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A B S T R A C T

Even though the SLAM laser scanners (LSs) have the required resolution for construction analysis, a drift error has been detected in georeferencing phase of the
data processing. The reduction of drift error in SLAM LSs with third-party software has not been studied. This paper demonstrates the drift error behavior of
commercial SLAM LSs and their correction with sectional post-processing methods, and shows that the drift error is mainly in a vertical direction, and it is largest
in the middle of the trajectory. The drift error was reduced from 10.6 cm to 0.2 cm. Circa 30 s length sections have better results than larger sections with
non-rigid transformation algorithm. The method has shown potential to improve the quality and cost-effectiveness of multitemporal construction documentation.
In addition, locations of additional control points were analyzed to prevent drift error, with adjustments to the walking path.

1. Introduction

3D data such as point clouds have been part of the construction
industry for almost two decades [1]. It has been used for example
in construction monitoring and quality control. Even though the full
automation of these applications is still a challenge it is known that
a combination of sensors is required to overcome the challenge [2].
In addition, the integration of multiple data sources can improve the
effectiveness of construction site documentation [3,4]. Photogramme-
try sensors and cameras as well as static laser scanners (LSs) have
been used in the construction industry [5]. Besides these sensors, it has
been proven that handheld SLAM LSs have the required resolution for
construction analysis. In addition, the usage of handheld sensors does
not need trained users, and walking in the site is enough to capture the
environment [6].

In addition to construction applications, handheld SLAM LSs have
been studied in other applications such as cultural heritage modeling
(e.g. [7,8]), underground mine mapping (e.g. [9,10]), building interior
modeling (e.g. [11,12]), landform mapping (e.g. [13,14]), and tree
modeling [15]. There have been reports of detections of drift errors in
SLAM point clouds. In the Raval et al. [16] study, a drift that is larger
than a meter occurred during a one-kilometer closed-loop measurement
in an underground mine. Correspondingly, Frangez et al. [10] detected
the drift in an underground mine during line measurement. Zlot et
al. [17] noticed that a drift error can be from 10 cm to over 1 m
between features that are over 100 m apart in an outdoor cultural
heritage site. In addition, in our earlier study, we detected a 20–40 cm
drift during measurements on a straight street side [18].
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The common feature of these studies is that the drift error was
detected after the data was fitted to ground control by georeferenc-
ing [10,16–18]. The reason for the late detection is that the processing
of the point cloud is done after the data collection and for this reason
the users were unaware of problems during the SLAM data collection.
Another common feature of these studies is that the drift error is small
at the beginning of the trajectories, and it grows over time. However,
the local error of the SLAM point clouds is minimal because the features
in the environment are detected correctly, meaning that elements such
as small rooms and the features inside them are in scale [10,16–
18]. For these reasons, it is hard to recognize the drift error without
georeferencing.

3D data has been used for many applications in the construction
industry such as quality inspections, progress tracking and construction
automation [1]. The analyses are possible when a construction site
has multi-time 3D data or a building information model (BIM) as a
reference. However, the data should not have any drift if the analysis is
meant to be reliable. For example, change detection between a drifted
SLAM point cloud and a terrestrial laser scanning point cloud can
demonstrate changes that do not exist in the environment. It is essential
to reduce the effect of SLAM point cloud drifting if the purpose of the
analysis is to apply it for construction purposes.

Errors in SLAM laser scanning have been reduced by improving the
SLAM algorithm (e.g., [19,20]). This is not possible for the user of
commercial SLAM LSs which utilize mostly black box SLAM algorithms.
The authors have not found any studies that cover the impact of
reducing errors with post-processing in commercial SLAM LSs. The
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Fig. 1. Definition of post-processing used in this manuscript.

definition of post-processing in this manuscript is illustrated in Fig. 1.
Before post-processing, the SLAM point cloud is collected with a SLAM
LS and processed into a point cloud in the scanner’s software. Then the
point cloud is typically improved in third-party software. This includes
noise removal, georeferencing, and error reduction with correction
algorithms.

Differing from SLAM, drift errors have been reduced during post-
processing in traditional mobile laser scanning (MLS), in which case
the calculation of the measurement trajectory is based on GNSS-IMU
positioning (global navigation satellite system and inertial measure-
ment unit). The reduction can be executed with a data-driven method
or a model-driven method. The data-driven method reduces error based
on ground control points and correction algorithms. The model-driven
method reduces error based on mathematical models of MLS and
analyzes individual error sources [21]. Both of the methods have been
widely used with traditional MLS [22–32]. There is also plenty of
software where this kind of error reduction is possible to execute [30,
33,34]. Because SLAM laser scanning has similar features to traditional
MLS, these methods could be utilized in SLAM laser scanning. In
addition, the post-processing of the traditional MLS as well as the
SLAM point cloud could be executed in sections (later sectional post-
processing). In case of SLAM point clouds, the sections can be created
based on the timestamps that the SLAM LS collects for the points.

This study aims to demonstrate error behavior and correction in
drifted SLAM point clouds of the commercial SLAM laser scanner and
software. The hypothesis regarding drift error behavior in SLAM point
clouds is that the error is largest in the areas that are furthest from the
start and end location in a loop measurement. In addition, we executed
an experimental study on how much post-processing can reduce drift
errors when the reduction of the error is done section-wise regarding
the SLAM point cloud. This is executed with datasets with SLAM LS
and terrestrial LS of building interiors and a small section in front of
a building. The hypothesis of sectional error reduction is that smaller
sections may decrease the error more than larger sections.

2. SLAM algorithms and drifting

Several SLAM algorithms exist. However, they have some repeating
features. Every SLAM algorithm solves the problem of locating the
sensor inside an unknown environment without knowledge of its own
location. The basic process of the SLAM algorithm is building a map
of an environment and at the same time using this map for locating
itself. For this, a SLAM algorithm estimates the location of the sensor
and the locations of the landmarks. At every timestamp, the algorithm
saves the correlations between the sensor and the landmarks. The
SLAM algorithm then updates the map and sensor locations.[35]. To
get good precision on the mapping results, SLAM algorithms require
a closed-loop survey [36]. The most known SLAM algorithms are Ex-
tended Kalman Filter (EKF) SLAM and Rao-Blackwellized particle filter
known as FastSLAM [35]. The new generation of the SLAM algorithms
are based on the factor graphs, and they have been implemented in
studies [37,38].

Most of the SLAM algorithms extract and match the features of
two consecutive point cloud sets of different timestamps. Then they
calculate the relative motion distance and location change with the
IMU. This combination will solve the position of the SLAM laser scanner
itself. The mathematical calculations differ in the algorithms [39].

Another possible method than feature-matching for the SLAM algo-
rithm is to locate its positioning is scan-matching. Feature-matching
refers to calculating absolute positioning while scan-matching refers to
calculating relative positioning. The main difference is that in feature-
matching the features are matched and in scan-matching, the scan
points are matched [36]. The matching can be executed with many
known algorithms such as Iterative Closest Point (ICP), Iterative Closest
Line (ICL), Iterative Closest Plane (ICP), and Maximum Likelihood
Estimation [40].

The drift can be caused by many factors such as misalignment of
the start and stop location (loop closure), movement of objects in the
environment, nonoptimal measurement path within the environment
and the elapsed time in the data collection [16,18,41]. The start and
stop locations of the closed SLAM laser scanning measurement are
recommended to be the same. Otherwise, it can lead to their misalign-
ment [41]. Movement in the environment can be as minimal as opening
and closing doors or passing vehicles. However, these can lead to drift
as recognized in the studies by Raval et al. [16] and Keitaanniemi et
al. [18]. In addition, the path of the SLAM laser scanner affects the
errors of the resulting point cloud. SLAM algorithms use the iterative
alignment of detected features to locate themselves in the environment.
For this reason, closing loops are preferred in SLAM laser scanning to
cope with dynamic drifting. Sometimes in nonideal cases, the measure-
ment path does not provide the required number of features for the
SLAM algorithm to function reliably, which leads to drifts in the path
solution and thus distortions in the point cloud [18,41].

3. Materials and methods

3.1. Case study

3.1.1. Study site
To examine the behavior of the drift of SLAM point clouds and

the effect of post-processing, we collected point clouds at an Aalto
University Campus in Espoo, Finland. We selected a four-story 1960s
university building for our study site. It was designed by the architects
Jaakko Kontio and Kalle Räike. The building has the typical features
of a campus building such as lecture and meeting rooms and corridor
environments [42]. The study site is in Fig. 2a and it includes the
hallways of the two first floors of the campus building, four rooms, and
a small section in front of the building (Fig. 2b). Overall, the study site
is circa 950 m2. All rooms and hallways are furnished with tables and
couches and thus the SLAM algorithm has features to use for locating
itself. There are six stairways in the study site which are the most
featureless and narrow environments for SLAM with a narrow corridor
on the first floor. In addition, the entry has many glass windows and
walls, as does the 2nd floors hallway in front of the two smaller meeting
rooms. In all the other locations there are many features close to the
sensor. The study site also included a small section in front of the
building that has a number of the features for SLAM. However, these
features were only next to the building because of the wide street and
the grass area next to the building (Fig. 2b).

3.1.2. Datasets
The reference point cloud was collected with a Leica RTC360 terres-

trial laser scanner with 63 scans and 24 target spheres. The measure-
ments took three and a half hours. The scanning settings were 6 mm
in resolution at a 10 m distance. The data were processed in Leica
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Fig. 2. Representation of the study site with the trajectory of the SLAM sensor colored from red to blue as start to finish. (a) Floorplan of the study area inside the building (b)
Area outside the building has green grass areas with some trees (circles), street (gray), and sidewalks (white).

Cyclone Register 360 software with a combination of cloud to cloud and
target-based alignment resulting in an absolute mean error of 3 mm.

The SLAM point cloud was collected with a GeoSLAM ZEB-REVO
laser scanner with a range of 30 m, a rotation speed of 0.5 Hz, a scanner
profile frequency of 100 Hz, and a data acquisition rate is 43,200
points/sec. The vertical field of view is 360◦, and the horizontal is
270◦ [43]. It was executed as one scan in ten minutes with slow walking
speed. In addition, during the walking path, we created internal closed
loops in the rooms and hallways, as shown in Fig. 2. The data was
processed in GeoSLAM Hub software with default settings.

3.1.3. The SLAM algorithm of the ZEB-REVO
The algorithm of the SLAM laser scanner estimates trajectory and

sensor translations and rotations during the scanning. As new data
is acquired, the algorithm uses the time window of the trajectory
to process that data with information from the previous time step.
Each segment of the data is processed iteratively. During the iteration,
the algorithm identifies the corresponding surface patches from the
point cloud. The second step of the iteration updates the trajectory.
This step minimizes errors between matched surfaces and deviation
from the measured inertial measurement unit’s (IMU) accelerations and
rotational velocities. It also estimates time synchronization and IMU
biases [44].

After the iterative SLAM algorithm phases, the algorithm executes
global registration. For it, the algorithm requires an initial parameter of
the trajectory from the IMU. This trajectory should be a closed loop. In
this phase the algorithm processes the entire trajectory as one window.
The rest of the iteration steps are the same as in the case of segmented
windows [44].

3.2. Analysis of the post-processing improvements

To demonstrate the behavior of the drift in the SLAM point cloud
we compared the drifted SLAM point cloud to the reference point cloud.
This process is described in more detail in Section 3.2.1. In addition,
we post-processed the SLAM point cloud with two different SLAM point
cloud section sizes and with two different correction algorithms. To
analyze the discontinuity of the SLAM point cloud after sectional post-
processing we compared the statistical values of the overlapping area
between the SLAM point cloud sections.

3.2.1. Initial situation analysis
To illustrate the drift in the dataset we aligned the SLAM point

cloud to the same coordinate system as the reference point cloud
using CloudCompare. This was executed using ICP (iterative closest
point) calculation. For the ICP calculation, the SLAM point cloud was
segmented to include only points from the first 99 s. In addition,
the reference was manually segmented to cover the same area. These

Table 1
Steps of the classification macro used in Terrascan with definitions.

Name of the step Definition

ScanCutLong Cuts off long range measurements from
the features that are detected multiple
times with the sensor

ScanClassifyRange Classified all the points that are over
15 m from the scanner

ScanClassifyIsolated Removes isolated points that had only
one two neighbors within 0.2 m radius

ScanClassifySurface Classified points to a surface with
0.015 m tolerance

ScanSmoothenXyz 3D smoothing process based on the
25–30 neighboring points by fitting 2nd
degree surface to the points

ScanThinGrid3d Removes some of the points that are
within a grid cell which is 0.2 m in size

segmented point clouds were aligned with ICP. The rest of the SLAM
point cloud was transformed to the same coordinates as the first 99 s
with the transformation matrix of the ICP calculation. With this process,
we obtain at least the beginning of the drifted SLAM point cloud to
align with the reference. After alignment, we removed the noise of the
SLAM point cloud with a classification macro in Terrascan (Terrasolid,
Finland). The macro classified points that are over the sensor’s range,
lonely clusters of points, and points from plane surfaces that were over
a threshold from the median value. The steps of the classification macro
are explained in more detail in Table 1 [45]. Then these classes were
removed before rest of the processes.

After alignment and noise removal, the SLAM point cloud was
manually segmented into eight sections which were 52–119 s in Cloud-
Compare. Section lengths were chosen by the number of features in the
section and based on the time of the detection of the points. From each
section, we chose and segmented three planar surfaces with different
orientations like a floor or a wall and calculated the distance difference
between the SLAM point cloud and the reference point cloud. This was
executed with the M3C2 plugin [46], implemented in CloudCompare.
The plugin uses an existing point normal to create cylinders in a
reference point cloud. These cylinders are then used for finding the
intersections of the compared point clouds and the distance differences
between them [46]. From the distance differences, we calculated the
statistical mean and standard deviation by using Gaussian fitting in
CloudCompare. These values indicate the accuracy before the further
drift-removing post-processing in third-party software. The process is
presented in Fig. 3.

To identify the drift error accumulation, we analyzed the SLAM
condition data calculated in GeoSLAM Hub software. The data shows
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Fig. 3. Used process of demonstrating the drift error behavior in the initial situation.

Fig. 4. Utilized post-processing process and the process to identify the discontinuity. The process was repeated at first with the large sections and then with the small sections.

how well the SLAM algorithm can use detected features. This data
colors the SLAM point cloud from blue, a good SLAM value, to a red,
a poor SLAM value [47]. The SLAM condition data was segmented in
the same sections with the same method as before. For the analysis,
we manually segment the points with poor SLAM value points in each
section and visually analyze them based on the timestamps of the points
and the trajectory.

3.2.2. Post-processing process
The SLAM laser scanner point clouds were post-processed in Ter-

rascan (Terrasolid, Finland). At first, we aligned the SLAM point cloud
sections to the reference point cloud with ICP in CloudCompare to give
a mutual location to the sections before more detailed processing in

Terrascan. Then we removed noise from the SLAM point cloud sections
with the same classification macro as in Table 1 in Terrascan. The
detailed processing of the SLAM point cloud sections was executed with
fit to reference with correction algorithms.

Before post-processing in Terrascan, we created a reference point
cloud that included 6–10 small, manually segmented areas of the refer-
ence point cloud. These segmented parts included 30 × 30–60 × 60 cm
planes or segments of the furniture or other structure in the environ-
ment. The same areas that were segmented to be the reference point
cloud for the post-processing were manually classified as one class in
the SLAM point cloud sections in Terrascan. In the post-processing, the
fit to reference with correction algorithms was executed only based
on the segmented reference areas and the manually classified SLAM
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Fig. 5. Illustration of the poor SLAM value points in the internal loops of the walking path on the second floor. All the detected points of the hallway are represented with blue
colors based on the distance to the walking path (black). The hallway features are colored gray, and the poor SLAM values are represented with orange. The starting locations of
the poor SLAM value detections are marked with black triangles in the walking path. In addition, the hallway images represent the environment in the internal loop locations.

Fig. 6. Representation of the poor SLAM valued transitions in sections 3–4 and 5–6. All the detected points of the environments are represented with blue colors based on the
distance to the walking path. The features of the environments are colored gray, and the poor SLAM values are represented with orange. The walking path is colored black in the
areas that have detected poor SLAM values and white in the rest of the sections. (a) narrow doorway in sections 3–4 (b) narrow staircase in sections 5–6.

points. For the correction algorithms, we concentrate on the data-
driven methods of drift error reduction. There are several correction
algorithms of the data-driven method. However, we concentrate on
rigid and non-rigid transformation algorithms. The rigid transformation
includes only translations and rotations of the point cloud. In contrast,
the non-rigid transformation, also known as an affine transformation,
includes deformations besides translations and rotations [48]. Both of
these correction algorithms are implanted to the SLAM point cloud in
the post-processing phase with manually segmented reference points
that are used as control points. The correction algorithm was executed
in fit to reference by choosing different settings in the method. In the

rigid transformation, the correction was applied systematically using
transitions in XYZ directions and rotations around the XYZ axes based
on the earlier defined reference point clouds. The non-rigid transfor-
mation differs only with the setting that allows deformation in the
correction. The deformation is executed with a correction model based
on the correction vector. The algorithm calculates the correction vector
based on the reference point clouds and interpolates the values between
the reference point clouds [45].

As in the initial situation, we chose and segmented the same three
planar surfaces from each section and calculated the distance difference
between the SLAM point cloud and the reference point cloud with the



Automation in Construction 147 (2023) 104700

6

A. Keitaanniemi et al.

Fig. 7. Distribution of the poor SLAM value points detected in section 8. All the detected points of the section are represented with blue colors based on the distance to the
walking path (black). The section features are colored gray, and the poor SLAM values are represented with orange. The white lines represent the doorways, and the outside area
is measured with the trajectory that is between them.

M3C2 plugin. In addition, as in the initial situation, we calculated the
statistical mean distances and standard deviations by using Gaussian
fitting and the average value of mean distance and standard deviation
from all the section values. The processing process is shown in Fig. 4.

In addition, we analyzed the discontinuity of the sections after the
post-processing in CloudCompare. We calculated the distance differ-
ence between sequential sections of the SLAM point cloud with the
M3C2 plugin. From the distance difference calculations, we segmented
three planar surfaces from each overlap area and calculated the mean
distance and the standard deviation with Gaussian fitting.

Based on the results of the first sections of the SLAM point cloud we
tested the same process with smaller sections that were from a 31–37 s
timespan. The larger sections were divided into smaller ones only in the
middle of the measurement path (270–475 s). The largest difference in
the mean distance values was detected between those sections. The rest
of the processing steps were executed in the same way as with the larger
sections. We then compared the mean distance and standard deviation
results of the sections and the discontinuity of the sections.

4. Results

4.1. Analysis of the SLAM point cloud values during the walking path

The SLAM point cloud values based on the SLAM condition calcu-
lation of the GeoSLAM Hub are shown in Figs. 5–7.

4.2. Analysis of the large sections

The SLAM point cloud was aligned to the reference point cloud
based on the first 99 s of the measurement path. That part aligned
to the reference with a root mean square error (RMSE) of 0.9 cm and
the rest of the measurement path was transformed to its location based
on the transformation matrix of that first section. The reference was
aligned with this method because we knew that the SLAM point cloud
had drifted and the probability that the drift had happened after the
first 99 s was high based on the environment. The results of SLAM
point cloud section alignments to the reference before post-processing
are presented in Table 2 with information of the sections. The sections

Table 2
Display of the used section names, timestamps of the sections, lengths of the trajectories
inside sections, and the number of the points in the sections. In addition, there are the
root mean square errors (RMSE) of sections from alignment to the reference before
post-processing.
Large sections

Section names Section
timestamp
seconds (s)

Length of the
trajectory in
section (m)

Amount of
points in
section (pcs)

RMSE (cm)

Section 1 0–99 46 2990203 0.9
Section 2 99–151 37 1720713 1.0
Section 3 151–270 87 3799419 1.4
Section 4 270–337 46 2134908 1.4
Section 5 337–410 41 2388159 1.4
Section 6 410–475 46 2161973 1.4
Section 7 475–553 69 2272136 1.0
Section 8 553–654 68 318001 1.2

Small sections

Section name Section
timestamp
seconds (s)

Length of the
trajectory in
section (m)

Amount of
points in
section (pcs)

RMSE (cm)

Section 4.1 270–305 24 1102939 1.1
Section 4.2 305–337 22 1031969 1.3
Section 5.1 337–373 20 1277863 1.4
Section 5.2 373–410 21 1110296 1.5
Section 6.1 410–444 24 1045176 1.3
Section 6.2 444–475 22 1116797 1.1

are illustrated in Fig. 8. In addition to the timestamps, we measured the
length of the trajectory which was circa 440 m, and the middle point of
it was under section 4 timestamps. The average point density from five
meters from the sensor is circa 1900–3300 points per square meter.

The mean distances and standard deviation values between the
SLAM point cloud and the reference point cloud of the horizontal planes
for the larger sections are presented in Figs. 9 and 10.

The mean distances and standard deviation values between the
SLAM point cloud and the reference point cloud of the vertical planes
for the larger sections are summarized in Figs. 11 and 12.
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Fig. 8. Illustration of the sections in the floorplan of the study site. The large sections are represented with colors and the red lines represent locations that separate the smaller
sections inside the large sections. The staircases are named with a number for analysis purposes.

Fig. 9. Representation of mean distance of the horizontal planes between the SLAM point cloud and the reference point cloud in the large sections.

4.3. Discontinuity of the sections

The mean distances of overlapping areas between consecutive large
sections are shown in Fig. 13 for both correction algorithms. Corre-
spondingly, the standard deviation values of overlapping section areas
are shown in Fig. 14.

The mean distances of overlapping areas between consecutive small

sections are in Fig. 15 with both correction algorithms. Correspond-

ingly, the standard deviation values of overlapping section areas are

shown in Fig. 16.
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Fig. 10. Representation of standard deviation of the horizontal planes between the SLAM point cloud and the reference point cloud in the large sections.

Fig. 11. Representation of mean distance of the vertical planes between the SLAM point cloud and the reference point cloud in the large sections.

Fig. 12. Representation of standard deviation of the vertical planes between the SLAM point cloud and the reference point cloud in the large sections.
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Fig. 13. Mean distances of overlapping areas of consecutive large sections are represented in rigid and non-rigid transformation.

Fig. 14. Standard deviations of overlapping areas of consecutive large sections are represented in rigid and non-rigid transformation.
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Fig. 15. Mean distances of overlapping areas of consecutive small sections are represented in rigid and non-rigid transformation.

Fig. 16. Standard deviations of overlapping areas of consecutive small sections are represented in rigid and non-rigid transformation.



Automation in Construction 147 (2023) 104700

11

A. Keitaanniemi et al.

Fig. 17. Mean distance of the horizontal planes is presented between the SLAM point cloud and the reference point cloud in the large sections and small sections of rigid and
non-rigid transformations.

Table 3
Average results of the discontinuity analysis with mean distances and standard deviations of the horizontal and vertical planes from
overlapping areas between consecutive sections.

Rigid transformation
of large section (cm)

Non-rigid
transformation of
large section (cm)

Rigid transformation
of small section
(cm)

Non-rigid
transformation of
small section (cm)

Average of mean distances
of vertical plane surfaces

0.2 −0.1 0.3 0.1

Average of mean distances
of horizontal plane surfaces

−1.8 −1.5 −0.8 −1.0

Average of standard
deviations of vertical plane
surfaces

2.4 2.7 1.5 1.4

Average of standard
deviations of horizontal
plane surfaces

1.1 1.2 1.3 1.5

4.4. Comparison of the large and small sections

The mean distance values between the SLAM point cloud and the
reference point cloud of the larger and smaller sections of rigid and non-
rigid transformations are shown in Fig. 17 in the horizontal direction
and Fig. 19 in the vertical direction. The standard deviation values of
rigid and non-rigid transformations are shown in Figs. 18 and 20.

The average values of the discontinuity analysis from overlapping
areas between consecutive sections are shown in Table 3.

5. Discussion

5.1. Error behavior in the drifted SLAM point cloud

Based on the first results of the alignment of the SLAM point cloud
to the reference point cloud, it was clear that the SLAM point cloud
had drifted in the vertical direction (Fig. 9). With further analysis of
the initial situation, the hypothesis of drift being largest in the furthest
distance from the start and end location is correct. The drift error of the
horizontal planes of the original SLAM point cloud increases towards

the middle point of the measurement path and decreases towards the
endpoint. The maximum drift error was 10.6 cm in the horizontal
direction and it was inside section 4 (timestamps 270–337 s) that
includes the middle point of the trajectory based on time and distance.
The explanation for the largest drift value in the furthest distance is
that the drift error is congested over time. Because of the close-loop
measurement and the SLAM algorithm that tries to fit the start and
end point together as well as possible, the drift moves away from that
point and is congests to the furthest point of the measurement path.
The congestion of the drift error could be avoided with additional
control points during the measurement path which would used in the
post-processing to reduce the drift.

5.1.1. Drift error locations
The drift error was analyzed according to the observations of mea-

suring environment and walking path. Environments such as narrow
doorways, narrow hallways with internal loops in the walking path,
outside environments, and narrow staircases with a few features have
led the SLAM algorithm to have decreased detection of the features
to use in a SLAM algorithm. The drift error appearance locations and
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Fig. 18. Standard deviation of the horizontal planes is presented between the SLAM point cloud and the reference point cloud in the large sections and small sections of rigid
and non-rigid transformations.

Fig. 19. Mean distance of the vertical planes is presented between the SLAM point cloud and the reference point cloud in the large sections and small sections of rigid and
non-rigid transformations.

walking path characteristics to prevent it are listed in Table 4. The
errors of the point cloud can occur in the narrow hallway during
internal loops in the walking path (Fig. 5). The second-floor hallway
is long and narrow (Fig. 8). The widest part of the hallway is 8.5 m

wide, and the narrowest part is 4 m wide. Most of the hallway is
6.5 m wide and 29 m long. In section 2, the trajectory has two internal
loops. During these loops, the detected features had changed to the poor
values for the SLAM. The first internal loop in section 2 starts to have
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Fig. 20. Standard deviation of the vertical planes is presented between the SLAM point cloud and the reference point cloud in the large sections and small sections of rigid and
non-rigid transformations.

Table 4
Illustration of drift error locations during the walking path increases the drift with a threshold value of 2 cm. In addition, the walking
path characteristics have prevented or minimized the drift error during the walking path.

Section name Locations that increase the drift
with over 2 cm

Locations that increase the
drift with under 2 cm

Drift preventing walking path
characteristics

Section 1 Start of the SLAM
measurement

Walking path under 10 m from
features and internal loop around
furniture

Section 2 Small internal loops in the
second-floor hallway that is long
and narrow

Straight walking through the long
and narrow hallway with features
under 10 m

Section 3 Small effect of the narrow
doorway. However, it mainly
accumulated from section 2

Several internal loops around the
room’s edges

Section 4 180-degree turn before staircase 3
and error accumulation of the
previous drift locations

The narrow doorway causes a
slight drift increase

The narrow doorway causes a
slight drift increase

Section 5 Beginning of the transition to
the staircase 4

Internal loops in circa 20 square
meter rooms

Section 6 Internal loop in the second-floor
hallway

After the transition of the
staircase 4

Internal loops in smaller hallways
between the staircases

Section 7 Accumulation of the drifts from
sections 6 and 8

Internal loops with under 10 m
from features and revisiting the
measured environment

Section 8 Outdoor visit and end of the
SLAM measurement

Revisiting the measured
environment

poor SLAM values while turning toward the stairs next to staircase 2
(Fig. 5). Most of the already detected features stay under the gap in the
sensor’s field of view (FOV) during the internal loop. The other features
are self-repeating staircases or features with over 5 m distance from the
sensor. The direction of the internal loop towards anti-clockwise may
have caused the poor SLAM values because most of the features are in
the middle of the hallway.

The second internal loop in section 2 has poor values of the features
after turning toward the width direction of the hallway (Fig. 5). The gap
in the FOV covers some of the earlier detected features. The features

on the sides of the sensor are over 10 m in the distance. The poor
SLAM values may be caused by the internal loop’s small diameter (circa
2 m). The small diameter leads to quick turns for the sensor, and the
scanner profile frequency cannot collect sufficient data for the SLAM
algorithm. The size of the internal loop requires to be scaled based
on the size of the space. In smaller spaces, the same errors did not
occur. The distribution of the features in a narrow hallway with a small
diameter internal loop causes problems for the SLAM algorithm. The
internal loop in section 6 near staircase 4 in the second-floor hallway
has the same problems as the second internal loop in section 2. Some
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of the features are close, but others are over 10 m in the distance, and
the diameter of the internal loop is circa 2 m. In this case, the hallway
is even narrower than in section 2. In section 6, it would have been
better to create the loop as an ellipsoid towards the wider part of the
hallway, while the walking path would have covered the same features
again than in sections 2–4. section 4, the 180◦ turn in the trajectory
before staircase 3, has poor SLAM values. The poor values are smaller
than section 2 in the first internal loop. This may be because the turn
is executed towards the middle of the hallway. However, the turn is
tight, which can cause poor SLAM values of the features.

In addition to internal loops in narrow hallways, a narrow doorway
impacted the SLAM algorithm and the amount of drift (Fig. 6). In
section 3, the drift is 3 cm larger after the narrow doorway. The
narrow visibility of the features for the SLAM in transition through the
doorway can cause the drift. The space after the doorway has only
minimal detection of the features before the transition through the
doorway. These detected features were insufficient to keep the SLAM
localization errorless because they had poor SLAM values. The same
effect was in section 4 with the same doorway. However, it was smaller
because the drift error differs only circa 1 cm. This may be due to the
SLAM algorithm already gathering information from both sides of the
narrow doorway. The reason for the existing information is that the
measurement path is revisiting the same space after the room behind
the narrow doorway. For that reason, the SLAM localization works
better, and the drift increases only a little bit. However, the features
detected straight after the doorway from over 4 m distance had poor
SLAM values.

Similarly that the narrow doorway impacted the dirt the narrow
staircase 4 in the transition between sections 5 and 6 (Fig. 8) impacted
the drift. The drift changes circa 2 cm larger after the transition to
the downstairs in the narrow staircase (Fig. 6). The poor SLAM values
may be caused by the narrow hallway of the second floor and the half-
glass walls on the stairs and upstairs. The upstairs features are in the
blind spot because of the narrow staircase and the gap in the sensor's
FOV. Tilting the sensor more perpendicularly to the stairs would have
avoided this. By tilting the sensor, the blind spot of the FOV would be
covering a more featureless part of the environment.

Section 8 has a small (circa 0.7 cm) drift change in the horizontal
planes after a brief visit outside. It is detectable in the SLAM values of
the features, which are primarily poor on the outside (Fig. 7). Some
of the poor SLAM value detections are right before the end of the
measurement during the sensor's placement on the table. The same
phenomenon is detectable at the start of the measurement. The poor
SLAM values after the start have a minimal effect on the drift because
the drift is 0.2 cm in section 1. The change in the feature distribution
can cause the drift of section 8 outside. The wide street next to the
building does not have many suitable features for the SLAM algorithm.
For that reason, the features are mostly on one side of the sensor.
Besides, indoors the floors, ceilings, and walls are all suitable for the
SLAM algorithm to locate itself. In addition to them, the furniture and
other objects add more diversity to the features, which helps the SLAM
algorithm to do more precise locating. However, the coming back to
the indoors in section 8 minimizes the drift in the section. Because
the returning space is the same hallway as the starting and ending
location, the drift is not accumulated in the poor SLAM value area. The
processing of the SLAM point cloud has moved the error of the poor
SLAM values further away from the end location, and they accumulate
in the earlier sections (3–6).

The accumulation of the poor value errors changes the drift error to
a different location than the poor SLAM values. The most significant ac-
cumulation of the drift error is in the furthest location (section 4) from
the start and end location. From the start to the most distant location
through section 1 to 4, the overall drift accumulation is 10.6 cm. A
small part of the error of the internal loops in section 2 is shown in the
drift between sections 1 and 2 (Fig. 8). The drift accumulates slightly
between these sections. In section 3, the drift is circa 3 cm larger than

in section 2. This is due to the internal loops in section 2 and the narrow
doorway in section 3. The largest effect of the error of the internal
loops in section 2 has accumulated in section 3. n addition, the drift
accumulates from section 3 to section 4 because of the narrow doorway.
This accumulation between sections 3 and 4 on both sides of the narrow
doorway may be small because the walking path goes through already
detected features. However, the error accumulates circa 4 cm in section
4 after staircase 3. The reason is the 180◦ turn before the staircase and
the other error areas that have been before section 4.

The same effect is from section 8 to section 4. In section 8, the
drift occurs from the outside visit with a small accumulation. This
may have the same effect as between section 3 and section 4 because
section 8 returns to the same space as the whole measurement has
been started. The return to the same room as the starting location is
shown in the drift between sections 8 and 7 with a small accumulation.
After staircase 6 in section 6, the drift has accumulated circa 3 cm
more from section 7. The drift grows circa 4 cm in staircase 5. All this
accumulation between sections 8 and 6 are caused by the outdoor visit
and the internal loop in section 6. In section 5, the drift accumulates
based on the narrow staircase 4. All the drift accumulates to sections 4
and 5 even though they had a minimal amount of the poor values of the
features for the SLAM algorithm to solve itself. Walking path extension
to cover the same features as in sections 2–TeXFolio:sec4 of the narrow
hallway on the second floor would have minimized the amount of the
drift in section 6.

5.1.2. Recommendations for the locations of the control points
Based on these results, the locations of the additional control points

should be after narrow staircases that lead to the narrow but high
ceiling hallways with a low number of features, in long and narrow hall-
ways, near narrow doorways, and outside during transitions between
inside and outside measurements. After narrow and almost featureless
staircases should add control points. Significantly in transitions to nar-
row high ceiling hallways after the narrow stairs. In narrow featureless
hallways, it is important to add a control point. Adding at least two
control points before and after a narrow hall would be good. However,
if it is over 30 m, adding a control point in the middle of the hallway
is not a bad idea. Control points could be located on both sides in
narrow doorways if the measurement path enters and exits from the
same doorway. The control point should be located after a narrow
doorway in other cases. It is important to have a control point outdoors
while visiting there. Even though the outdoor environment does not
have the same feature distribution as in this study, traffic or other types
of movement may affect the SLAM algorithm.

These control points could be used to prevent drift either during the
SLAM algorithm calculation or during post-processing on construction
sites. In some of the SLAM laser scanners on the market, adding a
control point for SLAM algorithm processing is possible. The results
of this study indicates some of the places that require control points
so that drift can be prevented in SLAM laser scanning. Based on this
information, limiting the control points to only useful locations is
possible. However, if the drift occurs despite the control points it is
possible to use the same control points in the post-processing with
third party software. Besides, it may need a couple of control points
in possible error areas depending on the post-processing method. In
addition, additional control points in problem areas may bring closer
the possibility of creating automation in construction monitoring and
quality controlling with SLAM laser scanners.

5.2. Analysis of drift error reduction in post-processing

In addition to the error behavior, we studied error reduction with
sectional post-processing. Overall, the post-processing reduced drift
error in all directions with both section sizes. The maximum drift reduc-
tion was 10.4 cm. However, this was not the case with small sections
in the vertical direction (Fig. 19). There the average mean distance
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between the SLAM point cloud and the reference stayed at the same or
increased some millimeters in the sections. In addition, the average of
the standard deviations between the SLAM and reference point clouds
decreased after post-processing with large sections (Figs. 10, 12, 18 and
20). With small sections, the same increase was detectable as in the
mean distances. The reason for this may be that the noise removal used
medians of the point cloud surfaces to reduce noise. It was executed
before the transformation algorithms. With the smaller sections, the
median could easily be in a different location by a couple of millimeters
than with the larger sections based on the amount of the data.

The vertical planes have under a 0.5 cm mean distance from the
reference point cloud before the post-processing of the SLAM point
cloud (Fig. 11). This can be due to the sensor’s accuracy which is 1–
3 cm [49]. For the large sections the average mean distance does not
change after post-processing. For the small sections (Fig. 19) the mean
distance of the section increases over the values that were present be-
fore post-processing. This shows that it is not profitable to post-process
the points from the direction that already has good values. Particularly,
the average of the mean distance from all the small sections is almost
the same as before post-process. These are as well under the sensor’s
accuracy. In conclusion, the drift is mainly detected only in one dimen-
sion. Because the drift is mainly in one dimension, in the future drifted
SLAM point clouds could be processed in only the direction that has the
drift. Based on the results, the differences between non-rigid and rigid
transformations are relatively small. Overall, the difference is from a
couple millimeters to a half of centimeter (Figs. 17–20). However, this
is dependent on the case because it is possible to have drift in SLAM
point clouds in many directions.

In the sectional post-processing, the continuity between the sections
is important. Based on the average results of the discontinuity analysis
the small sections have smaller changes between horizontal planes than
the larger sections (Table 3). At the same time the change is almost
the same for both section sizes in vertical planes. This is shown also
in Fig. 13 which has four overlapping sections with over a 2 cm mean
distance between sections and in Fig. 15 where the number of sections
that are over 2 cm is three. In addition, the standard deviations are
smaller in the small sections than in the large sections (Figs. 14 and
16).

The hypothesis of smaller sections reducing drift more than large
sections was correct in the horizontal planes. With the small sections
the average mean distance between the SLAM point cloud and the
reference point cloud was close to 0 cm. At the same time the value
for the large sections was 0.7 cm at the best. Because the results
for the vertical planes were the same with both sections it does not
affect the selection of the section size in sectional post-processing. In
addition, small sections show better results in the discontinuity analysis
between sections. The only downside with the small sections is that the
standard deviation between the SLAM point cloud and the reference is
on average 0.2–0.3 cm larger with the small sections than with large
sections. For the transformation algorithms the section size has a small
effect. With the small sections the non-rigid transformation is circa
0.6 cm better than with large sections and in rigid transformation the
difference is circa 1.5 cm. In addition, the non-rigid transformation
algorithm is better in horizontal plane errors and rigid transformation
in vertical plane errors. Overall, the choice of the section size and
post-processing algorithm is dependent on the application and needed
accuracy. Smaller sections reduce drift more, however, larger sections
also have results that fall below the sensor’s accuracy.

Even though our post-processing gives promising results of reduc-
ing drift error, a method that requires collecting both a SLAM point
cloud and some other more accurate point cloud such as a terrestrial
laser scanner point cloud is not an optimal way to execute the post-
processing of a SLAM point cloud. However, it proposes that sectional
post-processing with the correction algorithms in third-party software
is a possible method to reduce a noticed drift error in a SLAM point
cloud. The other optional methods to reduce drift would be a tool

that reduces the error over time, such as an interpolation, time-based
leveling, or time-based linear transformation [21,50–52]. However, the
authors are not aware of any third-party software that includes any
of these error reduction methods. However, sectional post-processing
could also be executed by using added control points such as spherical
targets for reference information in the post-processing. Some of the
required and critical control point locations (as featureless staircases,
narrow hallways and doorways) have been identified and discussed in
this study. The sectional post-processing method presented in this study
could be used for example for construction documentation, monitoring
and quality analyzing purposes. To identify real change between new
and old datasets, the datasets should include as few errors as possible.
Because SLAM laser scanning is a walkable method to collect 3D data
from a construction site, it would be a useful tool for construction mon-
itoring and quality analyzing. Even though it has sometimes presented
drift errors, as we explained in the introduction, this can be reduced
as the experimental study illustrates. However, in the case that the
reference points for the sectional post-processing are taken from earlier
point clouds there needs to be points that are definitely from stable
features. If the reference points are stable, the results that are shown
in this experimental study can be reached with multi-time construction
documentation datasets by using the sectional post-processing process.
In addition, if we add features that are detectable with SLAM laser
scanners in the critical locations, it is even possible to prevent drift
from occurring.

6. Conclusions

This paper demonstrated the behavior and correction of drift in a
SLAM point cloud. The study case shows that the drift error was the
largest in the middle of the trajectory based on time and distance,
with a value of 10.6 cm. The SLAM LS can drift over 10 cm within
ten minutes of measurement. Environment affects the drift, such as
narrow staircases, long narrow hallways, narrow doorways, and visits
from inside to outside. It would be important to add control points
after or inside these locations to prevent drift errors from occurring.
In addition, the measurement path can be optimized to prevent drift.
For example, the measurement path should revisit the environments
that have been measured. Similarly, the internal loops, which are scaled
based on the size of the environment and measured toward the middle
of the room, can minimize the drift. The internal loop diameter can
be circa 2 m when the space is circa 22 square meters. However, in
220 square meters, the 2 m diameter in the internal loop is too small.
The drift was mainly detected only in the vertical direction because,
in vertical planes, the mean distance from the SLAM point cloud to
the reference was 0.5 cm. In addition, the standard deviation is under
2.6 cm, which is withing the sensor accuracy specification.

Sectional post-processing could reduce drift by from 10.6 cm to
0.2 cm in this case study. However, the drift error is detected to
appear only in the vertical direction so that the post-processing could
be executed only in that direction. Based on the results of this study,
the horizontal direction can still be withing the sensor accuracy speci-
fication. The building interiors can be measured at the level of 1–3 cm
accuracy when the SLAM point cloud is errorless and the noise is
removed. Regarding section size, smaller sections reduce the drift error
more than larger sections. In addition, non-rigid transformation reduces
drift error more than rigid transformation. However, the choice of
section size and post-processing algorithm is still dependent on the
application and required accuracy because the results have minimal
differences. Based on the results, it is possible to conceive a measure-
ment path that can collect errorless point cloud data from building
construction. With this kind of measurement path, commercial SLAM
LSs are even more suitable for future construction applications such
as documentation, monitoring, and quality analysis. In addition, the
effectiveness of SLAM laser scanners in construction applications is
still possible even with drifted point clouds. The commercial SLAM
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LSs could be even more suitable for construction quality analysis with
additional control points. With the control points in critical locations,
the drift error can be prevented on the construction site. Most impor-
tantly, the results show that the drifted commercial SLAM LS point
cloud could be part of construction documentation. The reason is that
the drift is possible to minimize in post-processing and new repeated
measurements to replace the drifted ones are unnecessary, and the
project stays on schedule.

Several topics need to be addressed in future research. As this
research suggested, the additional control points can be used to prevent
drift error. However, the value of the effect should be studied with
commercial SLAM LSs. In addition, this study presents a style of the
internal loop with SLAM LS with a maximum measurement range of
30 m. The influence of the extended maximum range with internal
loops should be studied within the different sizes of spaces. As the
paper presents, the drift error is in one dimension in the indoor of the
building. However, the repetitiveness of this effect in other environ-
ments should be researched. In addition, the behavior of the drift error
in time-series studies with SLAM LSs should be investigated in future
research.
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