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a b s t r a c t 

A plethora of problems arising in signal processing, machine learning and statistics can be cast as large- 

scale optimization problems with a composite objective structure. Such problems are typically solved by 

utilizing iterative first-order algorithms. In this work, we devise a new accelerated gradient-based esti- 

mating sequence technique for solving large-scale optimization problems with composite objective struc- 

ture. Specifically, we introduce a new class of estimating functions, which are obtained by utilizing both 

a tight lower bound on the objective function, as well as the gradient mapping technique. Then, using 

the proposed estimating functions, we construct a class of Composite Objective Multi-step Estimating- 

sequence Techniques (COMET), which are endowed with an efficient line-search procedure. We prove 

that our proposed COMET enjoys the accelerated convergence rate, and our newly established conver- 

gence results allow for step-size adaptation. Our theoretical findings are supported by extensive compu- 

tational experiments on various problem types and real-world datasets. Moreover, our numerical results 

show evidence of the robustness of the proposed method to the imperfect knowledge of the smoothness 

and strong convexity parameters. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In this work, we devise accelerated black-box methods for solv- 

ing large-scale convex optimization problems with a composite ob- 

jective structure by using only first-order information. The typical 

structure of such problems is 

minimize 
x ∈R 

n 
F ( x ) = f ( x ) + τg ( x ) , τ > 0 , (1) 

where the function f : R 

n → R is an L f -smooth and μ f -strongly 

convex function with 0 ≤ μ f ≤ L f . The regularizer g : R 

n → R is a 

simple convex lower semi-continuous function with strong convex- 

ity parameter μg . Typically, in signal processing applications, the 

function g(x ) is “simple”, meaning that a closed-form solution for 

minimizing the summation of g and some auxiliary functions can 

be easily found [1] . In more practical terms, the assumption on the 

simplicity of g implies that its proximal map, defined as 

prox τg � arg min 

z∈ R 

n 

(
g(z) + 

1 
2 τ || z − x || 2 ), x ∈ R 

n , (2) 
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E-mail addresses: endrit.dosti@aalto.fi (E. Dosti), sergiy.vorobyov@aalto.fi (S.A. 
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is computed with complexity O(n ) [2] . Herein || · || denotes the l 2 
norm. 

Problems that share the same structure as (1) arise quite of- 

ten in different scientific disciplines, such as signal and image pro- 

cessing, data analysis, and machine learning. Typical applications 

in which the formulation given in (1) is relevant include compres- 

sive sensing, phase retrieval problems, medical imaging, dictionary 

learning, and many more (see [3,5–7,4] and references therein). 

When considering applications, the variable x represents the model 

parameters, whereas the role of f (x ) is to ensure a good fit be- 

tween the observed data and the estimated parameters. In sig- 

nal processing applications, g(x ) acts as a regularizer and typically 

takes the form of some parameter shrinkage norm, i.e., l 2 norm 

[8,9] , sparsity-enforcing norm, i.e., l 1 norm [10–12] , or its coun- 

terpart for the rank function, i.e., the nuclear norm [13,14] . An- 

other popular structure for g(x ) is the Chebyshev norm, i.e., the 

l ∞ 

norm [15] . The function g(x ) can also be used to embed convex 

constraints, in which case it would act as an indicator function of 

some closed convex set [1] . 

In the context of large-scale optimization [16] , problems that 

share the same structure as (1) are solved iteratively using dif- 

ferent first-order optimization algorithms [17,18] . The bounds on 

the performance of black-box first-order methods have been es- 
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tablished by Nemirovsky and Yudin [19] . Loosely speaking, a first- 

order method is optimal in the black-box framework if it achieves 

the accelerated convergence rate with respect to the iteration 

counter k , while at the same time complying with the lower com- 

plexity bounds. The question of how to construct practical methods 

that are optimal has attracted the attention of the research com- 

munity over decades. One of the first methods that managed to 

achieve the accelerated convergence rate in the black-box frame- 

work was the heavy ball method [20] . Therein, the acceleration is 

achieved by adding a momentum term to the gradient step, which 

nudges the new iterate in the direction of the previous step. The 

first method that is optimal in the sense of Nemirovsky and Yudin 

[19] is the Fast Gradient Method (FGM) [21] . It is built based on the 

mathematical machinery of estimating sequences, and has been 

since widely studied [22–27] . 

Finding different reasons behind acceleration has attracted sig- 

nificant attention in the recent research on first-order optimiza- 

tion. In [28] , the authors have constructed accelerated first-order 

methods by exploiting the linear coupling between mirror and gra- 

dient descent. The framework presented therein leads to a myriad 

of applications wherein classical accelerated gradient methods do 

not apply, however all these applications are limited to the case 

of differentiable objective functions. The authors of [29] have de- 

rived an accelerated first-order method, which was inspired by the 

ellipsoid method. The proposed method is efficient; however, it 

suffers from the drawback that it requires an exact line search. 

An interesting framework is established in Flammarion and Bach 

[30] , Su et al. [31] , wherein the authors model the continuous- 

time limit of FGM as a second-order differential equation (ODE). 

Then, FGM equations can be obtained based on such a framework. 

Specifically, in Flammarion and Bach [30] , the authors show that 

several accelerated schemes can be formulated as constant param- 

eter ODE algorithms, wherein the stability of the systems would 

be equivalent to covergence at rate O(1 /n 2 ) . The limitation of the 

work is that the analysis presented therein is restricted only to the 

class of smooth and non-strongly convex problems. Moreover, in 

Su et al. [31] the authors show that the ODE type of analysis al- 

lows for a better understanding of Nesterov’s scheme. However, the 

family of methods obtained therein, exhibits a similar convergence 

rate to FGM. Similar convergence rate as those obtained for FGM 

can also be derived by using theory from robust control [32] . A 

novel approach for analyzing the worst-case performance of first- 

order black-box methods has appeared in Drori and Teboulle [33] . 

The analysis conducted therein relies on the observation that the 

worst-case behavior improvement of a black-box method is itself 

an optimization problem, which is referred to as the performance 

estimation problem. By utilizing this approach, the authors of Kim 

and Fessler [34] , 35 ] have introduced optimized first-order meth- 

ods that are efficient and achieve a convergence bound that is two 

times smaller than the one attained by FGM. However, the devel- 

opment of these algorithms is restricted to solving problems with 

smooth objective functions. 

Among the various approaches to the acceleration of first-order 

methods that were discussed above, the methods that were built 

based on the machinery of estimating sequences have attracted a 

lot of attention (see d’Aspremont et al. [18] , Bubeck [36] and ref- 

erences therein). Several reasons that have led to their success are 

summarized in the sequel. First, on a theoretical level, FGM-type 

methods are proven to be optimal in the sense of Nemirovsky and 

Yudin [19] . Second, their practical performance is competitive even 

when they are used in conjunction with simple line search strate- 

gies, such as backtracking [37,38] . Third, they can be scaled to con- 

struct accelerated second-order methods [39,40] and accelerated 

higher-order methods [41,42] . Last, they have been shown to ex- 

cel in performance even when they have been extended to other 

settings, such as distributed optimization [43,44] , nonconvex op- 

timization [45,46] , stochastic optimization [47,48] , non-Euclidean 

optimization [49,50] , etc. In [51] , it is argued that the key behind 

constructing optimal methods lies in the accumulation of some 

global information on the objective function. The mathematical ob- 

jects which enable for capturing the relevant topological informa- 

tion on the function that is to be minimized are the estimating 

sequences. Typically, they consist of a pair of sequences, that si- 

multaneously allow for parsing global information around the it- 

erates, as well as for measuring the convergence rate of the min- 

imization process. Despite their remarkable properties, estimating 

sequences exhibit the issue that there is no unique or systematic 

approach for constructing them. As we will see in the sequel, mak- 

ing the adequate choice of the estimating functions that comprise 

the estimating sequences can significantly impact the practical per- 

formance of the resulting algorithm. 

The estimating sequences framework for the study and analysis 

of various methods has been presented in Baes [52] . An existing 

estimating sequence method that can directly solve (1) is the Ac- 

celerated Multistep Gradient Scheme (AMGS) [1] . The method is 

proven to enjoy the accelerated rate of convergence O( 1 
k 2 

) . De- 

spite its notable theoretical and practical performance as measured 

by the number of iterations carried through until convergence, the 

method suffers the drawback that it requires two projection-like 

operations per iteration. This results in an increase of the com- 

putational burden, which (in the case of large-scale problems) is 

also reflected in an increase of the runtime of the method. This 

problem has been solved by the development of the Fast Itera- 

tive Shrinkage-Thresholding Algorithm (FISTA) [53] . The method 

also enjoys the accelerated convergence rate of O( 1 
k 2 

) , while at the 

same time requiring only one projection-like operation per itera- 

tion. Similarly to Nesterov [21] , FISTA does not explicitly utilize the 

machinery of estimating sequences. However, as has been demon- 

strated in Florea and Vorobyov [54] , by properly selecting the es- 

timating functions it is possible to establish links between FISTA 

and estimating sequence methods. 

As discussed above, many of the existing seminal methods such 

as AMGS, FISTA and FGM [51, Constant Step Scheme I (2.2.19)] , 

were obtained by explicitly (or implicitly) using the estimating 

sequences framework, and they all enjoy the theoretical acceler- 

ated rate of convergence. Despite being accelerated in theory, these 

methods still exhibit the following differences: i ) The algorithmic 

structure of the methods changes depending on the different es- 

timating sequences that are used in devising these algorithms. ii) 

The practical performance of the methods varies significantly when 

they are tested on real-world problems and datasets. Moreover, 

based on preliminary experiments that we have conducted for the 

cases of differentiable convex functions, we have observed that 

FGM converges faster than both AMGS and FISTA. Thus, the ques- 

tion of how to construct newer classes of estimating sequences 

that can be used to build more efficient methods for solving prob- 

lems with composite objective structure arises. In this work, we 

answer this question affirmatively, and show that, by construct- 

ing the appropriate estimating functions, it is possible to devise 

very efficient accelerated first-order methods. More specifically, the 

main contributions of the article are as follows. 

• In this work, we extend the existing estimating sequences 

framework presented in Nesterov [51] for minimizing differen- 

tiable objective functions, to the broader class of solving prob- 

lems with composite structure given in (1) . 
• We introduce a new structure for the estimating functions, 

which we call the composite estimating functions . The proposed 

estimating functions are constructed by utilizing the gradient 

mapping technique [19] together with a tighter global lower 

bound on the objective function than the one obtained from 

the Taylor series expansion of a convex function. 

2 
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• We show that our proposed estimating functions can be used 

to efficiently parse information around all the iterates, as well 

as measure the convergence rate of the minimization process. 

Unlike the estimating functions devised in Nesterov [51] , which 

are only defined for the problem of minimizing smooth func- 

tions, our proposed composite estimating functions make use 

of the tighter lower bound on the objective function, as well 

as the subgradients of the objective function. This allows for 

designing methods that are used for solving a broader class of 

problems. 
• We show how the proposed estimating sequences can be used 

to produce a new class of Composite Objective Multi-step 

Estimating-sequence Techniques (COMET), which are also en- 

dowed with an efficient line-search strategy. Unlike AMGS, the 

resulting algorithms require only one projection-like operation 

per iteration. 
• We prove that COMET enjoys the accelerated convergence rate 

even when the Lipschitz constant is not known and needs to be 

estimated. 
• We establish that the initialization of COMET can be made ro- 

bust to the imperfect knowledge of the strong convexity pa- 

rameter. Such a fact is very important for many practical ap- 

plications, as computing the true value of the strong convexity 

parameter is computationally expensive. 
• Through extensive simulations for various typical signal pro- 

cessing problems with composite structure, we show that the 

proposed method yields a better performance than the exist- 

ing benchmarks. Furthermore, we also show the robustness of 

the selected instances of COMET with respect to the imperfect 

knowledge of the strong convexity parameter and the Lipschitz 

constant. To demonstrate the robustness, as well as the reliabil- 

ity of our proposed method, we test its performance on real- 

world datasets. 

The article is organized as follows. In Section 2 , we introduce 

the key assumptions of the paper, as well as some of the main 

concepts that are used in developing our method. In Section 3 , we 

introduce the proposed estimating sequences for composite objec- 

tives and devise COMET based on them. In Section 4 , we formally 

establish the convergence of COMET and derive the convergence 

rate for the minimization process. Then, in Section 5 , we illus- 

trate the performance of our proposed method in solving several 

optimization problems and show that it outperforms the existing 

benchmarks. Last, in Section 6 , we present our conclusions and dis- 

cuss possible future research directions. 

2. Preliminaries 

Assume that the objective function is bounded below, i.e., 

(1) has a solution. Another key assumption, which holds true for 

typical signal processing applications, is that the function and gra- 

dient computations have approximately the same complexity. For 

the problem setting of interest, the necessary oracle functions are 

the function evaluators, f (x ) , g(x ) , gradient evaluator ∇ f (x ) , and 

proximal evaluator prox τg (x ) . 

To simplify our analysis, let us relocate the strong convexity of 

g(x ) within the objective function in (1) . Let x 0 ∈ R 

n and consider 

that 

F (x ) = 

(
f (x ) + 

τμg 

2 

|| x − x 0 || 2 
)

+ τ
(

g(x ) − μg 

2 

|| x − x 0 || 2 
)

= 

ˆ f (x ) + τ ˆ g (x ) . (3) 

The resulting function 

ˆ f (x ) has a Lipschitz constant L ˆ f 
= L f + 

τμg and strong convexity parameter μ ˆ f 
= μ f + τμg . On the other 

hand, the function ˆ g (x ) has a strong convexity parameter μ ˆ g = 0 . 

Recall that it is possible to construct upper and lower bounds 

for the smooth and strongly convex function 

ˆ f (x ) by using the fol- 

lowing relations: 

ˆ f (x ) ≤ ˆ f (y ) + ∇ ̂

 f (y ) T (x − y ) + 

L ˆ f 

2 

|| y − x || 2 , (4) 

ˆ f (x ) ≥ ˆ f (y ) + ∇ ̂

 f (y ) T (x − y ) + 

μ ˆ f 

2 

|| y − x || 2 , (5) 

for all points y ∈ R 

n . Similarly, we can construct the following 

lower bound for the non-smooth term 

ˆ g (x ) ≥ ˆ g (y ) + s (y ) T (x − y ) , (6) 

where s (y ) is a subgradient of the function ˆ g (·) at the point y . 

Moreover, for all y ∈ R 

n and L ≥ L ˆ f 
, we define 

m L (y ; x ) � 

ˆ f (y ) + ∇ ̂

 f (y ) T (x − y ) + 

L 

2 

|| x − y || 2 + τ ˆ g (x ) . (7) 

Using the upper bound on the function established in (4) , it can be 

seen that 

m L (y ; x ) ≥ F (x ) , ∀ x, y ∈ R 

n . (8) 

At this point, the composite gradient mapping can be introduced 

as 

T L (y ) � arg min 

x ∈R 

n 
m L (y ; x ) . (9) 

Lastly, the composite reduced gradient can be defined as 

r L (y ) � L ( y − T L (y ) ) . (10) 

Let us now make a digression and note that when τ = 0 , we have 

the following: i) ˆ f (x ) = f (x ) , which follows from (3) ; ii) T L (y ) = 

y − ∇ ̂

 f (y ) 
L , which follows from (9) and (7) . Substituting these re- 

sults into the definition given in (10) , yields r L (y ) = ∇F (y ) = 

∇ f (y ) , i.e., the composite reduced gradient becomes the gradient 

of the objective function. 

Returning back to the more general case, i.e., τ 
 = 0 , from the 

first-order optimality conditions for (9) , we can write 

∇m L (y ; T L (y )) T (x − T L (y )) ≥ 0 , 

( ∇ f (y ) + L (T L (y ) − y ) + τ s L (y ) ) 
T 
(x − T L (y )) ≥ 0 , (11) 

where s L (y ) ∈ ∂F (T L (y )) is a subgradient belonging to the subdif- 

ferential of F (T L (y )) , whose value depends on the point y . Equat- 

ing the first bracket of (11) to 0, as well as recalling definition (10) , 

we obtain the following relation, which is useful for computing the 

value of the composite reduced gradient 

r L (y ) = L (y − T L (y )) = ∇ f (y ) + τ s L (y ) . (12) 

Last, we present a tighter lower bound on the objective func- 

tion. 

Theorem 1. Let F (x ) be a composition of an L ˆ f 
-smooth and μ ˆ f 

- 

strongly convex function ˆ f (x ) , and a simple convex function ˆ g (x ) , as 

given in (3) . For L ≥ L ˆ f 
, and x, y ∈ R 

n we have 

F (x ) ≥ ˆ f (T L (y )) + τ ˆ g (T L (y )) + r L (y ) T ( x − y ) 

+ 

μ ˆ f 

2 

|| x − y || 2 + 

1 

2 L 
|| r L (y ) || 2 , (13) 

where T L (y ) and r L (y ) are defined in (9) and (10) , respectively. 

Proof. See Appendix A . �

3 
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3. COMET 

In this section, we devise our proposed method. We start by 

introducing the composite estimating sequences, and then show 

why these sequences are useful. We also present a pair of com- 

posite estimating functions and show how to compute them recur- 

sively. Then, utilizing the proposed construction of the composite 

estimating functions, we derive COMET. 

We begin by defining the composite estimating sequences. 

Definition 1. The sequences { φk } ∞ 

k =0 
and { λk } ∞ 

k =0 
, λk ≥ 0 , are called 

composite estimating sequences of the function F (·) defined in (3) , 

if λk → 0 as k → ∞ , and ∀ x ∈ R 

n , ∀ k ≥ 0 we have 

φk (x ) ≤ λk φ0 (x ) + (1 − λk ) F (x ) . (14) 

These composite estimating sequences allow for measuring the 

convergence rate to optimality, which is characterized in the fol- 

lowing lemma. 

Lemma 1. If for some sequence of points { x k } ∞ 

k =0 
we have F (x k ) ≤

φ∗
k 
� min 

x ∈ R 

n 
φk (x ) , then F (x k ) − F (x ∗) ≤ λk [ φ0 (x ∗) − F (x ∗) ] , where x ∗ = 

arg min 

x ∈R 

n 
F (x ) . 

Proof. See Appendix B . �

We are now ready to show how the composite estimating se- 

quences can be defined recursively. 

Lemma 2. Assume that there exists a sequence { αk } ∞ 

k =0 
, where αk ∈ 

(0 , 1) ∀ k , such that 
∑ ∞ 

k =0 αk = ∞ , and an arbitrary sequence { y k } ∞ 

k =0 
. 

Furthermore, let λ0 = 1 and assume that the estimates L k of the Lip- 

schitz constant L ˆ f 
are selected in a way that inequality (4) is satis- 

fied for all the iterates x k and y k . Then, the sequences { φk } ∞ 

k =0 
and 

{ λk } ∞ 

k =0 
, which are defined recursively as 

λk +1 = (1 − αk ) λk , (15) 

φk +1 ( x ) = ( 1 −αk ) φk ( x ) +αk 

(
F 
(
T L k ( y k ) 

)
+ 

1 

2 L k 
‖ r L k ( y k ) ‖ 

2 
)

+ αk 

(
r L k ( y k ) 

T 
( x − y k ) + 

μ f 

2 

‖ x − y k ‖ 

2 
)
, (16) 

are composite estimating sequences. 

Proof. See Appendix C . �

At this point, we provide a comparison between the results ob- 

tained in Lemmas 1 and 2 to their counterpart devised for the sim- 

pler case of minimizing smooth convex functions presented in Nes- 

terov [51] . First, we can see from Lemma 1 that the convergence 

rate of the minimization process depends entirely on the rate at 

which λk → 0 . Moreover, the result hints that for problem (1) we 

should expect a similar convergence rate as in the simpler case of 

minimizing a differentiable convex function. Then, in Lemma 2 , we 

have shown how to form the estimating functions. It can also be 

seen from (16) that we are utilizing a tighter lower bound than the 

one used for deriving FGM for the smooth strongly convex case. 1 

Furthermore, it can be noted that the cost function is evaluated at 

specific points in its domain, which are produced by the compos- 

ite gradient mapping. Last, it can be observed that the subgradient 

of the non-smooth objective function is needed to construct the 

estimating functions { φk } ∞ 

k =0 
. 

Until now, no particular structure for the functions in the se- 

quence { φk } ∞ 

k =0 
has been proposed yet. Inspired by the analysis for 

1 Recall that when F (x ) is smooth and convex function, the composite reduced 

gradient becomes just the gradient of the function. 

FGM in the setup of smooth convex functions [51] , in the sequel 

we let 

φk (x ) � φ∗
k + 

γk 

2 

|| x − v k || 2 , ∀ k = 1 , 2 , . . . , (17) 

where γk ∈ R 

+ and v k ∈ R 

n , ∀ k = 0 , 1 , . . . . Nevertheless, we stress 

that this selection is not unique. As a matter of fact, different 

choices of the canonical structure for the function φk (x ) can lead 

to entirely different algorithms, see for example [49,56,55] . Next, 

in Lemma 3 we show how the terms { γk } ∞ 

k =0 
, { v k } ∞ 

k =0 
and { φ∗

k 
} ∞ 

k =0 
can be computed recursively. 

Lemma 3. Let φ0 (x ) = φ∗
0 

+ 

γ0 
2 || x − v 0 || 2 , where γ0 ∈ R 

+ and v 0 ∈ 

R 

n . Then, the process defined in Lemma 2 preserves the canonical 

form of the function { φk (x ) } ∞ 

k =0 
presented in (17) , where the se- 

quences { γk } ∞ 

k =0 
, { v k } ∞ 

k =0 
and { φ∗

k 
} ∞ 

k =0 
can be computed as follows 

γk +1 = (1 − αk ) γk + αk μ ˆ f 
, (18) 

v k +1 = 

1 

γk +1 

(
(1 − αk ) γk v k + αk 

(
μ ˆ f 

y k − L k 
(
y k − T L k ( y k ) 

)))
, (19) 

φ∗
k +1 = (1 − αk ) φ

∗
k + αk 

(
F 
(
T L k (y k ) 

)
+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
− L 2 

k 
α2 

k 

2 γk +1 

|| y k − T L k (y k ) || 2 + 

μ ˆ f 
αk γk (1 − αk ) 

2 γk +1 

|| y k − v k || 2 

+ 

L k αk γk (1 − αk ) 

γk +1 

(y k − v k ) T (y k − T L k (x k )) . (20) 

Proof. See Appendix D . �

Comparing the result obtained in Lemma 3 with its counter- 

part constructed for minimizing smooth objective functions [51, 

Lemma 2.2.3] , it can be seen that the recursion for computing the 

elements in the sequences { v k } ∞ 

k =0 
and { φ∗

k 
} ∞ 

k =0 
has changed. It now 

reflects both the different lower bound on the objective function, 

as well as the reduced composite gradient, which were utilized for 

constructing the composite estimating functions. 

Let us now proceed to constructing the algorithm via induction. 

First, let φ∗
0 = F (x 0 ) . Next, assume that for some iteration k , we 

have: φ∗
k 

≥ F (x k ) . To conclude the induction argument, we need to 

show that φ∗
k +1 

≥ F (x k +1 ) . Using the aforementioned assumption 

for iteration k into (20) , it can be written that 

φ∗
k +1 ≥ (1 − αk ) F (x k ) + αk 

(
F 
(
T L k (y k ) 

)
+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
−L k 

2 α2 
k 

2 γk +1 

|| y k − T L k (y k ) || 2 + 

μ ˆ f 
αk γk (1 − αk ) 

2 γk +1 

|| y k − v k || 2 

+ 

L k αk γk (1 − αk ) 

γk +1 

(v k − y k ) 
T (y k − T L k (y k )) . (21) 

Then, substituting the bound obtained in Theorem 1 , as well as 

(10) into (21) , we obtain 

φ∗
k +1 ≥ (1 − αk ) 

(
F (T L k (y k )) + r L k (y k ) 

T ( x k − y k ) + 

μ

2 

|| x k − y k || 2 

+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
+ αk 

(
F 
(
T L k (y k ) 

)
+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
− α2 

k 

2 γk +1 

|| r L k (y k ) || 2 + 

μαk γk (1 − αk 

2 γk +1 

|| y k − v k || 2 

+ 

αk γk (1 − αk ) 

γk +1 

r L k (y k ) 
T (v k − y k ) . (22) 

Making some algebraic manipulations and factoring in (23) , we 

reach 

4 
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φ∗
k +1 ≥ F (T L k (y k )) + 

(
1 

2 L k 
− α2 

k 

2 γk +1 

)
|| r L k (y k ) || 2 

+(1 − αk ) r L k (y k ) 
T 

(
x k − y k + 

αk γk 

γk +1 

(v k − y k ) 

)
. (23) 

At this point, a relation for the unknown terms in the sequences 

{ αk } ∞ 

k =0 
and { y } ∞ 

k =0 
needs to be found. Observe that in (24) we can 

obtain the update rule for the terms in the sequence { αk } ∞ 

k =0 
as 

αk = 

√ 

γk +1 

L k 
. (24) 

Utilizing the recursion for γk +1 given by (18) , and solving the re- 

sulting quadratic equation yields 

αk = 

μ ˆ f 
− γk + 

√ (
μ ˆ f 

− γk 

)2 + 4 L k γk 

2 L k 
. (25) 

Making the aforementioned selection for αk , (24) can now be writ- 

ten as 

φ∗
k +1 

≥ F (T L k (y k )) + (1 − αk ) r L k (y k ) 
T 

(
x k − y k + 

αk γk 

γk +1 
(v k − y k ) 

)
. 

(26) 

Thus, the update rule for the term y k can be obtained by setting 

x k − y k + 

αk γk 

γk +1 

(v k − y k ) = 0 . (27) 

This results in 

y k = 

γk +1 x k + αk γk v k 
γk +1 + αk γk 

. (28) 

To establish that φk +1 ≥ F (x k +1 ) , it suffices to let x k +1 = T L k (y k ) . 

Last, another major difference between our proposed method 

and its counterpart for minimizing differentiable convex functions 

[51] , is the fact that our analysis allows for the line search adap- 

tation. 2 The goal of our proposed line-search strategy is to select 

the smallest constant L k such that (4) is satisfied ∀ k = 0 , 1 , . . . . To 

progress faster towards x ∗ in the initial iterations, we would want 

to initialize L 0 ∈ ]0 , L ˆ f 
[ , and then gradually increase the value of 

the estimate of the Lipschitz constant across the iterations. How- 

ever, since the true value of L ˆ f 
is not known, this approach can- 

not be used. Therefore, it would be more preferable to select the 

line search strategy such that it ensures the robustness of the 

method with respect to the initialization of the estimate of the 

Lipschitz constant and ensure a dynamic update of the step size. 

Such a scheme would be of importance for many applications in 

signal processing (see Florea and Vorobyov [54] and the references 

therein). For this purpose, the following two parameters can be 

utilized: i) a constant ηu > 1 , which increases the value of the es- 

timate; ii) a constant ηd ∈ ]0 , 1[ , which decreases the value of the 

estimate of the Lipschitz constant. Finally, the proposed method is 

summarized in Algorithm 1 . 

Comparing between our proposed method and FGM (Constant 

Step Scheme I in Nesterov [51] ), we can observe from lines 6 and 7 

in Algorithm 1 , the similarities in updating the sequences { αk } ∞ 

k =0 
and { γk } ∞ 

k =0 
. A difference can, however, be noticed in the update 

of the terms in the sequence { y k } ∞ 

k =0 
, whose value becomes inde- 

pendent of μ ˆ f 
. Additionally, a key difference between the methods 

is in the update of the iterates x k . Due to the composite structure 

of the objective function of interest, the next iterate x k +1 is com- 

puted by taking a proximal gradient step. Note that as long as the 

non-smooth term g(x ) has a simple structure, the proximal term 

2 Note that several backtracking strategies have already been proposed in the lit- 

erature (see for example Nesterov [1] , Beck and Teboulle [53] , Tseng [57] ). 

Algorithm 1 COMET. 

Input: x 0 ∈ R 

n , L 0 > 0 , μ ˆ f 
, γ0 ∈ [0 , 3 L 0 + μ ˆ f 

] , ηu > 1 and ηd ∈ 

]0 , 1[ . 

1: while k ≤ K max do 

2: ˆ L i ← ηd L k 
3: while True do 

4: ˆ αi ← 

(μ ˆ f 
−γk )+ 

√ 

(μ ˆ f 
−γk ) 

2 +4 ̂ L i γk 

2 ̂ L i 
5: ˆ γi +1 ← (1 − ˆ αi ) γk + ˆ αi μ ˆ f 

6: ˆ y i ← 

ˆ γi +1 x k + ̂ αi γk v k 
ˆ γi +1 + ̂ αi γk 

7: ˆ x i +1 ← prox 1 
ˆ L i 

ˆ g 

(
ˆ y i − 1 

ˆ L i 
∇ f ( ̂  y i ) 

)
8: ˆ v i +1 ← 

1 
ˆ γi +1 

(
(1 − ˆ αi ) γk v k + ̂  αi 

(
μ ˆ f ̂

 y i − ˆ L i 
(

ˆ y i − ˆ x i +1 

)))
9: if F ( ̂  x i +1 ) ≤ m ˆ L i 

( ̂  y i , ̂  x i +1 ) then 

10: Break from loop 

11: else 

12: ˆ L i +1 ← ηu ̂  L i 
13: end if 

14: i ← i + 1 

15: end while 

16: L k +1 ← ̂

 L i , x k +1 ← ˆ x i , αk ← ˆ αi −1 , y k ← ˆ y i −1 , i ← 0 , k ← k + 1 

17: end while 

Output: x k 

can be computed efficiently. Another major difference between the 

methods lies in the update of the terms in the sequence { v k } ∞ 

k =0 
, 

which now reflect the usage of the proposed subgradient. Last, the 

parameter γ0 can now be selected over a wider range of param- 

eters than what is guaranteed by the existing convergence results 

for FGM established in Nesterov [51 , Lemma 2.2.4]. The rationale 

behind this result will become clear in the sequel. 

Before we proceed to analyzing the convergence rate of the 

minimization process, let us evaluate the behavior of the estimate 

of the Lipschitz constant. Depending on the initialization of L 0 , 

there are two scenarios. 

i) If L 0 ∈ ]0 , L ˆ f 
[ , then from line 11 in Algorithm 1 , it can be ob- 

served that the estimate of the Lipschitz constant at iteration k 

increases only if L k −1 ≤ L ˆ f 
. Therefore, we can write 

L 0 ≤ ˆ L i ≤ L k ≤ ηu L ˆ f 
. (29) 

ii) If L 0 ≥ L ˆ f 
, then the condition in line 11 of Algorithm 1 is sat- 

isfied, and estimate of the Lipschitz constant cannot increase 

further. This yields 

L k ≤ ηd L 0 . (30) 

Combining the bounds (30) and (31) , we can see that despite 

the initialization of L 0 , it is always true that 

L k ≤ L max � max { ηd L 0 , ηu L ˆ f 
} . (31) 

To obtain an easier understanding of the proposed method, we 

also present the flowchart in Fig. 1 . As can be seen from the 

flowchart, at any iteration k the inputs are feed into the outer 

loop, which starts by decreasing the estimate of the Lipschitz con- 

stant (see line 2 in Algorithm 1 ). The inner loop then updates 

the parameters and takes one proximal gradient step to produce 

the iterate at iteration k + 1 (see lines 4–8 in Algorithm 1 ). As 

long as a function-based stopping criterion is not satisfied, the in- 

ner loop also corrects the value of the estimate of the Lipschitz 

contant, which corresponds to line 12 in Algorithm 1 . After the 

5 



E. Dosti, S.A. Vorobyov and T. Charalambous Signal Processing 206 (2023) 108889 

Fig. 1. Flowchart that depicts the main building blocks of our proposed method. 

function-based stopping criterion is satisfied, the inner loop is ter- 

minated and the method proceeds to the next iterate (see line 

16 in Algorithm 1 ). The numerical procedure terminates after the 

iteration-based stopping criterion is satisfied, and outputs x K max 
. 

Contrasting our proposed COMET to AMGS and FISTA we can high- 

light several differences. First, with respect to AMGS, we note that 

the methods require different input parameters. Moreover, observe 

that our proposed COMET only queries one proximal and one gra- 

dient oracle to update the iterates. On the other hand, AMGS re- 

quires double the queries. As we will see in Section 5.3 , this trans- 

lates into an increase in the runtime of AMGS. Comparing our pro- 

posed COMET to FISTA, we note that they both query a single prox- 

imal and gradient oracle to update the iterates. The first difference 

in the methods lies in the line-search procedure that is employed 

by COMET, which is more efficient as it allows for dynamically up- 

dating the estimate of the Lipschitz constant. On the other hand, 

the line-search procedure proposed for FISTA only allows for in- 

creasing the estimate of the Lipschitz constant. Another major dif- 

ference between the methods lies in the fact that the methods are 

initialized using different input parameters. Similar to the differ- 

ences with AMGS, this arises because the methods were devised 

using different principles of acceleration of first-order methods. 

4. Convergence analysis 

Let us begin by noting that the result obtained in Lemma 1 sug- 

gests that the convergence rate of the minimization process will be 

the same as the rate at which λk → 0 . This is made more precise 

in the following theorem. 

Theorem 2. If we let λ0 = 1 and λk = 

∏ k −1 
i =0 ( 1 − αi ) , Algorithm 

1 generates a sequence of points { x k } ∞ 

k =0 
such that 

F (x k ) − F (x ∗) ≤ λk 

[ 
F (x 0 ) − F (x ∗) + 

γ0 

2 

|| x 0 − x ∗|| 2 
] 
. (32) 

Proof. See Appendix E . �

Now, recall that from Definition 1 , we must have λk → 0 . There- 

fore, the result of Theorem 2 is sufficient to establish the fact that 

the sequence of iterates produced by our proposed algorithm con- 

verges to the optimal solution. The next step is to evaluate the rate 

of convergence of this process. Let us begin by characterizing the 

rate at which λk → 0 . 

Lemma 4. For all k ≥ 0 , Algorithm 1 guarantees that 

1. If γ0 ∈ [0 , μ ˆ f 
[ , then 

λk ≤
2 μ ˆ f 

L k 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 
≤ 2 

(k + 1) 2 
. (33) 

2. If γ0 ∈ [ μ ˆ f 
, 3 L 0 + μ ˆ f 

] , then 

λk ≤
4 μ ˆ f 

(γ0 − μ ˆ f 
) 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 
≤ 4 L k 

(γ0 − μ ˆ f 
)(k + 1) 2 

. 

(34) 

Proof. See Appendix F . �

Comparing the results obtained in Lemma 4 with the earlier re- 

sults obtained in Nesterov [51 , Lemma 2.2.4], we can see two ma- 

jor differences. First, our proposed analysis establishes the conver- 

gence of the method even when the true value of the Lipschitz 

constant is not known. Second, we can see that it is possible to 

establish the convergence of the method in minimizing objective 

functions with composite structure for a wider initialization range 

of the parameter γ0 . The importance of this result arises from 

the fact that the method exhibits a faster theoretical and practi- 

cal convergence when γ0 = 0 , which is not supported by the ex- 

isting analysis for FGM. At the same time, the initialization γ0 = 0 

also provides robustness with respect to the imperfect knowledge 

of μ ˆ f 
. 

From Theorem 2 , we can see that the convergence rate of the 

minimization process depends on the distance F (x 0 ) − F (x ∗) . The 

following lemma yields an upper bound on it. 

Lemma 5. Let F (x ) be a convex function with composite structure 

as shown in (1) . Moreover, let T L (y ) and r L (y ) be computed as given 

in (9) and (12) , respectively. Then, for any starting point x 0 in the 

domain of F (x ) , we have 

F (x 0 ) − F (x ∗) ≤ L 0 
2 

|| x 0 − x ∗|| 2 . (35) 

Proof. See Appendix G . �

Combining the results of Lemmas 4 and 5 with Theorem 2 , we 

can immediately obtain the convergence rate for COMET as follows. 

Theorem 3. Algorithm 1 generates a sequence of points such that 

1. If γ0 ∈ [0 , μ ˆ f 
[ , then 

F (x k ) − F (x ∗) ≤
μ ˆ f 

(L 0 + γ0 ) || x 0 − x ∗|| 2 

L k 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 
(36) 

2. If γ0 ∈ [ μ ˆ f 
, 3 L 0 + μ ˆ f 

] , then 

F (x k ) − F (x ∗) ≤
2 μ ˆ f 

(L 0 + γ0 ) || x 0 − x ∗|| 2 

(γ0 − μ ˆ f 
) 

(
e 

k +1 
2 

√ 

μ
L k − e 

− k +1 
2 

√ 

μ
L k 

)2 
(37) 

6
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From the result of Theorem 3 we can see that our proposed 

method is guaranteed to converge over a wider interval than its 

counterpart designed for minimizing smooth and strongly con- 

vex objectives. Notice that initializing γ0 = 0 would guarantee the 

fastest convergence of the method. Such a result is important when 

considering many practical applications, wherein the true values of 

μ ˆ f 
and L ˆ f 

are often not known and should be estimated. Another 

factor that impacts the rate of convergence of the minimization 

process is also the initialization of L 0 . From (37) , (38) we can see 

that the smaller the value of L 0 , the faster the convergence of the 

method. 

5. Numerical study 

In this section, we compare the numerical performance of the 

proposed method against the two seminal black-box methods, 

namely, AMGS and FISTA, in solving several optimization problems, 

which arise often in many signal and image processing, statistics 

and data science applications. The selected loss functions are the 

quadratic and logistic loss functions, both with elastic net regu- 

larization. Moreover, we also test the performance of our proposed 

COMET in solving the regularized image deblurring problem. As we 

will see in the sequel, controlling the parameters of the elastic net 

regularizer allows for simulating extremely ill-conditioned exam- 

ples. For the constructed examples, we show that COMET outper- 

forms the selected benchmarks in terms of minimizing the number 

of iterations needed to achieve a certain tolerance level. To provide 

reliable results, we utilize both synthetic and real data, that are se- 

lected from the Library for Support Vector Machines [58] . To find 

the optimal solutions, we use CVX [59] . 

In the first example, we illustrate the performance of three 

variants of COMET: 1) we consider the variant that in theory is 

expected to result in the fastest convergence, which is obtained 

when we initialize for γ0 = 0 , and it is referred to as “COMET, vari- 

ant 1”; 2) we also consider the variant that is expected to pro- 

duce the slowest convergence, which happens when we initialize 

γ0 = 3 L 0 + μ ˆ f 
, and it is labeled as “COMET, variant 2”; 3) we also 

implement the variant of COMET that is obtained when γ0 = μ ˆ f 
, 

which is referred to as “COMET, variant 3”. When comparing the 

performance of the methods under the condition where the Lips- 

chitz constant is not known, for both AMGS and FISTA we utilize 

the line-search strategies presented in the respective works [1,53] . 

We note that throughout all the simulations the starting point x 0 
is randomly selected and all algorithms are initialized in it. The 

numerical experiments are conducted using an Intel(R) Core(TM) 

i7-8665U 1.90 GHz CPU and the methods are implemented using 

Matlab. 

5.1. Minimizing the quadratic loss function 

Consider one of the most popular problems in signal processing 

and statistics 

minimize 
x ∈R 

n 

1 

2 

m ∑ 

i =1 

(
a T i x − y i 

)2 + 

τ1 

2 

‖ x ‖ 

2 + τ2 ‖ x ‖ 1 , (38) 

where || · || 1 denotes the l 1 norm. The objective is to show that the 

theoretical gains of COMET, which are discussed in Section 4 , are 

also reflected in the practical performance of the methods. More- 

over, we analyze how the performance of the methods scales with 

the condition number of the problem. We also illustrate the prac- 

tical benefits of utilizing the proposed line-search strategy. 

Let us first consider the simplest case, where the Lipschitz 

constant is assumed to be known. It allows for an objective as- 

sessment of the effectiveness of the methods in finding the opti- 

mal solution. For this example, we utilize synthetic data. We con- 

sider the diagonal matrix A ∈ R 

m ×m and sample the elements a ii 

from the discrete set { 10 0 , 10 −1 , 10 −2 , . . . , 10 −ξ } uniformly at ran- 

dom. This choice of selecting A ensures that L = 1 and μ f = 10 −ξ , 

which results in the condition number 10 ξ . Then, we select the 

elements of the vector y ∈ R 

m by uniformly drawing them from 

the box [0 , 1] n . Lastly, we note that in our computational experi- 

ments we set m ∈ { 50 0 , 10 0 0 , 150 0 , 20 0 0 } , ξ ∈ { 3 , 4 , 7 , 8 } and τ1 = 

τ2 ∈ { 10 −3 , 10 −4 , 10 −7 , 10 −8 } . 
From Fig. 2 , we can observe that the proposed method signifi- 

cantly outperforms all the existing benchmarks. First, notice that 

the larger the condition number of the problems becomes, the 

more iterations, and consequently computations, are required by 

the methods to obtain a good solution. Comparing between the 

methods, we can observe that all instances of COMET yield a better 

quality of the obtained solution, as measured by the distance to x ∗. 

Moreover, we can clearly see that the iterates produced by COMET 

converge to x ∗ in a much smaller number of iterations. Another im- 

portant observation that can be made from the figure is that the 

proposed method exhibits better monotonic properties than both 

AMGS and FISTA. Comparing the performance of different variants 

of COMET, we can observe that their behavior is similar and the 

differences in performance are not too large. We can see that the 

variant that yields the best performance is the one obtained when 

γ0 = 0 , which is coherent with the theoretical results established 

in Section 4 . 

Next, we proceed to analyzing a more realistic scenario. We as- 

sume that the Lipschitz constant is not known, and needs to be es- 

timated by using a line-search procedure. To demonstrate the ro- 

bustness of the line-search strategy to be utilized in conjunction 

with COMET, we consider the following cases. i) The Lipschitz con- 

stant is underestimated by a factor of 10, i.e., L 0 = 0 . 1 L ˆ f 
. ii) The 

Lipschitz constant is overestimated by a factor of 10, i.e., L 0 = 10 L ˆ f 
. 

Moreover, we note that we selected ηu = 2 and ηd = 0 . 9 , which 

were suggested in Becker et al. [60] because they ensure a good 

performance of the methods in many applications. Another param- 

eter that is computationally expensive to be estimated in prac- 

tice is the strong convexity parameter μ ˆ f 
. To avoid an increase 

in computations, in all the following simulations we equate the 

value of the strong convexity parameter to that of the regulariza- 

tion term in the objective function in (41) . Lastly, we note that for 

all the examples that will be shown in the sequel, we utilize the 

datasets “a1a” and “colon-cancer”. The former dataset has data ma- 

trix A ∈ R 

1605 ×123 , whereas the latter has A ∈ R 

62 ×20 0 0 . 

For the datasets that we are utilizing, the respective Lipschitz 

constants are L ′′ a1a ′ prime = 10061 and L ′′ colon-cancer ′ prime = 1927 . 4 . 

Moreover, we let the regularizer term τ1 = τ2 ∈ { 10 −5 , 10 −6 } . Ev- 

idently, this selection of the regularizer terms guarantees a very 

large condition number κ = 

L ˆ f 
μ ˆ f 

for the problems that are being 

solved. The numerical results are presented in Fig. 3 , from which 

we can observe that all the instances of COMET significantly out- 

perform the existing benchmarks. First, the final iterate produced 

by the first variant of COMET is the closest to x ∗. This is most 

visible from the numerical experiments conducted on the “a1a”

dataset, which are depicted in Fig. 3 (a) and (b). Second, the iter- 

ates produced by the proposed COMET converge to x ∗ by requir- 

ing a significantly smaller number of iterations, when compared 

to AMGS and FISTA. Third, the performance of FISTA largely de- 

pends on the initialization of the Lipschitz constant. On the other 

hand, we can observe that for both datasets, the performance of 

both AMGS and COMET remains unaffected by the value of L 0 . 

We stress that COMET retains the robustness to L 0 at the lower 

computational cost of only one projection-like operation per iter- 

ation, whereas AMGS requires double of that. Last, comparing the 

performance between the selected variants of COMET, we can see 

that in practice their performance differences are minor. Neverthe- 

7
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Fig. 2. Comparison between the efficiency of the algorithms tested in minimizing the quadratic loss function with elastic net regularizer on randomly generated data. 

less, our results shown in Fig. 3 (a) and (b) suggest that the ver- 

sion of COMET which is obtained when γ0 = 0 yields a better per- 

formance. This becomes important particularly when considering 

practical applications, wherein the true values of μ ˆ f 
and L ˆ f 

are 

typically not known and their true values can only be estimated 

within some error bounds. From this perspective, we can conclude 

that the instance of COMET obtained by setting γ0 = 0 enjoys both 

the faster convergence of the iterates and the robustness with re- 

spect to the imperfect knowledge of μ ˆ f 
and L ˆ f 

. 

5.2. Minimizing the logistic loss function 

To demonstrate the versatility of the proposed black-box 

method, let us now compare its performance to the selected 

benchmarks in minimizing a regularized logistic loss function with 

elastic net regularizer 

minimize 
x ∈R 

n 

1 

m 

m ∑ 

i =1 

log 
(
1 + e −b i xa i 

)
+ 

τ1 

2 

‖ x ‖ 

2 + τ2 ‖ x ‖ 1 . (39) 

For this problem type, we diversify the utilized datasets and se- 

lect “triazine”, as well as a subset of “rcv1.binary”. For the cho- 

sen datasets, we have A ′′ triazine ′ prime ∈ R 

186 ×61 and A ′′ rcv1.binary ′ prime ∈ 

R 

10 0 0 ×20 0 0 . Moreover, from the results of Fig. 3 , we have observed 

that the performance of FISTA has been dependent on the initial 

estimate of the Lipschitz constant and has been overall worsened 

when L ˆ f 
is unknown. Therefore, to provide the fairest compari- 

son with respect to FISTA, for this set of examples we estimate 

the value of L directly from the data. More specifically, we have 

L ′′ triazine ′ prime = 25 . 15 and L ′′ rcv1.binary ′ prime = 1 . 13 . On the other hand, 

similar to the earlier computational experiments, we equate the 

value of the strong convexity parameter to that of the regular- 

ization term in the objective function in (40) . Last, we note that 

for this set of numerical experiments we consider the cases when 

τ1 
 = τ2 . The results are reported in Fig. 4 , wherein the specific val- 

ues for τ1 and τ2 are also presented. 

From Fig. 4 , we can observe that for both datasets, COMET out- 

performs and exhibits better monotonic properties than AMGS or 

FISTA. Moreover, all variants of COMET require a much lower num- 

ber of iterations to produce iterates which are closest to x ∗. Last, 

for the selected problem type, the variant of COMET which is con- 

structed when γ0 = 0 yields the best practical performance, al- 

though the true value of μ ˆ f 
is not known. 

5.3. Application to the regularized image deblurring problem 

Let us now consider solving the problem of regularized image 

deblurring, which we formulate as follows 

minimize 
x ∈R 

n 
‖ RWx − y ‖ 

2 + 

τ1 

2 

‖ x ‖ 

2 + τ2 ‖ x ‖ 1 , (40) 

where R represents the blur operator and W is the inverse three- 

stage Haar wavelet transform. In this example, x ∈ R 

256 ×256 is the 

cameraman test image [53] . To blurr the image, we scale its pix- 

els in the range [0,1], add zero-mean Gaussian noise with stan- 

dard deviation 10 −3 and apply the blur operator R . Moreover, we 

set the regularizer parameters τ1 = 1 × 10 −3 and τ2 = 10 −5 . For 

this problem, we initialize L 0 = L F , which is obtained as the max- 

imum eigenvalue of (RW ) T (RW ) , and set μF = τ1 . Different from 

the previous sections, herein we report the CPU runtime (in sec- 

onds) that was needed to decrease the value of the objective func- 

tion. For a more extensive comparison, herein we have also in- 

cluded the Accelerated Composite Gradient Method (ACGM) [37] , 

which is built on top of the estimating sequences variant that was 

used for designing AMGS. Moreover, we have also included the 

variant of FISTA presented in Chambolle and Pock [61] , which is 

designed to exploit the strong convexity information that might be 

available about the objective function. 

Our findings are summarized in Table 1 . The first column was 

obtained by computing the values of the objective function that 

8 
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Fig. 3. Comparison between the efficiency and robustness with respect to the initialization of the Lipschitz constant of the algorithms tested in minimizing the quadratic 

loss function with elastic net regularizer on real data. 

Fig. 4. Comparison between the efficiency of the algorithms tested in minimizing the logistic loss function with elastic net regularizer on real data. 

9 
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Table 1 

Comparison between the CPU runtimes (in seconds) of the algorithms tested in solving the image deblurring prob- 

lem. 

F(x) COMET, variant 1 COMET, variant 2 COMET, variant 3 AMGS ACGM FISTA CP FISTA 

45.74 1.33 1.21 1.87 2.52 1.76 1.92 2.16 

25.61 2.77 2.35 3.14 3.98 3.45 3.57 3.67 

13.22 4.19 3.78 4.52 6.21 4.93 5.23 5.84 

5.83 5.49 4.98 6.02 9.42 6.76 7.38 7.69 

3.25 6.97 5.89 7.32 13.21 8.35 9.21 9.84 

1.11 8.29 7.82 8.75 17.65 10.79 12.41 12.73 

0.63 9.72 9.46 10.06 22.08 13.24 15.86 16.25 

0.51 11.14 11.31 12.69 26.39 15.65 17.13 17.97 

0.44 13.53 13.93 14.21 34.11 17.23 19.32 20.15 

0.37 15.86 16.56 16.72 41.28 19.86 23.57 24.43 

0.35 17.30 18.27 18.96 49.36 25.57 28.39 32.07 

were obtained by running the first variant of COMET in intervals of 

20 iterations. The other entries in the table were obtained by com- 

puting the time spent by the other methods to achieve the same 

decrease in the values of the objective function. Analyzing the ob- 

tained results, we can observe that the different variants of the es- 

timating sequences methods are very efficient. Different from the 

other estimating sequence methods, we can see that the perfor- 

mance of AMGS is significantly affected by the need to compute an 

additional proximal step per iteration. Comparing to FISTA, every 

variant of COMET and ACGM perform more computations per iter- 

ation. Nevertheless, we can see that the improvement in runtime 

is significant. Comparing among the estimating sequence methods, 

we can observe that the fastest variant of COMET converges ap- 

proximately 30% faster than AMGS. Last, we note that the differ- 

ences in runtime among all variants of COMET are marginal. Nev- 

ertheless, we note that the variant of COMET which is obtained by 

initializing γ0 = 0 is more efficient, while also enjoying the robust- 

ness to the imperfect knowledge of the strong convexity parame- 

ter. 

6. Conclusions and discussion 

The problem of constructing accelerated black-box first-order 

methods for solving optimization problems with composite struc- 

ture by utilizing the estimating sequences framework has been 

considered, and a new class of estimating functions has been in- 

troduced. It has been shown that by exploiting these estimating 

sequences together with the gradient mapping technique, it is pos- 

sible to construct very efficient gradient-based methods, which we 

named COMET. Unlike the existing results on the convergence of 

FGM-type methods, the novel convergence analysis established in 

this work allows for the adaptation of the step-size. Another ma- 

jor contribution which stemmed from the proposed convergence 

analysis is the fact that COMET is guaranteed to converge when 

γ0 ∈ [0 , 3 L + μ ˆ f 
] . The practical implication of these two observa- 

tions is the fact that it is possible to construct efficient acceler- 

ated methods which are also robust to the imperfect knowledge of 

the smoothness and strong convexity parameters. Our theoretical 

findings were corroborated by extensive numerical experiments, 

wherein both synthetic and real-world data were utilized. 

The results that were established in this work can be further 

developed in different directions. Particularly, it is interesting to in- 

vestigate the possibilities of embedding the heavy-ball momentum 

into COMET. Another attractive research direction is the investiga- 

tion of the possibility of coupling between the proposed frame- 

work and the inexact oracle framework, as well as the framework 

for constructing distributed proximal gradient methods. Lastly, we 

note that it is also interesting to investigate the possible exten- 

sions to designing accelerated algorithms for solving non-convex 

optimization problems. 
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Appendix A. Proof of Theorem 1 

We start by showing that m L (y ; x ) is an L -strongly convex func- 

tion in x . Notice that it is defined to be the sum of convex func- 

tions. Therefore, it is itself a convex function. Now, consider that 

m L (y ; y ) − m L (y ; T L (y )) ≥ L 

2 

|| y − T L (y ) || 2 . (41) 

By the definition given in (9) , T L (y ) is the minimizer of m L (y ; x ) 

over all x ∈ R 

n . Therefore, we can conclude that m L (y ; x ) is a 

strongly convex function with strong convexity parameter L . 

Now, we can proceed to deriving the lower bound. From (5) , 

(6) , it can be written that 

F (x ) ≥ ˆ f (y ) + τ ˆ g (y ) + 

(
∇ ̂

 f (y ) + τ s L (y ) 
)T 

( x − y ) + 

μ ˆ f 

2 

|| x − y || 2 . 
(42) 

Then, from the definition of m L (y, y ) given in (7) , as well as (12) , 

the right-hand side (RHS) of (43) can be rewritten as 

ˆ f ( y ) + τ ˆ g ( y ) + 

(
∇ ̂

 f ( y ) + τ s L ( y ) 

)T 

( x − y ) + 

μ ˆ f 

2 

‖ x − y ‖ 

2 

= m L ( y ; y ) + r L ( y ) 
T 
( x − y ) + 

μ ˆ f 

2 

‖ x − y ‖ 

2 . (43) 

Moreover, substituting (42) in (44) , the lower bound of the RHS of 

(44) becomes 

m L ( y ; y ) + r L ( y ) 
T 
( x − y ) + 

μ ˆ f 

2 

‖ x − y ‖ 

2 ≥ m L ( y ; T L ( y ) ) 

+ 

L 

2 

‖ y − T L ( y ) ‖ 

2 + r L ( y ) 
T 
( x − y ) + 

μ ˆ f 

2 

‖ x − y ‖ 

2 . 

Utilizing the definition of the reduced composite gradient given in 

(10) , yields 

10 
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m L ( y ; T L ( y ) ) + 

L 

2 

‖ y −T L ( y ) ‖ 

2 + r L ( y ) 
T 
( x −y ) + 

μ ˆ f 

2 

‖ x −y ‖ 

2 

=m L ( y ; T L ( y ) ) + 

1 

2 L 
‖ r L ( y ) ‖ 

2 + r L ( y ) 
T 
( x −y ) + 

μ ˆ f 

2 

‖ x −y ‖ 

2 . (44) 

Finally, taking a proximal gradient descent step on f (x ) , which by 

assumption has Lipschitz continuous gradient, we can obtain (13) . 

This completes the proof. 

Appendix B. Proof of Lemma 1 

By the assumption of Lemma 1 , we have 

F ( x k ) ≤ φ∗
k = min 

x ∈R 

n 
φk ( x ) 

( 14 ) ≤ min 

x ∈R 

n 
[ λk φ0 ( x ) + ( 1 − λk ) F ( x ) ] 

≤ λk φ0 ( x 
∗) + ( 1 − λk ) F ( x 

∗) . 

Rearranging the terms yields the desired result. 

Appendix C. Proof of Lemma 2 

We prove this lemma by induction. Let us begin by analyz- 

ing iteration k = 0 . By assumption, we have λ0 = 1 . Utilizing (14) , 

we obtain φ0 (x ) ≤ λ0 φ0 (x ) + ( 1 − λ0 ) F (x ) ≡ φ0 (x ) . Then, assuming 

that (14) holds true at some iteration k , it can be written that 

φk (x ) − ( 1 − λk ) F (x ) ≤ λk φ0 (x ) . (45) 

Substituting the bound obtained in Theorem 1 , i.e., (13) in (16) , 

we obtain 

φk +1 (x ) ≤ (1 − αk ) φk (x ) + αk F (x ) . (46) 

Then, adding and subtracting the same term to the RHS of (47) , we 

reach 

φk +1 ( x ) ≤ ( 1 −αk ) φk ( x ) + αk F ( x ) + ( 1 −αk ) ( 1 −λk ) F ( x ) −( 1 −αk ) 

( 1 −λk ) F ( x ) = ( 1 −αk ) [ φk ( x ) −( 1 −λk ) F ( x ) ] 

+ ( αk + ( 1 −λk ) ( 1 −αk ) ) F ( x ) . (47) 

Using the bound obtained in (46) in (48) , we have 

φk +1 (x ) ≤ (1 − αk ) λk φ0 (x ) + (1 − λk + αk λk ) F (x ) . (48) 

Lastly, after utilizing (15) , the proof is concluded. 

Appendix D. Proof of Lemma 3 

Let us begin with establishing the first part of the proof through 

a mathematical induction argument. At iteration k = 0 , we have 

∇ 

2 φ0 (x ) = γ0 I. Next, assuming that at some iteration k it is true 

that ∇ 

2 φk (x ) = γk I, at iteration k + 1 it can be written that 

∇ 

2 φk +1 (x ) 
(16) = (1 − αk ) γk I + αk μ ˆ f 

I ≡ γk +1 I. (49) 

We then proceed to establishing the proposed recurrent rela- 

tions for updating the terms in the sequences { v k } ∞ 

k =0 
and { φ∗

k 
} ∞ 

k =0 
. 

Substituting (17) into (16) , and analyzing its first-order optimality 

conditions we obtain 

γk +1 (x − v k +1 ) = γk (1 − αk )(x − v k ) + αk 

(
μ ˆ f 

(x − y k ) r L k (y k ) 
)
. 

(50) 

We can then reduce the terms that depend on x by using (18) in 

(51) , and reach 

−γk +1 v k +1 = −(1 − αk ) γk v k + αk 

(
−μ ˆ f 

y k + r L k (y k ) 
)
. (51) 

Then, substituting (10) in (52) , we obtain (19) . 

To establish (20) , let us begin by substituting (17) in (16) , now 

evaluated at the point x = y k . This way we obtain 

φ∗
k +1 + 

γk +1 

2 

‖ y k − v k +1 ‖ 

2 = ( 1 − αk ) 

(
φ∗

k + 

γk 

2 

‖ y k − v k ‖ 

2 
)

+ αk 

(
F 
(
T L k ( y k ) 

)
+ 

1 

2 L k 
‖ r L k ( y k ) ‖ 

2 
)
. (52) 

We proceed by utilizing (19) to compute the second term in the 

left hand side (LHS) of (53) . Consider the following 

v k +1 − y k = 

1 

γk +1 

((1 − αk ) γk v k + αk μ ˆ f 
y k 

−αk L k 
(
y k − T L k ( y k ) 

)
− γk +1 y k ) . (53) 

Then, utilizing (18) in (54) , we obtain 

v k +1 − y k = 

1 

γk +1 

((1 − αk ) γk (v k − y k ) − αk L k 
(
y k − T L k ( y k ) 

)
. (54) 

Taking || · || 2 of both sides in (55) , yields 

|| y k − v k +1 || 2 = 

|| (1 − αk ) γk (v k − y k ) − αk L k 
(
y k − T L k ( y k ) 

)|| 2 
γ 2 

k +1 

. 

(55) 

Finally, multiplying both sides of (56) by 
γk +1 

2 and expanding the 

RHS, we reach 

γk+1 

2 

‖ y k −v k+1 ‖ 

2 = 

( 1 −αk ) 
2 γ 2 

k 

2 γk+1 

‖ v k −y k ‖ 

2 + 

α2 
k 

L k 
2 

2 γk +1 

‖ y k −T L k ( y k ) ‖ 

2 

−2 L k αk ( 1 − αk ) γk 

2 γk +1 

( v k − y k ) 
T ∇ 

(
y k − T L k ( y k ) 

)
. 

(56) 

Substituting (57) in (53) , and making some straightforward alge- 

braic manipulations, we obtain (20) . 

Appendix E. Proof of Theorem 2 

Set φ∗
0 

= f (x 0 ) . Then, considering (17) evaluated at iteration 

k = 0 and x = x 0 , we obtain φ0 (x 0 ) = f (x 0 ) + 

γ0 
2 || x 0 − v 0 || 2 . In 

Algorithm 1 , we initialize v 0 = x 0 , which is sufficient to guaran- 

tee that f (x 0 ) ≤ φ∗
0 

at step k = 0 . Moreover, recall that we de- 

signed the update rules of the proposed method to guarantee that 

f (x k ) ≤ φ∗
k 

, ∀ k = 1 , 2 , . . . . Therefore, the necessary conditions for 

the results proved in Lemma 1 to be applied are satisfied. 

Appendix F. Proof of Lemma 4 

Let γ0 ∈ [0 , 3 L 0 + μ ˆ f 
] and consider applying (18) to the follow- 

ing 

γk +1 − μ ˆ f 
= (1 − αk ) γk + αk μ ˆ f 

− μ ˆ f 
. (57) 

Then, utilizing the assumption that λ0 = 1 in (58) , it can be written 

that 

γk +1 − μ ˆ f 
= (1 − αk ) λ0 

[
γk − μ ˆ f 

]
. (58) 

Using the recursivity of (18) in (59) , yields 

γk +1 − μ ˆ f 
= λk +1 

[
γ0 − μ ˆ f 

]
. (59) 

Let us now exploit the connection between relations (15) and (25) , 

which can be linked through the term αk as follows 

αk = 1 − λk +1 

λk 

= 

√ 

γk +1 

L k 
= 

√ 

μ ˆ f 

L k 
+ 

γk +1 − μ ˆ f 

L k 
. (60) 

Substituting (60) in the RHS of (61) and making some manipula- 

tions, we get 

1 

λk +1 

− 1 

λk 

= 

1 √ 

λk +1 

√ 

μ ˆ f 

λk +1 L k 
+ 

γ0 − μ ˆ f 

L k 
. (61) 

11 
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Then, through a difference of squares argument, we reach ( 

1 √ 

λk +1 

− 1 √ 

λk 

) ( 

1 √ 

λk +1 

+ 

1 √ 

λk 

) 

= 

1 √ 

λk +1 

√ 

μ ˆ f 

λk +1 L k 
+ 

γ0 − μ ˆ f 

L k 
. (62) 

Let us now analyze the behavior of the terms in the sequence 

{ λk } ∞ 

k =0 
. First, recall that from Lemma 2 we have αk ∈ [0 , 1] . Then, 

considering (15) , we can conclude that the terms λk are non- 

increasing in the iteration counter k . Therefore, we can substitute 

the term 

1 √ 

λk 

in the LHS of (63) with the larger number 1 √ 

λk +1 

. 

This results in 

2 √ 

λk +1 

( 

1 √ 

λk +1 

− 1 √ 

λk 

) 

≥ 1 √ 

λk +1 

√ 

μ ˆ f 

λk +1 L k 
+ 

γ0 − μ ˆ f 

L k 
(63) 

Note that the practical performance of the proposed method 

depends on the initialization of the parameter γ0 . To allow for the 

widest possible range of selection for this parameter, we need to 

consider separately the regions R 1 = [0 , μ ˆ f 
[ and R 2 = [ μ ˆ f 

, 3 L k + 

μ ˆ f 
] . The results for the case when γ0 ∈ R 2 can be established by 

following the analysis conducted for FGM in Nesterov [51 , Lemma 

2.2.4]. Therefore, in the sequel we will thoroughly establish the re- 

sults only for the case when γ0 ∈ R 1 , which is the novel part of 

the proof. Let us begin by defining the following quantity 

ξk, R 1 
� 

√ 

L max (
μ ˆ f 

− γ0 

)
λk 

, (64) 

where L max was defined in (32) . Next, (64) can be rewritten as 

2 √ 

λk +1 

− 2 √ 

λk 

≥
√ 

μ ˆ f 
− γ0 

L k 

√ 

μ ˆ f 
L k 

L k λk +1 

(
μ ˆ f 

− γ0 

) − 1 . (65) 

Then, relaxing the bound in (66) and multiplying it with 

√ 

L max 
μ ˆ f 

−γ0 
, 

we obtain 

ξk +1 , R 1 
− ξk, R 1 

≥ 1 

2 

√ 

μ ˆ f 
ξ 2 

k +1 , R 1 

L max 
− 1 . (66) 

We then proceed to establish via induction the following lower 

bound 

ξk, R 1 
≥

√ 

2 

4 δ

√ 

L k 
μ ˆ f 

− γ0 

[
e (k +1) δ − e (k +1) δ

]
, (67) 

where δ � 

1 
2 

√ 

μ ˆ f 

L max 
. Utilizing (65) at step k = 0 , we have 

ξ0 , R 1 
= 

√ 

L max 

(μ ˆ f 
− γ0 ) λ0 

= 

√ 

L max 

μ ˆ f 
− γ0 

, (68) 

where the second equality is obtained because λ0 = 1 . Then, sub- 

stituting (32) into (69) , we obtain 

ξ0 , R 1 
≥

√ 

2 

2 

√ 

L k 
μ ˆ f 

− γ0 

[
e 1 / 2 − e −1 / 2 

]
≥

√ 

2 

4 δ

√ 

L k 
μ ˆ f 

− γ0 

[
e δ − e −δ

]
. 

(69) 

Note that the second row in (70) follows because the RHS is in- 

creasing in δ, which by construction is always δ < 0 . 5 . 

As it is common with induction-type of proofs, the next 

step is to assume that (68) is satisfied for some iteration k . 

To establish that the relation would hold true at the next it- 

eration as well, we proceed via contradiction. Define ω(t) � √ 

2 
4 δ

√ 

L k 
μ ˆ f 

−γ0 

[
e (t+1) δ − e −(t+1) δ

]
, and note that from Nesterov [51 , 

Lemma 2.2.4] it is a convex function. Therefore, it can be written 

that 

ω(t) ≤ ξk, R 1 

(67) ≤ ξk +1 , R 1 
− 1 

2 

√ 

μ ˆ f 
ξ 2 

k +1 , R 1 

L max 
− 1 . (70) 

Assuming that ξk +1 , R 1 
< ω(t + 1) and substituting it into (71) , we 

have 

ω(t) < ω(t + 1) − 1 

2 

√ 

μ ˆ f 
ξ 2 

k +1 , R 1 

L max 
− 1 . (71) 

Then, utilizing the definition of δ, as well as (68) , we obtain 

ω ( t ) ≤ ω ( t +1 ) − 1 

2 

√ √ √ √ 4 δ2 

[ √ 

2 

4 δ

√ 

L k 
μ ˆ f 

− γ0 

(
e ( t+2 ) δ − e −( t+2 ) δ

)] 2 

−1 

≤ ω ( t + 1 ) −
√ 

2 

4 

√ 

L k 
μ ˆ f 

− γ0 

[
e ( t+2 ) δ + e −( t+2 ) δ

]
= ω ( t + 1 ) 

+ ω 

’ ( t + 1 ) ( t − ( t + 1 ) ) ≤ ω ( t ) , (72) 

where the last inequality follows from the supporting hyperplane 

theorem of convex functions. Notice that this result contradicts the 

earlier assumption that ξk +1 , R 1 
< ω(t + 1) . Thus, the inductive ar- 

gument asserts that we have established the lower bound (68) to 

be true for all values of k = 0 , 1 , . . . . 

We are finally ready to establish (34) . From (65) , it can be writ- 

ten that 

λk = 

L max 

ξ 2 
k +1 , R 1 

(μ ˆ f 
− γ0 ) 

. (73) 

Utilizing (68) in the RHS of (74) , we reach 

λk ≤
(4 δ) 2 L max 

2 L k 
[
e (k +1) δ − e (k +1) δ

]2 
, (74) 

The first inequality in (34) is obtained by substituting the defini- 

tion of δ in (75) . 

To establish the remaining inequality in (34) , we first analyze 

the following (
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

= e 
( k +1 ) 

√ 

μ ˆ f 
L k − e 

−( k +1 ) 

√ 

μ ˆ f 
L k − 2 . (75) 

Then, utilizing the definition of the hyperbolic cosine function in 

(76) , we obtain (
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

= 2 cosh 

( √ 

μ ˆ f 

L k 
( k + 1 ) − 2 

) 

. (76) 

Using the Taylor expansion of the hyperbolic cosine function, yields 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

= −2 + 2 + 2 

μ ˆ f 
( k + 1 ) 

2 

2 L k 

+2 

μ2 
ˆ f 
( k + 1 ) 

4 

4! L k 
2 

+ . . . . (77) 

The next step is to truncate the RHS of (78) . This results in (
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

≥
μ ˆ f 

L k 
( k + 1 ) 

2 
. (78) 

All that remains for establishing the second inequality of (34) , is to 

substitute (79) into the denominator of the first inequality of (34) . 
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Appendix G. Proof of Lemma 5 

We begin by substituting the upper bound (4) evaluated at the 

point y = x ∗ into (3) , and obtain that 

F (x 0 ) = 

ˆ f (x 0 ) + τ ˆ g (x 0 ) ≤ ˆ f (x ∗) + ∇ ̂

 f (x ∗) T (x 0 − x ∗) 

+ 

L 0 
2 

|| x 0 − x ∗|| 2 + τ ˆ g (x 0 ) . (79) 

Then, from the equality established in (12) , the RHS of (80) can be 

written as 

F ( x 0 ) ≤ ˆ f ( x ∗) + ∇ ̂

 f ( x ∗) T ( x 0 −x ∗) + 

L 0 
2 

‖ x 0 −x ∗‖ 

2 + τ ˆ g ( x 0 ) = ̂

 f ( x ∗) 

+ 

(
τ s L 0 ( x 

∗) −L 0 
(
x ∗−T L 0 ( x 

∗) 
))T 

( x 0 −x ∗) + 

L 0 
2 

‖ x 0 −x ∗‖ 

2 

+τ ˆ g ( x 0 ) . (80) 

From the definition of the composite gradient mapping given in 

(9) , we can see that when y = x ∗, then T L 0 (x ∗) = x ∗. Therefore, the 

RHS of (81) becomes 

F (x 0 ) ≤ ˆ f (x ∗) − τ s L 0 (x ∗) T (x ∗ − x 0 ) + 

L 0 
2 

|| x 0 − x ∗|| 2 + τ ˆ g (x 0 ) . 

(81) 

Lastly, utilizing (6) in the RHS of (82) completes the proof. 
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