger systems pre-trained on multilingual
data.

In addition, it was found that adjusting the Transformer weights
for the target downstream task is very crucial. In contrast, updating
the weights of the feature encoder does not always guarantee to
improve the results. The effect of fine-tuning the CNN weights
might be influenced by several factors, such as overall size of the
model, amount of training data, as well as how far target data is
from the domain of pretraining data. The best wav2vec2 solutions
outperformed the baseline systems, but they are not perfect tools;
combining them with other models yielded further improvements.
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