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Abstract

Distribution system planners and operators have increasingly exposed great

attention to maximizing the penetration of renewable energy resources (RERs),

and electric vehicles (EVs) toward modern microgrids. Accordingly, intensive

operational and economic problems are expected in such microgrids. Specifically,

the operators need to meet the increased demand for EVs and increase the

dependence on RERs. The charging strategy for EVs and the RER penetration level

may result in increased power loss, thermal loading, voltage deviation, and overall

system cost. To address these concerns, this paper proposed an optimal planning

approach for allocating EV charging stations with controllable charging and hybrid

RERs within multi‐microgrids, where the charging strategy in the proposed

planning approach contributed to improving power quality and overall system

cost, where the voltage deviation, energy not supplied, total cost have been

reduced to 26.03%, 49.57%, and 70.45%, respectively. The simulation results are

compared with different optimization techniques to verify the effectiveness of the

proposed algorithm. The proposed simultaneous allocation approach of EV

charging stations and RERs can reduce operating costs for RERs and conventional

stations while increasing the charging stations' capacity.
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1 | INTRODUCTION

Renewable energy resources (RERs) are considered an
essential supply for microgrids despite the capital cost of
generated power from classical sources being lower than
renewable energy sources but with optimal size and location
for hybrid renewable energy sources, such as solar and wind
energy in the presence of classical sources in microgrid leads
to reduce the overall cost of energy. Electric vehicles (EVs)

with renewable sources provide considerable benefits;
however, increasing the number of EVs has a significant
impact on the performance of microgrids, such as stability of
the system, excessive power losses, and voltage deviation. So,
supplying the high, increasing demand for charging EVs,
keeping the microgrid operating constraints under control,
and enhancing power quality are significant issues facing the
world. Accordingly, energy management of the microgrid is
affected by the sizing and location of RERs and charging
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stations. Therefore, the optimal planning approach for these
control variables can tackle the mentioned problems, where
the sizing and location affect power flow in the microgrid
resulting in changes in power loss, voltage deviation, and
overall cost.

Many studies discussed optimal hybrid renewable energy
sources with EVs in the microgrid. The authors in refs. [1, 2]
have proposed a machine learning‐based energy manage-
ment for renewable microgrids and considering the charging
demand of EVs. An optimization‐based method has been
presented in refs. [3–5] for the day‐ahead operation of
microgrids considering EVs and RERs. In ref. [6], the
authors have developed a fuzzy cloud stochastic framework
for managing the energy of microgrids with RERs based on
the maximum distribution of EVs. An energy management
system has been optimized for transferring power between
vehicles (vehicle‐to‐vehicle) in the microgrid by using a
smart aggregator.7 In ref. [8], EVs’ behavior was assessed by
considering the effect of uncontrolled and smart charging
modes on the optimal operation of microgrids. The EVs’
optimal allocation and scheduling operation problems in
distribution systems are discussed in refs. [9–11]. A
stochastic energy management algorithm has been proposed
in ref. [12] to address the contribution of smart microgrids in
the electricity market while minimizing the total cost and
determining the optimal size of RERs. In ref. [13], the
authors explained the effect of fluctuated power generated
by photovoltaic panels and introduced the EV as energy
storage to supply the grid with power in urgent conditions.
In ref. [14], the authors proposed an environmental footprint
in three different locations across Europe for reducing the
emission of carbon dioxide gas by an efficient planning
approach for the optimal RERs with battery storage for
balancing the gap between electricity production and
demand. In ref. [15], the authors reviewed the methodology
of numerous studies for managing the energy of microgrids
including RERs, conventional distributed generators, and the
impact of participating smart homes in demand response
and charging stations on the technical and economic
operation of the systems. In ref. [16], the authors proposed
an efficient planning operation for multi‐microgrids that
included RERs, energy storage, and conventional sources by
demonstrating the impact of multi‐microgrid participation as
a price maker by interaction with the electricity market on
the optimal economic operation of the system. In ref. [17],
the authors developed an approach for meeting maximum
load demand with the lowest cost possible under changing
weather conditions and dynamic analysis for transient
disturbance in an off‐grid by optimal configuration from
various system combinations of the solar station, energy
storage, hydropower station, and conventional sources. In
ref. [18], the authors expressed the optimal scheduling of
conventional sources in the presence of participation EVs in

demand response to find the optimal charging rate according
to the cost of the charging from the grid and to satisfy the
requirements of the grid by minimizing power loss and
voltage deviation and cost of generation. In ref. [19], the
authors expressed the impact of coordinated charging, and
uncoordinated charging of vehicles in smart grids on power
loss, voltage deviation, and system efficiency. In ref. [20], the
authors expressed the type of charging (low, medium, and
fast) units in stations connected to the grid to obtain the
optimal number of these charging units and the location of
charging stations. In ref. [21], the authors considered the
EV's uncertainty and solar irradiation, where the charging
station is connected to the grid by the smart aggregator for
controlling EV charging and discharging. Furthermore, the
impact of solar energy on the price of electricity sold to EVs,
as the microgrid acts as a price maker. In ref. [22], the
authors expressed the optimal integration of EVs with
considering wind speed uncertainty. Further, the effect of
controllable and uncontrollable charging on the dispatchable
time of microturbines and the power generated by them
through different wind speed scenarios. In ref. [23], the
authors expressed the optimal oversizing of the inverter of
renewable energy stations considering the uncertainty
of solar irradiance and wind speed with various percentages
of penetration of RERs and the capability of the inverter in
absorbing and injecting reactive power to avoid any voltage
fluctuation during the transient change in the weather. In
ref. [24], expressed uncertainty of generated power by
photovoltaic panels and optimal scheduling of charging and
discharging EVs for minimizing the voltage deviation by the
capability of the inverter of RER in injection and absorption
reactive power for regulating the voltage to avoid changing
the position of the tap changer of the transformer. As
demonstrated above, power system designers and operators
are increasingly focused on boosting the integration of RERs
and EVs into contemporary microgrids. As a result of the
intermittent RER generation and fluctuating charging or
discharging of EVs, such microgrids are predicted to have
severe operational and economic difficulties. Specifically,
operators must fulfill the rising demand for EVs while
increasing reliance on RERs rather than traditional stations.
Still, this task is fraught with growing power loss, voltage
variation, and RER construction costs. As previously stated,
various procedures for optimal energy management of
distribution systems have been introduced. However, most
of these works ignore proposing multi‐objective functions in
multi microgrids for improving technical operation and
reducing economic cost simultaneously and increasing the
reliance on RERs for reducing energy not supplied (ENS),
voltage deviation, overall cost, meeting the increased
demand for EVs, and enhancing load factor.

This article suggests an optimal planning technique for
identifying the locations and sizes of EV charging stations
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with controlled charging and hybrid RERs (wind and
photovoltaic systems) inside a microgrid. A multi‐objective
function was proposed by a novel meta‐heuristic method
called jellyfish search optimizer (JSO)25 to find the best
placements and sizes of EV charging stations and RERs
reduce power loss voltage variations and lower overall
system cost. The simulation results were compared by JSO
to particle swarm optimization (PSO), ant lion optimization
(ALO), and sine cosine algorithm (SCA) to validate the
proposed approach's efficiency. Despite the multi‐objective
planning model's complexity, the presented JSO‐based
approach can give the best answers in all scenarios in a
large‐scale 118‐bus microgrid. The suggested simultaneous
deployment of EV charging stations and intermittent RES
can lower operating costs for both renewable and conven-
tional stations while boosting EV charging station capacity.
The JSO has been proposed for solving the allocation
problem of the EV charging station and RERs due to its
ability to find the global solution, which is based on three
searching strategies including the active motion, passive
motion, and logistic map mechanism, which boost the
searching capability and avoid its stagnation to local optima.

The contributions of this paper can be listed below:

1. Proposing an optimal simultaneous allocation of the
EV charging station with hybrid RER in the multi‐
microgrid under the operator's constraints.

2. Unlike previous planning models, the proposed
approach stands out for its latent to enhance the
operation of the microgrid by adjusting the control
variables of RERs and EVs simultaneously.

3. Reducing the waiting queues, capital cost, and
operating cost of RERs and enhancing load factor.

4. Constructing a multi‐objective function that includes
voltage, deviations, ENS, and the overall annual cost
of energy in a microgrid.

5. Developing a heuristic optimization method called
a jellyfish optimizer for minimizing multi‐objective
functions.

This paper is structured as follows: Section 2 presents
the problem formulation, which includes the objective
function, constraints, and modeling of RERS, and EVs.
Section 3 gives a review of the JSO method and the
system's construction. Section 4 presents the simulation
results. Finally, the work is concluded in Section 5.

2 | PROBLEM FORMULATION

This work is performed on a microgrid system including
wind energy, photovoltaic, base loads, and EVs, as
illustrated in Figure 1, where the transmission line connects
the microgrid with the utility. Nonlinear objective functions
are subjected to the system's constraints to find the optimal
capacity and location of photovoltaic and wind power
stations with charging stations. The aim is to minimize
voltage deviation, ENS and cost of power generated from the
station, power loss, the cost of building renewable stations,
and the cost of charging EVs.

2.1 | Objective function

The objective function is formulated as a weighted sum
of all three objectives:

FIGURE 1 General architecture of modern microgrids
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Min F x y Af Bf Cf( ( , )) = + +1 2 3 (1)

The A, B, and C are the weighting coefficients that have
been selected to be 0.25, 0.25, and 0.5, respectively. These
coefficients are adjusted according to the importance of the
objective functions. Each function is normalized by dividing
by the base value. Note that f1 is the total voltage deviation
at each bus for 24 h, which is expressed by:

 f V= |1 − |
t i

Nbus

i t1
=1

24

=1

, (2)

Where Nbus is the number of buses, Vi t, is the magnitude
of the voltage at each bus at a specific time. In turn, f2 is
the total ENS, which is formulated as:

    f ENS P P P= = − −
t i

Nbus
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t

loss

t i
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i t t i t, ,

(3)

 P PW PPV= +DG
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w i t

pv

N PV

pv i t

=1
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i i

, (4)
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(5)

where PDGi t, is the active generated power from RERS on
bus i at time t , Pdi t, is the active power demand, PWw i t, , is
the generated power from the wind turbine, PPVpv i t, , is
output power from the photovoltaic panel at a specific
time, N PWT. i is the number of wind turbine stations at
bus i and N PV. i is the number of photovoltaic stations.
Ploss t, is total power loss at a specific time, Gij is the
Conductance between bus i and j, and δi t, is the angle of
the voltage at a specific bus. The output power from a
wind turbine can be calculated as a function of wind speed
as follows:

 










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
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


PW

V V V

V

P
V V

V V
V V V

P V V V

=

0 for < and

>

−

−
for ( )

for ( < )

w i

i t ci i t

co

r
i t ci

r ci
ci i t r

r r i t co

, ,t

, ,

,
,

,

i

i

(6)

where Pri is rated power from the turbine at bus i whereVi t, ,
Vci , V V,r co are the wind speed time t, cut‐in speed, rated
speed, and cut‐out speed, respectively. The output power of
photovoltaic units can be calculated as a function of solar
irradiance, where Psri is rated power from the photovoltaic

panels at bus i, Gstd is global irradiance, about 1000W/m2,
Gs t, is solar irradiance at each specific time, Xc is specific
irradiance point set to be 120W/m2.26




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(7)

The third objective, that is, f3, is the total cost, which
is formulated as follows:

  


f P c f f

P c OM AI

= ( × 1.2 × ) + −

+ × + +

t
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(8)
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(9)

 f P c= ×ch
i
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k

n

ch m

=1 =1
t
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i k t, ,
(10)

 f P c= ×dch
i

Nbus

k

n

dc m DC

=1 =1

−t

EV

i k t, ,
(11)

where cm is the cost of purchasing power from the market,
nEV is the number of vehicles at each time interval, Psub t, is
the generated power from the main substation as given in
Equation (9). In this paper, EVs are modeled as active power
sources during discharging and controllable loads during
charging.27 Equation (10) expresses the EV charging cost
while Equation (11) represents the revenue obtained by EV
owners for discharging during on‐peak, where the dischar-
ging energy price cm DC− is more than a normal tariff cm to
motivate the EV owners for discharging.

The total investment cost (CIDG) of DG units can be
expressed by:

  





CI C P C P= +DG

i

Nbus

pv

N PV

SDG sr

w

N PWT

WDG r

=1 =1

.

=1

.i

pv i

i

w i, ,
(12)

The annual installment (AIDG ) that must be paid by
the utilities on the money invested for renewable energy
station installation can be expressed as follows:

AI CRF CI= ×DG DG (13)
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CRF
i i

i
=

( + 1)

( + 1) − 1
rt rt

N

rt
N

(14)

Where CRF is the annual loan payment on the borrowed
amount for N years at the rate of interest irt, where N was
taken as 20 and irt taken as 10%.28 Annual operation and
maintenance of DG unit cost (OMDG) is expressed by:

  

 








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+ ×
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t i
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pv i t pv

i

Nbus

w
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w i W

=1

24

=1 =1

.

, ,

=1 =1

.

, ,t

i

i

(15)

2.2 | Constraints

2.2.1 | Inequality constraints

The voltage at each bus for a specific time Vi t, is limited
by the minimum voltageVmin and maximum voltageVmax
as in Equation (16). Discharging and charging rates are
limited by the minimum discharging and charging Pdc,min
and Pch,min and maximum charging and discharging are
limited by Pdc,max, P , respectivelych,max , as in Equations
(17) and (18). The number of EVs nEv t, is limited to the
minimum value nmin and maximum value nmax as in
Equation (19), the current between bus i and j is limited
by the maximum current as in Equation (20).

 V V Vi tmin , max (16)

 P P Pdc dc t dc,min , ,max (17)

 P P Pch ch t ch,min , ,max (18)

 n n nEvmin max (19)

I Iij max (20)

2.2.2 | Equality constraints

Power flow must achieve that the active P( )Gi t, and
reactive Q( )Gi t, generated powers should be equal to the
load demand and line losses between bus i and j at time
t, where Pevi t, is the total power consumed or injected at
bus i by the EVs, Bij is Susceptance between bus i and j,
and Qdi t, is demand reactive power.

P P P V V G cos δ δ

B δ δ

= ± + [ ( − )

+ sin( − )]

G d ev i t

i

Nbus

j t

ij i t j t

ij i t j t

,

=1 ,

, ,

, ,

i t i t i t, , ,

(21)

Q Q V V B cos δ δ G

δ δ

= + [ ( − ) +

sin( − )]

G d i t

i i

Nbus

j t

ij i t j t ij

i t j t

,

= ,

, ,

, ,

i t i t, ,

(22)

3 | JELLYFISH SEARCH
OPTIMIZER

The oceans have several types of jellyfishes in different
shapes, sizes, and colors. The jellyfish has the unique
feature of hunting and the motion for food searching.
Some jellyfish collect their food from oceans' current, and
some jellyfish use their tentacles. The jellyfish are
collected in swarms based on some factors such as
temperature, oxygen availability, and the available
nutrients. The jellyfish move in a swarm or follow the
ocean's current for looking the food, and these jellyfish
can also jump or switch from these motions. JSO mimics
the motions of the jellyfish in oceans, which can be
mathematically modeled as follows:

3.1 | The ocean current

As mentioned before, the jellyfishes move with ocean
current, depending on abundant nutrients. The direction
of the ocean current (Trend) is assigned by averaging all
the vectors from each jellyfish in the ocean to the jellyfish
that is currently in the best position, which can be
represented as follows:

 


TR
n n

X e X

X e
X

n
X e μ

=
1

TR =
1

( − )

= − = −

p best c p

best c
p

best c

Pop Pop

Pop

(23)

df e μSet = c (24)

TR X df= −best (25)

df β μ R= × × (26)

where Xbest denotes the best location, nPop represents a
number of jellyfish, ec is a parameter for governing the
attraction, μ represents the mean value of all jellyfish
locations, and df reparents the difference between the
best solution and the mean of the jellyfish, and R is a
random value between 0 and 1.

TR X β μ R= − × ×best (27)

By substituting df from Equation (26) into Equation (25)

ASAAD ET AL. | 5
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The new location of the jellyfish can be found as follows:
By substituting TR from Equation (27) in Equation (28).

X t X t R TR( + 1) = ( ) + ×P P (28)

X t X t R X β μ R( + 1) = ( ) + × ( − × × )P P best

(29)

3.2 | The jellyfish swarm

The motions of the jellyfishes inside the swarm are
divided into passive motion (type A) and active motion
(type B). The jellyfish move according to type A at the
beginning of the swarm formation, while the jellyfish
move according to type B at the final stage. In passive
motion, the jellyfish move randomly as follows:

X t X t γ R U L( + 1) = ( ) + × × ( − )P P b b (30)

where Lb andUb are the minimum and maximum limits
of the variables. γ represents a motion factor. To
illustrate the active motion, two jellyfishes (p, q) are
chosen, where p q. The jellyfish p moves to jellyfish q
when the availability of foods is high while it moves away
when the availability of the food is low. The active
motion (type B motion) is represented as follows:

X t X t ST( + 1) = ( ) +p p (31)

ST R= × DR (32)




X t X t f X f X

X t X t f X f X
DR =

( ) − ( ) if ( ) ( )

( ) − ( ) if ( ) < ( )

q p i j

p q i j

(33)

3.3 | Time control mechanism

The jellyfish changes its motion between the three
motions. The transmission is assigned by the time
control function (c), which is given as follows:







c t

t

t
( ) = 1 − × (2 × R − 1)

max

(34)

where the c t( ) is varied between 0 and 1, where this
value is compared with C = 0.50 . When the c t( ) is more
than C0 , the jellyfishes move in the swarm, but the
jellyfishes follow the ocean current. It is worth mention-
ing here that the initial locations of the jellyfish are
generated in a random manner using the chaotic logistic
map as follows:

ξ μζ ξ′ = (1 − ) (35)

X t X t ξ U L( + 1) = ( ) + ′ × ( − )p p b b (36)

where ξ denotes a random value generated within the range
[0–1]. μ = 4, and ξ′ denotes the logistic chaotic value,
where ξ′ {0.0, 0.25, 0.75, 0.5, 1.0} . The flow chart of the
JSO application for optimal allocation of charging stations
and RERs as shown in Figure 2. To verify the effectiveness
of the proposed algorithm, the obtained results by the JSO
have been compared with other algorithms, including
PSO,29 ALO,30 and SCA.31 The selected parameters of
JSO, PSO, ALO, and SCA are listed in Table 1.

The system under the study of IEEE 118‐bus system,
where this network is divided into four multi‐microgrids
as depicted in Figure 3.

The system parameters are depicted in Table 2, while
The technical limits are provided in Table 3.32 Each area
of the multi‐microgrid has a single charging station, PV
unit, and wind turbine. Area 1 includes buses from
(1–26), Area 2 includes buses from (27–61), area 3
includes buses from (62–98), and area 4 includes buses
from (99–117).

4 | SIMULATION RESULTS

This section develops the proposed algorithm to assign the
optimal locations and sizing of the charging stations and
RERs, including the solar PV and wind turbine‐based DGs
in a multi‐microgrid. The objective function is a multi‐
objective function that comprises (1) the total annual cost,
(2) the summation of voltage deviations, and (3) ENS. The
load profile and the network electricity price for a day head
are shown in Figures 4 and 5, respectively.27 The investment
cost of PV and wind turbines is 770 and 4000$/kW,
respectively, while the maintenance and operation cost of
solar energy and wind energy are 0.01$/kW.28 The solar
irradiance27 and wind speed33 are shown in Figures 6 and 7,
respectively. The cut‐in speed, rated speed, and cut‐out
speed are 4, 17, and 25m/s, respectively.33 The performance
of the proposed method was evaluated in MATLAB 2016 by
core I5 CPU 2.2GHz, 8 GB RAM.

4.1 | The studied cases

4.1.1 | Base case

Without integration of RERs and charging stations, the
system power loss cost is 1069,000$, the cost of power
purchased from the grid is 27,886,000$, and the total cost
is 28,955,000$. The summation of voltage deviations for
the whole day is 94.0994 V, and the load factor is 0.7781.
In this paper, an investigation has been proposed to study
the performance and the impact of the installation of the
charging stations and RERs as follows.

6 | ASAAD ET AL.
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4.1.2 | Case 1

The charging stations were assigned without RERs, the
EVs charged only during the off‐peak time with a
controllable charging strategy, and the numbers of EVs
in the charging stations were assigned optimally during
the charging period. Table 4 shows the Optimal sites and

sizes of the charging stations and the number of EVs. As
depicted in Table 5, compared to the base case, the total
cost is 98.04%, the VD is 99.9%, the ENS is 97.98%, the
total energy cost from the grid is 98%, and the cost of
power loss is 99.1%. As a result, optimal powers flow,
where EVs’ placement and charging rate were optimally
assigned.

FIGURE 2 The flow chart of the JSO for optimal sizes and sites of charge stations and RERs. JSO, jellyfish search optimizer; RER,
renewable energy resource.

ASAAD ET AL. | 7
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The system's voltage profile is shown in Figure 8. The
total cost of power purchased from the grid, the total
energy consumed by charging stations, and the cost of
power loss are shown in Figures 9,10A, and 11,
respectively.

4.1.3 | Case2

The charging stations with RERs were integrated
optimally into the system. The EVs will charge only
during the off‐peak time with controllable charging
strategy. The optimal locations and sizing of the charging
stations and RERs are listed in Table 4, where the sizing
of charging stations increased compared to case 1. In
Table 5, compared to case 1, the VD, the ENS, and the
total cost were reduced by 70.93%, 35.29%, and 7.5%,
respectively. Also, the cost of power purchased from the
grid power was reduced by 34.37%, as shown in Figure 9.
The charging rate, in this case, is faster than in the

previous case because of the installation of RERs, as
shown in Figure 10B compared to Figure 10A. The cost
of power loss was reduced by 18.085%, as shown in
Figure 11. The minimum voltage magnitude of the
system increased by 3.93% compared to case 1. Figure 12
shows the system voltage profile; according to this figure,
the voltage profile was enhanced compared to case 1,
which verifies the effectiveness of the RERs along with
the charging stations.

TABLE 1 The selected parameters of the optimization
algorithms

Algorithm Parameter settings

JSO Tmax = 60, Search agents No. = 30

PSO Tmax = 60, Search agents No. = 30

ALO Tmax = 60, Search agents No. = 30

SCA Tmax = 60, Search agents No. = 30

Abbreviations: ALO, ant lion optimization; JSO, jellyfish search optimizer;
PSO, particle swarm optimization; SCA, sine cosine algorithm.

FIGURE 3 IEEE 118‐bus radial system

TABLE 2 The system specification and initial power flow

Item Value

System specifications:

Nbus 118

Vsys (kV) 12.66

Base MVA 100

S (MVA)Load 22.7097 + j 17.0412

P (kW)Totalloss 1298.091

Q (kVar)Totalloss 978.797

V p u( . )min @ bus 0.86880@ 77

TABLE 3 The system constraints

Parameter Value

Voltage limits  0.90 V 1.05 p. ui

PV sizing limits for 118‐bus system  0 P 22709 kWsr

WT sizing limits for 118‐bus system  0 P 22709 kWr

8 | ASAAD ET AL.
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FIGURE 4 Daily load profile

FIGURE 5 Electricity market price during the day

FIGURE 6 The forecasted solar irradiance during the day

FIGURE 7 The forecasted wind speeds during the day

ASAAD ET AL. | 9
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TABLE 4 Optimal locations and
sizes of RERs and charging stationsLocations of

charging
stations

Number
of EVs

Sizing of
charging
station (kWh)

Size of solar
energy
station
(MW)

Size of wind
energy
station
(MW)

Case 1 111 21 34.3316

72 11 48.7565 – –

46 18 23.0943

20 19 47.5295

Case 2 115 126 528.0943 0.6566 3.3594

75 172 484.6762 3.4308 3.773

48 201 688.1252 3.6877 2.0266

20 131 450.0885 3.1896 2.5033

Case 3 114 307 1.1575e + 03 0.8442 1.9478

74 259 889.2258 3.8818 1.6759

49 312 1.2287e + 03 2.0440 3.9715

20 204 1.0898e + 03 3.8646 1.4049

Abbreviations: EV, electric vehicle; RER, renewable energy resource.

TABLE 5 Simulation resultsBase case Case 1 Case 2 Case 3

Voltage deviation (p.u) 1 0.9993 0.2904 0.2603

ENS (p.u) 1 0.9798 0.6340 0.4957

Total cost ($) 28,955,000 28,388,418 26,255,810 20,401,312

V p u( . )min @ bus 0.8688 0.8688 0.9030 0.9063

The purchased power from the grid 27,886,000 27,309,000 17,922,000 13,711,000

Charging cost of EVs ($) – 18,918 398,010 774,980

Discharging revenue of EVs ($) – – – 712,118

Cost of power loss ($) 1,069,000 1,060,500 868,700 840,750

Cost of PV units ($) – – 1,347,400 1,317,500

Cost of wind turbine ($) – – 5,719,700 4,469,200

Total cost of RERs ($) – – 7,067,100 5,786,700

Load factor 0.7781 0.7793 0.8048 0.8567

Abbreviations: ENS, energy not supplied; EV, electric vehicle; PV, photovoltaic; RER, renewable energy
resource.

FIGURE 8 The voltage profile 24 h of 118‐bus during case 1

10 | ASAAD ET AL.
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FIGURE 9 The total cost of the purchased power from the grid

(A)

(B)

FIGURE 10 (A) Total consumed and injected power by charging stations. (B) Total consumed and injected power by charging stations.

FIGURE 11 Cost of power losses during the day

ASAAD ET AL. | 11
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4.1.4 | Case 3

The optimal locations and sizing of charging stations and
RERs were assigned. The EVs were charged only during
the off‐peak time and discharged optimally during the
on‐peak time. The optimal locations and sizing of the
charging stations and RERs are listed in Table 4, where
the sizing of charging stations increased compared to
case 2. As depicted in Table 5, compared to case 2, the
VD, ENS, and total cost were reduced by 10.36%,
21.813%, and 22.29%, respectively, which verifies the
effectiveness of RERs with a controllable charging and
discharging strategy. Note that EVs acted as a power
source during on‐peak, as shown in Figure 10B.

As shown in Table 5, compared to case 2, the overall
sizing of RERs was reduced by 13.22%, resulting in an
18.11% reduction in the annual investment cost of RERs.

The revenue from discharging EVs was 712,118$, so the
charging cost was reduced. Furthermore, as shown in
Figure 9, the total cost of purchasing power was reduced by
23.49%. The cost of power loss was reduced by 3.22%, as
shown in Figure 11, and the minimum voltage magnitude
was enhanced by 0.36%, as shown in Figure 13.

The load factor was increased to 85.67%, as shown in
Table 5. As a result, compared to cases 1 and 2, the
maximum load was the lowest, so the cost of reserving
maximum power in main stations in case 3, as shown in
Figure 14, was the lowest.

FIGURE 12 Voltage profile 24 h of 118‐bus during case 2

FIGURE 13 Voltage profile 24 h of 118‐bus during case 3

FIGURE 14 Loading profiles during different cases

12 | ASAAD ET AL.
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4.2 | Comparison of simulation result by
various optimization techniques

To investigate the effectiveness of JSO, we compared JSO
with PSO, ALO, and SCA in mentioned studied cases as
follows.

4.2.1 | Case 1

JSO has obtained the minimum value of the objective
functions, as depicted in Figure 15, Table 6, and Table 7,

FIGURE 15 Convergence curves by various algorithms during case 1. ALO, ant lion optimization; JSO, jellyfish search optimizer; PSO,
particle swarm optimization; SCA, sine cosine algorithm.

TABLE 6 Comparison of the obtained results of multi‐
objective function through case 1 by various optimization
algorithms application at 118‐bus system

Best
solution

Worst
solution

Average
solution

Standard
deviation

PSO 0.9853 0.9892 0.9872 0.0019

ALO 0.9938 0.9998 0.9967 0.0030

SCA 0.9854 0.9862 0.9858 0.0004

JSO 0.9850 0.9884 0.9869 0.0010

Abbreviations: ALO, ant lion optimization; JSO, jellyfish search optimizer;
PSO, particle swarm optimization; SCA, sine cosine algorithm.

TABLE 7 Comparison of the
obtained results through case 1 by
various optimization algorithms
application at 118‐bus system

Locations of
charging stations

Number
of EVs

Voltage
deviation (p.u)

ENS
(p.u) Total cost $

PSO 99 6 0.9989 0.9802 28,407,000

62 27

47 7

20 16

ALO 103 13 1.0015 0.9898 28,723,000

84 19

59 14

20 16

SCA 99 19 0.9990 0.9803 28,406,000

93 16

39 12

20 10

JSO 111 21 0.9993 0.9798 28,388,418

72 11

46 18

20 19

Abbreviations: ALO, ant lion optimization; ENS, energy not supplied; EV, electric vehicle; JSO, jellyfish
search optimizer; PSO, particle swarm optimization; SCA, sine cosine algorithm.

ASAAD ET AL. | 13
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as well as the maximum total number of EVs, which
verify the effectiveness of the proposed algorithm.

4.2.2 | Case 1

JSO has obtained the minimum value of the objective
functions, as depicted in Figure 16, Table 8, and
Table 9, as well as the maximum total number of EVs.
Despite the highest capital cost of RERs obtained by
JSO, the minimum overall cost has been reduced
to 90.67%.

FIGURE 16 Convergence curves by various algorithms during case 2. ALO, ant lion optimization; JSO, jellyfish search optimizer; PSO,
particle swarm optimization; SCA, sine cosine algorithm.

TABLE 8 Comparison of the obtained results of multi‐
objective function through case 2 by various optimization
algorithms application at 118‐bus system

Best
solution

Worst
solution

Average
solution

Standard
deviation

PSO 0.7544 0.8616 0.8063 0.0537

ALO 0.8271 0.8734 0.8463 0.0241

SCA 0.7601 0.8244 0.8018 0.0361

JSO 0.6821 0.7901 0.7104 0.0305

Abbreviations: ALO, ant lion optimization; JSO, jellyfish search optimizer;
PSO, particle swarm optimization; SCA, sine cosine algorithm.

TABLE 9 Comparison of the obtained results through case 2 by various optimization algorithms application at 118‐bus system

Locations of
charging stations

Number
of EVs

Size of solar energy
station (MW)

Size of wind energy
station (MW)

Capital cost
of RERs $

Voltage
deviation (p.u)

ENS
(p.u) Total cost $

PSO 115 91 1.0205 2.1798 6,176,692 0.3025 0.7507 28,590,000

74 171 2.3932 3.6464

29 166 2.8781 2.5089

7 163 1.7378 2.1569

ALO 114 98 1.5704 3.5226 2,754,386 0.5411 0.7761 28,922,000

74 204 2.3096 3.7848

48 141 1.239 1.4206

3 156 3.1054 0.785

SCA 114 72 1.3268 2.3642 5,777,760 0.4143 0.6980 28,061,000

73 221 3.9536 3.8343

29 210 0. 5008 1.4120

5 141 0.520 1.8349

JSO 115 126 0.6566 3.3594 7,067,100 0.2904 0.6340 26,255,810

75 172 3.4308 3.773

48 201 3.6877 2.0266

20 231 3.1896 2.5033

Abbreviations: ALO, ant lion optimization; ENS, energy not supplied; EV, electric vehicle; JSO, jellyfish search optimizer; PSO, particle swarm optimization;
RER, renewable energy resource; SCA, sine cosine algorithm.
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4.2.3 | Case 3

Compared to case 2, as shown in Tables 9 and 10, voltage
deviation increased by using PSO, ALO, and SCA. Also,
the capital cost of RERs increased. However, JSO
decreased the Voltage deviation and capital cost of RERs,
which reinforces the effect of V2G in reducing the overall
cost of the system. JSO has obtained the minimum value
of the objective functions, as depicted in Figure 17, and
Table 11.

5 | CONCLUSIONS

This paper proposed an efficient approach for integrating a
large number of EV charging stations and RERs for
reducing the waiting queues, power loss, voltage deviations,
and the total annual cost of EV charging stations and RERs.
An efficient optimizer called JSO was implemented for
solving the allocation problem of EV charging stations and
RERs in multi‐microgrids. Different scenarios have been
investigated including optimal integration of EV charging

TABLE 10 Comparison of the obtained results through case 3 by various optimization algorithms application at 118‐bus system

Location of
charging
stations

Number
of EVs

Size of solar
energy
station (MW)

Size of wind
energy
station (MW)

Capital
cost of
RERs $

Voltage
deviation
(p.u)

ENS
(p.u) Total cost $

PSO 114 345 0.8442 1.9478 6,194,469 0.3692 0.534 21,559,000

71 249 3.8818 1.6759

48 116 2.0440 3.9715

20 200 3.8646 1.4049

ALO 106 334 0.9935 1.6817 5,957,626 0.6084 0.554 20,548,000

72 202 2.6921 2.7087

35 273 3.3076 1.4266

16 209 1.6529 3.1435

SCA 112 275 3.1046 3.3798 7,291,127 0.7703 0.527 21,617,000

71 229 2.1426 2.8084

53 242 3.2909 1.9246

7 269 3.3593 2.600

JSO 114 307 2.7240 3.0969 5,786,700 0.2603 0.495 20,401,312

74 259 1.442 2.7602

49 312 2.9535 1.4261

20 204 2.3228 1.2192

Abbreviations: ALO, ant lion optimization; ENS, energy not supplied; EV, electric vehicle; JSO, jellyfish search optimizer; PSO, particle swarm optimization;
RER, renewable energy resource; SCA, sine cosine algorithm.

FIGURE 17 Convergence curves by various algorithms during case 3. ALO, ant lion optimization; JSO, jellyfish search optimizer; PSO,
particle swarm optimization; SCA, sine cosine algorithm
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stations without RERs, optimal integration of EV charging
stations and RERs with a controlled charging strategy and
optimal integration of EV charging stations and RERs with
controlled charging and discharging strategy. The simula-
tion result reveals that superior results are obtained in the
case of optimal integration EV charging stations and RERs
with controlled charging and discharging strategy, where
VD, ENS, and total cost have been reduced considerably by
73.97%, 50.43%, and 29.55%, respectively, compared to the
base case. In addition, the proposed optimizer is superior for
solving the allocation problem of EV charging stations and
RERs compared to the other well‐known algorithms.

NOMENCLATURE
RER renewable energy resource
EV electric vehicle
JSO jellyfish search optimizer
PSO particle swarm optimization
ALO ant lion optimization
SCA sine cosine algorithm
VD voltage deviation
ENS energy not supplied
PDGi,t

active generated power hourly from renew-
able energy resources at bus i

Vi,t voltage magnitude hourly at bus i
Pdi,t load active power hourly at bus i
Psub,t active generated power hourly from

substation
PWw,i,t active generated power hourly from wind

station at bus i
Pr rated power of wind turbine
Vi,t wind speed hourly
Vci cut‐in speed
Vr rated speed
Vco cut‐out speed
PPVpv i t, , active generated power hourly from photo-

voltaic units at bus i
Psri rated power from the photovoltaic
Gstd global irradiance

Gs t, solar irradiance at each specific time
nEV number of electric vehicles
Pchi k t, ,

active power charging capacity of EV
Pdhi k t, ,

active power discharging capacity of EV
cm market price of electricity
IC DG the total investment cost
AIDG the annual installment
CRF is the annual loan payment
QGi t, reactive generated power at bus i
Qdi t, load reactive power hourly at bus i
Pchmin /Pchmax min/max active power charging capacity

of EV
Pdhmin /Pdhmax min/max active power discharging capacity

of EV
Vmin /Vmax min/max voltage magnitude
X t( )P current position of jellyfish
Xbest best position of jellyfish
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