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Controlling the temperature of nanoscale quantum systems is becoming increasingly important in the efforts
to develop thermal devices such as quantum heat valves, heat engines, and refrigerators and to explore fun-
damental concepts in quantum thermodynamics. In practice, however, it is challenging to generate arbitrary
time-dependent temperatures, similarly to what has been achieved for electronic voltage pulses. To overcome
this problem, we here propose a fully quantum mechanical scheme to control the time-dependent environment
temperature of an open quantum system. To this end, we consider a collection of quantum harmonic oscillators
that mediate the interactions between the quantum system and a thermal reservoir, and we show how an effective
time-dependent temperature can be realized by modulating the oscillator frequencies in time. By doing so, we
can apply effective temperature pulses to the quantum system, and it can be cooled below the temperature of
the environment. Surprisingly, the scheme can be realized using only a few oscillators, and our proposal thereby
paves the way for controlling the temperature of open quantum systems.

DOI: 10.1103/PhysRevResearch.4.043112

I. INTRODUCTION

Temperature is a central concept in thermodynamics,
which characterizes the tendency of a physical system to emit
or absorb heat [1]. Typically, temperatures vary only slowly
in time; however, fast temperature modulations are playing
an increasingly important role in quantum thermodynam-
ics, for instance, in relation to finite-time thermal machines
[2–7], fluctuation theorems [8–12], and quantum calorimetry
[13–16]. Recently, the field of thermotronics has emerged
with the goal of realizing thermal capacitors [17–20], transis-
tors [21–23], and other nonlinear components such as thermal
memristors [24,25] that are driven by time-dependent tem-
peratures instead of voltages. However, fast control of the
temperature at the nanoscale is challenging, and most propos-
als for temperature control [12,26–31] rely on semiclassical
techniques or time-dependent couplings to environments at
different temperatures [32,33].

Several approaches to temperature control are based ei-
ther on random forces acting on a system [26,29,30,34] or
on the use of feedback cooling (or heating) by a parametric
drive [12,27,28,31]. As an example, the stiffness of an optical
potential may be changed in response to the movement of
a trapped particle. More generally, structured environments
have been employed to generate non-Markovian dynamics,
for instance, by using a finite-size system that mediates the
interactions between an open quantum system and its envi-
ronment [35]. Alternatively, a finite-size system can mimic

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

a macroscopic environment for a limited period of time
[36,37]. Potentially, these methods may also be used to con-
trol the effective temperature of an environment and thereby

FIG. 1. Effective temperature pulses. (a) A quantum system
(blue) is coupled with strength α to an environment consisting of N
quantum harmonic oscillators (brown) that are coupled with the rate
γ to a thermal reservoir (red) at the fixed temperature Te. We modu-
late the oscillator frequencies, ω j (t ), to generate a time-dependent
effective temperature T (t ) that the quantum system experiences.
(b) As an application, we take a single harmonic oscillator with the
frequency ωs as the quantum system, and we show its temperature
Ts(t ) (blue) in response to the temperature pulses T (t ) (brown) with
N = 16. As a comparison, we show the time-dependent temperature
obtained from a Lindblad equation for the quantum system only with
T (t ) inserted (black); see Eq. (8). The parameters are α = 0.05νωs,
γ = 0.01ωs, and kBTe = 5h̄ωs.
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apply temperature pulses to an open quantum system as we
will see.

In this paper, we propose and analyze a fully quantum
mechanical scheme to control the effective temperature of
an open quantum system. Figure 1(a) illustrates our setup,
which consists of a collection of quantum harmonic oscillators
that mediate the interactions between a small quantum system
and a thermal reservoir, which is kept at a fixed tempera-
ture. Inspired by Luttinger, we modulate the frequencies of
the oscillators in time to generate a time-dependent effective
temperature that the quantum system is exposed to [38,39]. In
particular, we determine how the oscillator frequencies must
be modulated in time to realize a desired effective temperature
profile T (t ) as illustrated in Fig. 1(b), where we show how the
temperature of the quantum system responds to two specific
temperature drives using N = 16 quantum harmonic oscilla-
tors. This approach also allows us to cool the quantum system
and maintain its temperature below that of the environment.
Our work thereby provides a practical strategy for controlling
the effective temperatures of open quantum systems, and it
opens up avenues for further theoretical and experimental
investigations of temperature-driven quantum systems.

II. EFFECTIVE TEMPERATURES

The Hamiltonian of the quantum system and the harmonic
oscillators reads

Ĥ (t ) = Ĥs + Ĥa(t ) + Ĥi, (1)

where the quantum system itself is a harmonic oscillator
Ĥs = h̄ωs(â†

s âs + 1/2) that interacts with the other oscilla-
tors, Ĥa(t ) = ∑N

j=1 h̄ω j (t )(â†
j â j + 1/2), through the coupling

Ĥi = h̄α
∑N

j=1(â†
s â j + â†

j âs), and â†
s, j and âs, j are the usual

ladder operators. Our scheme applies to other types of quan-
tum systems, such as two-level systems; however, it is useful
to consider an oscillator, since it can be described by an
effective temperature that we denote by Ts(t ). The key idea
is now to modulate the frequencies ω j (t ) in time to generate
an effective temperature profile T (t ) that the quantum system
experiences.

The coupling between the quantum system and the oscil-
lators is weak, α � ωs, ω j . In addition, the oscillators are
weakly coupled to a heat bath at the temperature Te, and the
driving is slower than the bath correlation time. The reduced
density matrix ρ̂(t ) of system and oscillators then evolves
according to the Lindblad equation [40–42]

d ρ̂(t )

dt
= − i

h̄
[Ĥ (t ), ρ̂(t )] +

N∑
j=1

γ j (ω j )D j ρ̂(t ), (2)

where we have introduced the dissipators D j ρ̂ = [1 +
nTe (ω j )](â j ρ̂â†

j − 1
2 {â†

j â j, ρ̂})+ nTe (ω j )(â
†
j ρ̂â j − 1

2 {â j â
†
j , ρ̂}),

the rates γ j depend on the oscillator frequencies via
the spectral function of the heat bath, and nT (ω) =
[exp(h̄ω/kBT ) − 1]−1 is the Bose-Einstein distribution.
The derivation of Eq. (2) is provided in Appendix A together
with the relevant assumptions. We note that the oscillator
frequencies in the Hamiltonian may be slightly renormalized
due to a small Lamb shift.

III. DRIVING PROTOCOL

To find the driving protocol for the oscillator frequencies
ω j (t ) to realize a given temperature profile T (t ), we first set
the coupling to zero (α = 0) and impose that the N oscillators
remain in the thermal state

ρ̂a(t ) = e−Ĥa (t )/kBT (t )/Z (t ) (3)

with Z (t ) defined so that tr{ρ̂a(t )} = 1. With T (t ) = Te, this
is the state of the oscillators in equilibrium with the reservoir.
Generally, however, it is a nonequilibrium state, but it takes
the form of an equilibrium density matrix with the effective
temperature T (t ). Inserting Eq. (3) into Eq. (2), we obtain the
differential equation

d

dt
nT (ω j ) = γ (ω j )[nTe (ω j ) − nT (ω j )] (4)

for each oscillator frequency; see Appendix B. The left-hand
side is the required change in the population of each oscillator
to retain the state in Eq. (3), and the right-hand side is the
net absorption rate of energy quanta from the environment.
Without the reservoir (γ j = 0), we easily find ω j (t )/ω(0) =
T (t )/T (0), showing that the change in the frequencies is
directly proportional to the desired temperature profile. Fur-
thermore, for T (t ) = Te, we find ω̇ j = 0, and no driving is
needed, as one would expect.

To illustrate our proposal, we now consider the particu-
lar case where the rates γ j are constant, corresponding to a
heat bath with a flat spectral density [43–45]. Also, for the
sake of simplicity, we take the same rate for all oscillators,
γ j = γ , although none of these assumptions is essential for
our proposal. In the general case of a time-dependent effective
temperature, T (t ) �= Te, we find the time dependence of the
oscillator frequencies by solving Eq. (4) for ω j (t ). For large
temperatures, kBTe, kBT (t ) � h̄ω j (t ), and small variations,
T (t ) ≡ T0 + �(t ), we find the expression

ω j (t )

ω j (0)
� e(1−Te/T0 )γ t +

∫ t

0
dτ (γ Te�(τ ) + T0�̇(τ ))/T 2

0 . (5)

Here, as a special case, the integral vanishes for a constant
effective temperature, T (t ) = T0, and we are left only with the
first term, which is exponentially decreasing (increasing) if the
effective temperature is lower (higher) than the environment
temperature. According to Eq. (5), the ratio of the frequen-
cies is constant in time, ω j (t )/ωi(t ) = ω j (0)/ωi(0), and it
will be convenient to fix the ratio of adjacent frequencies as
ω j (0)/ω j−1(0) = eν , where ν determines their spacing. The
initial oscillator frequencies are chosen so that some of them
are always close to resonance with the system. The state in
Eq. (3) at the initial time t = 0 can be produced by first fixing
the frequencies to be ωi(0) and then letting the harmonic
oscillators equilibrate with the environment. Subsequently, the
frequencies are changed to ωi(0+) = ωi(0)T (0+)/Te.

IV. TEMPERATURE PULSES

We now apply the effective temperature pulses indicated in
brown in Fig. 1(b) with T (t ) = T0[1 + λ cos(
t )] to the left
and a steplike profile to the right and then solve Eq. (2) with
the time-dependent frequencies from Eq. (4) inserted. To this
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end, we exploit the fact that Eq. (2) preserves the Gaussian
nature of equilibrium states, which are fully described by
their correlation matrix 〈â†

k âl〉 with the equation of motion
(see Appendix C)

d

dt
〈â†

k âl〉 =
N∑

m=0

(Wkm〈â†
mâl〉 + 〈â†

k âm〉W ∗
ml ) + Fkl , (6)

which follows from the Lindblad equation for the coupled
quantum system and the harmonic oscillators [46]. Here, we
have defined the (N + 1) × (N + 1) block matrix

W (t ) = i

(
ωs α

α† �(t )

)
, (7)

whose first element contains the frequency of the system os-
cillator, and the row matrix α = α(1, 1, . . . , 1) describes the
coupling between the quantum system and the harmonic os-
cillators. We have also defined the diagonal matrix, 
kl (t ) =
δkl (ωk (t ) + iγ /2), with the N oscillator frequencies and the
damping strength, while F is a diagonal matrix with 0 as
the first element followed by γ nTe (ωk ) for each of the N
oscillators. We note that 〈â†

k〉 = 〈âk〉 = 0 for all oscillators.
The system oscillator is always in a thermal state with the
effective temperature given by the average occupation as
kBTs = h̄ωs/ ln(1 + 1/〈â†

s âs〉) � h̄ωs〈â†
s âs〉 for 〈â†

s âs〉 � 1 in
agreement with the equipartition theorem.

Figure 1(b) shows the temperature of the quantum system
in blue in response to the effective temperature pulses imple-
mented with N = 16 harmonic oscillators. These results are
based on solving Eq. (6) numerically. After a short transient,
the temperature of the quantum system adapts to the periodic
temperature drive and starts oscillating around the average
effective temperature T0. Since the driving is faster than the
equilibration time of the system, the temperature oscillations
are smaller than those of the effective temperature, and the
phase lags behind the drive [20,47]. By contrast, if the drive
was adiabatic, the system oscillator would all the time have
the temperature of the harmonic oscillators.

To corroborate our results, we consider a Lindblad equa-
tion for the quantum system only reading

d ρ̂s(t )

dt
= − i

h̄
[Ĥs, ρ̂s(t )] + 2π

ωs

α2

ν2
Ds(t )ρ̂s(t ), (8)

with the temperature drive T (t ) entering via the Bose-
Einstein distributions in the dissipator Ds(t ). The prefactor
2π (α/ν)2/ωs is related to the spacing of the oscillator
frequencies, ω j (0)/ω j−1(0) = eν , which ensures a roughly
constant density of states around the frequency of the quantum
system at all times. By contrast, the prefactor would be time
dependent for other spacings of the frequencies. In Fig. 1(b),
we show with black lines the system temperature calculated
based on Eq. (8) and find good agreement with the solution of
Eq. (6) in blue.

Figure 1 demonstrates that effective temperature pulses can
be realized using N = 16 harmonic oscillators. It is, how-
ever, interesting to explore what happens if fewer oscillators
are used. In Fig. 2, we show results obtained with N = 4,
8, and 12 oscillators together with the time-dependent fre-
quencies for N = 8, which are chosen around the system
frequency to ensure an efficient transfer of energy between the

FIG. 2. System temperature for different numbers of oscillators.
(a) We show the oscillator frequencies for N = 8 to realize the
effective temperature pulses T (t ) (plotted in arbitrary units). (b) The
temperature of the quantum system depends on the number of har-
monic oscillators, N = 4, 8, 12. For N = 12, it comes close to the
time-dependent temperature obtained from a Lindblad equation for
the quantum system only with T (t ) inserted (black); see Eq. (8). The
top and bottom curves have been displaced vertically, and we have
used α = 0.05νωs, γ = 0.01ωs, and kBTe = 5h̄ωs.

quantum system and the harmonic oscillators. Surprisingly,
merely N = 4 oscillators are sufficient to mimic the effects
of a time-dependent temperature, even if the quantum system
might act back on the oscillators, causing them to deviate
from the thermal state in Eq. (3). By contrast, with N = 8 and
N = 12 oscillators, the agreement with the results of Eq. (8)
is very good.

V. COOLING SCHEME

Our setup can also be used to cool the quantum system
to a constant temperature below that of the environment,
T (t ) = T0 < Te. To this end, we compress the frequencies
as ω j (t ) = ω j (0)e(1−Te/T0 )γ t as illustrated in Fig. 3(a), and in
the special case, where the oscillators are decoupled from the
environment (γ = 0), we immediately quench the frequen-
cies to ω j (t ) = ω j (0)T0/Te for t > 0, where Te is the initial
temperature. The resulting time-dependent temperature of the
quantum system is shown in Fig. 3(b), where we see clear
cooling effects as the temperature approaches the effective
temperature of the oscillators. However, it is also obvious
that the system cannot be kept cold indefinitely. To ensure an
efficient removal of energy from the quantum system, it has
to be on resonance with the oscillators, but eventually their
frequencies are all reduced below the system frequency as
seen in Fig. 3(a). Moreover, without a reservoir, N harmonic
oscillators can only mimic an environment up to the time
t∗ = 2(N − 1)2/N�ω, where �ω is the difference between
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FIG. 3. Cooling scheme. (a) The oscillator frequencies are com-
pressed to cool the system. (b) The system is cooled to the tempera-
ture kBT0 = 4h̄ωs below that of the environment, kBTe = 5h̄ωs, using
N = 15 oscillators and α = 0.05νωs and γ = 0, 0.001ωs, 0.003ωs

for the three curves with the two lowest being displaced vertically.
We also show the system temperature obtained from a Lindblad
equation with the time-dependent temperature T (t ) inserted (black);
see Eq. (8). The markers indicate the times t∗, where the result are
expected to deviate from the Lindblad equation (see text).

the largest and smallest oscillator frequencies [36], which we
here evaluate at the initial time �ω = �ω(0+). These times
are indicated in Fig. 3(b), and they coincide with the time
at which we see deviations from the temperature based on
Eq. (8). In particular, without the environment (γ = 0), the
dynamics is reversible, and eventually heat flows back into
the quantum system, causing it to heat up. This backflow is
avoided by coupling the oscillators to the environment, as we
observe for the two other curves with γ > 0, which eventually
reach the desired temperature T0.

Finally, we extend our cooling scheme by carrying out
the cooling process in several steps as illustrated in Fig. 4.
Figure 4(a) shows how we use each oscillator to cool the
quantum system by first tuning the oscillator across the fre-
quency of the quantum system, so that it cools down, and
subsequently we increase the frequency so that it is away from
resonance, and the oscillator is then reset by interacting with
the environment before the next cooling step. By doing so
periodically, we can cool the quantum system in a stepwise
manner as shown in Fig. 4(b) for N = 1, 3, 9 oscillators. In
particular, for N = 9, we observe a smooth cooling curve.

VI. EXPERIMENTAL PERSPECTIVES

Our scheme can be realized in a variety of experimental
setups involving quantum harmonic oscillators, for example,
mechanical nanoresonators [43–45,48,49], microwave cav-
ities [50,51], or electromagnetic resonators [52,53]. With
typical frequencies in the range ωs � 1–10 GHz, the associ-
ated temperatures and timescales are about T � 50–500 mK
and t � 103/ωs � 0.1–1 µs, which are reachable in current

ts
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FIG. 4. Resetting protocol. (a) We show one of the frequencies
in the resetting protocol. (b) Gradual cooling of the quantum sys-
tem with N = 1, 3, 9 harmonic oscillators, and γ = 0.025ωs, α =
0.01ωs, kBT0 = 4h̄ωs, and kBTe = 5h̄ωs.

low-temperature experiments. While we here have focused on
quantum harmonic oscillators, we note that the scheme can
also be implemented with fermionic two-level systems using
Eq. (4) for the frequency splittings, however, with the Bose-
Einstein distributions replaced by Fermi-Dirac distributions.
Also, the open quantum system itself does not have to be a
harmonic oscillator; rather, it can be any system with discrete
energy levels.

VII. CONCLUSIONS AND OUTLOOK

We have proposed and analyzed a quantum mechanical
scheme to control the effective temperature of an open quan-
tum system. Specifically, by controlling the frequencies of
a collection of harmonic oscillators that mediate the inter-
actions between a quantum system and a thermal reservoir,
we can implement arbitrary effective temperature drives that
the quantum system experiences. We can thereby drive the
quantum system with periodic temperature pulses, or it can be
cooled to temperatures below that of the environment. Surpris-
ingly, the scheme can be realized with only a few harmonic
oscillators, and given the general nature of our proposal, we
believe that it can be realized in a variety of experimental
setups with the aim to perform coherent manipulations of
small quantum systems. Our scheme may also be important
for experiments that explore the foundations of quantum ther-
modynamics. Finally, our scheme may be extended in many
directions, for example, to systems with memory effects [54].
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APPENDIX A: DERIVATION AND VALIDITY
OF EQUATION (2)

Here, we derive Eq. (2), inspired by the derivation in
Ref. [41] for a constant Hamiltonian. To extend the discussion
to a time-dependent Hamiltonian, we follow the derivation in
Ref. [42], which we adapt to our specific setup. In doing so,
we identify the particular conditions for Eq. (2) to hold, which
we indicate in boxes below.

Our starting point is the total Hamiltonian

ĤT (t ) = Ĥ (t ) + ĤB + ĤI , (A1)

which describes several coupled oscillators. The time-
dependent term is given by Eq. (1) and reads

Ĥ (t ) = h̄ωs(â
†
s âs + 1/2) +

N∑
j=1

h̄ω j (t )(â†
j â j + 1/2)

+ h̄α

N∑
j=1

(â†
s â j + â†

j âs), (A2)

with â(†)
s, j being the usual ladder operators. The first oscillator

(with frequency ωs) is the system oscillator, while we refer to
the others [with frequencies ω j (t )] as the ancilla oscillators.
The coupling between them is denoted by α. We model the
thermal bath with a Hamiltonian that describes a continuous
spectrum of harmonic oscillators,

ĤB = h̄
∫ ωm

0
dωb̂†

ωb̂ω, (A3)

where b̂(†)
ω are the ladder operators of the bath oscillators and

ωm is a cutoff frequency. Finally, the interaction between the
ancilla oscillators and the bath is described by the interaction
Hamiltonian

ĤI = h̄g
N∑

j=1

∫ ωm

0
dωh j[ω](â†

j b̂ω + â j b̂
†
ω ), (A4)

where g is the interaction strength and h j[ω] is a function that
describes the coupling to each oscillator.

The full system-ancilla-bath density matrix evolves ac-
cording to the Liouville–von Neumann equation

d

dt
ρ̂T (t ) = − i

h̄
[ĤT (t ), ρ̂T (t )]. (A5)

Our aim is to describe the system-ancilla dynamics itself, tak-
ing into account the coupling to the thermal bath. To this end,
we switch to the interaction picture with respect to Ĥ (t ) + ĤB

by introducing the unitary operator

Û0(t, t0) = T̂
{
e−i

∫ t
t0

ds[Ĥ (s)+ĤB]/h̄}
= T̂

{
e−i

∫ t
t0

dsĤ (s)/h̄} ⊗ e−iĤB (t−t0 )/h̄

≡ Û (t, t0) ⊗ ÛB(t, t0), (A6)

where T̂ is the chronological time-ordering operator. In the in-
teraction picture, the full density matrix is defined as ρ̃T (t ) =
Û †

0 (t, 0)ρ̂T (t )Û0(t, 0), and its equation of motion easily fol-
lows as

d

dt
ρ̃T (t ) = − i

h̄
[H̃I (t ), ρ̃T (t )], (A7)

with the interaction Hamiltonian in the interaction picture
given by H̃I (t ) = Û †

0 (t, 0)ĤIÛ0(t, 0). Equation (A7) can be
integrated as ρ̃T (t ) = ρ̃T (0) − i

h̄

∫ t
0 ds[H̃I (s), ρ̃T (s)] and iter-

ated once to yield

ρ̃T (t ) = ρ̃T (0) − i

h̄

∫ t

0
ds[H̃I (s), ρ̃T (0)]

− 1

h̄2

∫ t

0
ds

∫ s

0
ds′[H̃I (s), [H̃I (s′), ρ̃T (s′)]]. (A8)

Differentiating this expression with respect to time, we find

d

dt
ρ̃T (t ) = − i

h̄
[H̃I (t ), ρ̃T (0)]

− 1

h̄2

[
H̃I (t ),

∫ t

0
ds[H̃I (t − s), ρ̃T (t − s)]

]
.

(A9)
Next, we consider the system-ancilla density matrix by tracing
out the bath degrees of freedom, yielding

ρ̃(t ) = trB{Û †
0 (t, 0)ρ̂T (t )Û0(t, 0)}

= Û †(t, 0)trB{Û †
B (t, 0)ρ̂T (t )ÛB(t, 0)}Û (t, 0)

= Û †(t, 0)ρ̂(t )Û (t, 0), (A10)

where we have used the fact that trB{Û †
B (t, 0)ρ̂T (t )ÛB(t, 0)} =

trB{ÛB(t, 0)Û †
B (t, 0)ρ̂T (t )} = ρ̂(t ). From Eq. (A9), we then

find
d

dt
ρ̃(t ) = − i

h̄
trB{[H̃I (t ), ρ̃T (0)]}

− 1

h̄2 trB

{[
H̃I (t ),

∫ t

0
ds[H̃I (t − s), ρ̃T (t − s)]

]}
.

(A11)
Up until this point, we have not made any approximations.
However, to proceed, we first apply the standard Born ap-
proximation, where correlations between the system and the
ancilla, on the one hand, and the bath, on the other hand, are
neglected, and we may factorize the density matrix as

(i) ρ̃T (t ) = ρ̃(t ) ⊗ ρ̃B(t ), with ρ̃B(t ) = ρ̂B = e−ĤB/(kBTe )/tr{e−ĤB/(kBTe )} (Born approximation).

We note that the Born approximation in the context of time-dependent problems is discussed in more detail in Ref. [42]. We
have also assumed that the bath remains in its thermal state with a fixed temperature Te. Furthermore, we note that the first term
in Eq. (A11) vanishes since

trB{[H̃I (t ), ρ̃T (0)]} = trB{[H̃I (t ), ρ̃(0) ⊗ ρ̂B]} = 0 (A12)
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for the thermal bath state. Together with the explicit expression for the interaction Hamiltonian

H̃I (t ) = Û †
0 (t, 0)ĤIÛ0(t, 0) = h̄g

N∑
j=1

∫ ωm

0
dωh j[ω][ã†

j (t )b̃ω(t ) + ã j (t )b̃†
ω(t )], (A13)

where ã(†)
j (t ) = Û †(t, 0)â(†)

j Û (t, 0) and b̃(†)
ω (t ) = Û †

B (t, 0)b̂(†)
ω ÛB(t, 0) are the ladder operators in the interaction picture, we then

obtain from Eq. (A11) the expression

d

dt
ρ̃(t ) = − g2

N∑
j=1

N∑
k=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′hk[ω′]

∫ t

0
ds

× trB{[ã†
j (t )b̃ω(t ) + ã j (t )b̃†

ω(t ), [ã†
k (t − s)b̃ω′ (t − s) + ãk (t − s)b̃†

ω′ (t − s), ρ̃(t − s) ⊗ ρ̂B]]}. (A14)

Writing out the commutators, we find

d

dt
ρ̃(t ) = g2

N∑
j=1

N∑
k=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′hk[ω′]

∫ t

0
ds([ã†

k (t − s)ρ̃(t − s)ã†
j (t ) − ã†

j (t )ã†
k (t − s)ρ̃(t − s)]〈b̃ω(t )b̃ω′ (t − s)〉

+ [ã†
j (t )ρ̃(t − s)ã†

k (t − s) − ρ̃(t − s)ã†
k (t − s)ã†

j (t )]〈b̃ω′ (t − s)b̃ω(t )〉 + [ãk (t − s)ρ̃(t − s)ã†
j (t )

− ã†
j (t )ãk (t − s)ρ̃(t − s)]〈b̃ω(t )b̃†

ω′ (t − s)〉 + [ã†
j (t )ρ̃(t − s)ãk (t − s) − ρ̃(t − s)ãk (t − s)ã†

j (t )]〈b̃†
ω′ (t − s)b̃ω(t )〉

+ [ã†
k (t − s)ρ̃(t − s)ã j (t ) − ã j (t )ã†

k (t − s)ρ̃(t − s)]〈b̃†
ω(t )b̃ω′ (t − s)〉 + [ã j (t )ρ̃(t − s)ã†

k (t − s)

− ρ̃(t − s)ã†
k (t − s)ã j (t )]〈b̃ω′ (t − s)b̃†

ω(t )〉 + [ãk (t − s)ρ̃(t − s)ã j (t ) − ã j (t )ãk (t − s)ρ̃(t − s)]〈b̃†
ω(t )b̃†

ω′ (t − s)〉
+ [ã j (t )ρ̃(t − s)ãk (t − s) − ρ̃(t − s)ãk (t − s)ã j (t )]〈b̃†

ω′ (t − s)b̃†
ω(t )〉), (A15)

where all expectation values are evaluated with respect to the equilibrium state of the bath.
Since the state of the bath is assumed to be stationary, the bath correlation functions are translational invariant in time,

〈b̃(†)
ω (t )b̃(†)

ω′ (t − s)〉 = 〈b̃(†)
ω (s)b̃(†)

ω′ (0)〉. In the following, we let τB denote the characteristic correlation time scale on which the bath
correlations 〈b̃(†)

ω (t )b̃(†)
ω′ (0)〉 ∼ e−t/τB decay. Considering sufficiently long times, t � τB, and assuming that the system-ancilla

relaxation time τR (which in the interaction picture only depends on g � 1 and not on the internal time scales of the system and
the ancilla) is much longer than the relaxation dynamics of the bath, τR � τB, we can take

(ii) ρ̃(t − s) � ρ̃(t ) (Markov approximation)

and extend the upper integration limit to infinity. We then obtain

d

dt
ρ̃(t ) = g2

N∑
j=1

N∑
k=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′hk[ω′]

∫ ∞

0
ds([ã†

k (t − s)ρ̃(t )ã†
j (t ) − ã†

j (t )ã†
k (t − s)ρ̃(t )]〈b̃ω(s)b̃ω′ (0)〉

+ [ã†
j (t )ρ̃(t )ã†

k (t − s) − ρ̃(t )ã†
k (t − s)ã†

j (t )]〈b̃ω′ (0)b̃ω(s)〉 + [ãk (t − s)ρ̃(t )ã†
j (t ) − ã†

j (t )ãk (t − s)ρ̃(t )]〈b̃ω(s)b̃†
ω′ (0)〉

+ [ã†
j (t )ρ̃(t )ãk (t − s) − ρ̃(t )ãk (t − s)ã†

j (t )]〈b̃†
ω′ (0)b̃ω(s)〉 + [ã†

k (t − s)ρ̃(t )ã j (t ) − ã j (t )ã†
k (t − s)ρ̃(t )]〈b̃†

ω(s)b̃ω′ (0)〉
+ [ã j (t )ρ̃(t )ã†

k (t − s) − ρ̃(t )ã†
k (t − s)ã j (t )]〈b̃ω′ (0)b̃†

ω(s)〉 + [ãk (t − s)ρ̃(t )ã j (t ) − ã j (t )ãk (t − s)ρ̃(t )]〈b̃†
ω(s)b̃†

ω′ (0)〉
+ [ã j (t )ρ̃(t )ãk (t − s) − ρ̃(t )ãk (t − s)ã j (t )]〈b̃†

ω′ (0)b̃†
ω(s)〉). (A16)

We now express the ladder operators in the interaction picture in terms of the operators in the Schrödinger picture. To this end,
we consider the regime of a weak coupling between the system and the ancilla,

(iii) α � ωs, ω j (system − ancilla weak coupling regime),

such that the ladder operators â(†)
j are (approximate) eigenoperators of the superoperator H(t ) = [Ĥ (t ), · ], with H(t )â†

j =
h̄ω j (t )â†

j and H(t )â j = −h̄ω j (t )â j . We note that condition (iii) is particular to our model, and we work with this condition since
the quantum system should only be weakly coupled to its environment. We then obtain

ã j (t ) = Û †(t, 0)â jÛ (t, 0) = T̂ ∗{ei
∫ t

0 ds′Ĥ (s′ )/h̄
}
â j T̂

{
e−i

∫ t
0 ds′Ĥ (s′ )/h̄

} = e−i
∫ t

0 ds′ω j (s′ )â j,

ã†
j (t ) = Û †(t, 0)â†

jÛ (t, 0) = T̂ ∗{ei
∫ t

0 ds′Ĥ (s′ )/h̄
}
â†

j T̂
{
e−i

∫ t
0 ds′Ĥ (s′ )/h̄

} = ei
∫ t

0 ds′ω j (s′ )â†
j , (A17)

where T̂ ∗ is the antichronological time-ordering operator. Furthermore, for ã(†)
k (t − s), we assume that Ĥ (t ) changes on a time

scale τA that is much longer than the time scale τB on which the correlation functions 〈b̃(†)
ω (t )b̃(†)

ω′ (0)〉 decay,

(iv) τA � τB (slow driving compared with the decay o f bath correlations).
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Importantly, this allows us to make the approximation

Û (t − s, 0) = Û †(t, t − s)Û (t, 0) � eiĤ (t )s/h̄Û (t, 0), (A18)

where we have used the fact that Ĥ (t ) is approximately constant on the time scale on which the bath correlations decay,
Û †(t, t − s) = T̂ ∗{ei

∫ t
t−s ds′Ĥ (s′ )/h̄} � eiĤ (t )

∫ t
t−s ds′/h̄ = eiĤ (t )s/h̄. Using this approximation, we obtain

ãk (t − s) = Û †(t − s, 0)âkÛ (t − s, 0) � T̂ ∗{ei
∫ t

0 ds′Ĥ (s′ )/h̄
}
e−iĤ (t )s/h̄akeiĤ (t )s/h̄T̂

{
e−i

∫ t
0 ds′Ĥ (s′ )/h̄

} = e−i
∫ t

0 ds′ωk (s′ )eisωk (t )ak,

ã†
k (t − s) = Û †(t − s, 0)â†

kÛ (t − s, 0) � T̂ ∗{ei
∫ t

0 ds′Ĥ (s′ )/h̄
}
e−iĤ (t )s/h̄a†

keiĤ (t )s/h̄T̂
{
e−i

∫ t
0 ds′Ĥ (s′ )/h̄

} = ei
∫ t

0 ds′ωk (s′ )e−isωk (t )a†
k . (A19)

Plugging the equations above back into Eq. (A16), we obtain

d

dt
ρ̃(t ) = g2

N∑
j=1

N∑
k=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′hk[ω′]

∫ ∞

0
ds

× [([â†
k ρ̃(t )â†

j − â†
j â

†
k ρ̃(t )]〈b̃ω(s)b̃ω′ (0)〉 + [â†

j ρ̃(t )â†
k − ρ̃(t )â†

k â†
j ]〈b̃ω′ (0)b̃ω(s)〉)e−isωk (t )+i

∫ t
0 ds′[ω j (s′ )+ωk (s′ )]

+ ([âk ρ̃(t )â†
j − â†

j âk ρ̃(t )]〈b̃ω(s)b̃†
ω′ (0)〉 + [â†

j ρ̃(t )âk − ρ̃(t )âk â†
j ]〈b̃†

ω′ (0)b̃ω(s)〉)eisωk (t )+i
∫ t

0 ds′[ω j (s′ )−ωk (s′ )]

+ ([â†
k ρ̃(t )â j − â j â

†
k ρ̃(t )]〈b̃†

ω(s)b̃ω′ (0)〉 + [â j ρ̃(t )â†
k − ρ̃(t )â†

k â j]〈b̃ω′ (0)b̃†
ω(s)〉)e−isωk (t )−i

∫ t
0 ds′[ω j (s′ )−ωk (s′ )]

+ ([âk ρ̃(t )â j − â j âk ρ̃(t )]〈b̃†
ω(s)b̃†

ω′ (0)〉 + [â j ρ̃(t )âk − ρ̃(t )âk â j]〈b̃†
ω′ (0)b̃†

ω(s)〉)eisωk (t )−i
∫ t

0 ds′[ω j (s′ )+ωk (s′ )]]. (A20)

We now perform the secular approximation. To this end, we note that for our driving protocols, ω j (t ) �= ωk (t ) for all times,
unless j = k. Under the assumption that the inverse frequency differences, for all times, are much smaller than the system-ancilla
relaxation time,

(v) |ω j (t ) − ωk (t )|−1 � τR (condition for the secular approximation),

we may neglect all terms except those with a vanishing integral in the exponent, as they oscillate much faster than the typical
time scale of the system-ancilla dynamics. This approximation then yields

d

dt
ρ̃(t ) = g2

N∑
j=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′]
∫ ∞

0
ds

× ([â j ρ̃(t )â†
j − â†

j â j ρ̃(t )]〈b̃ω(s)b̃†
ω′ (0)〉eisω j (t ) + [â†

j ρ̃(t )â j − ρ̃(t )â j â
†
j ]〈b̃†

ω′ (0)b̃ω(s)〉eisω j (t )

+ [â†
j ρ̃(t )â j − â j â

†
j ρ̃(t )]〈b̃†

ω(s)b̃ω′ (0)〉e−isω j (t ) + [â j ρ̃(t )â†
j − ρ̃(t )â†

j â j]〈b̃ω′ (0)b̃†
ω(s)〉e−isω j (t ) ). (A21)

Introducing the bath correlation functions in the frequency domain as


ωω′[ω j (t )] =
∫ ∞

0
ds〈b̃ω(s)b̃ω′ (0)〉e−isω j (t ) ≡ 1

2
μωω′[ω j (t )] + iηωω′[ω j (t )], (A22)

and the notation b̃−ω(t ) ≡ b̃†
ω(t ), we obtain

d

dt
ρ̃(t ) = g2

N∑
j=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′]([â j ρ̃(t )â†
j − â†

j â j ρ̃(t )]
ω−ω′[−ω j (t )] + [â j ρ̃(t )â†
j − ρ̃(t )â†

j â j]

∗
−ω′ω[−ω j (t )]

+ [â†
j ρ̃(t )â j − â j â

†
j ρ̃(t )]
−ωω′[ω j (t )] + [â†

j ρ̃(t )â j − ρ̃(t )â j â
†
j ]


∗
ω′−ω[ω j (t )]). (A23)

Separating the Hermitian and non-Hermitian parts of the bath correlation functions, and then transforming back to the
Schrödinger picture, we obtain

d

dt
ρ̂(t ) = − i

h̄
[Ĥ (t ) + ĤLs(t ), ρ̂(t )]

+
N∑

j=1

[
γ −

j [ω j (t )]

(
â j ρ̂(t )â†

j − 1

2

{
â†

j â j, ρ̂(t )
}) + γ +

j [ω j (t )]

(
â†

j ρ̂(t )â j − 1

2

{
â j â

†
j , ρ̂(t )

})]
, (A24)

where

γ ±
j [ω j (t )] = g2

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′]μ∓ω±ω′ [±ω j (t )] (A25)
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are the absorption rates (γ +
j [ω]) and the emission rates (γ −

j [ω]) of quanta from/to the thermal bath, and

ĤLs(t ) = g2
N∑

j=1

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′](ηω−ω′[−ω j (t )]â†
j â j + η−ωω′[ω j (t )]â j â

†
j ) (A26)

is the Lamb-shift Hamiltonian, which commutes with Ĥ (t ) for α � ωs, ω j , and thus only leads to a renormalization of the
energy levels. We note that this renormalization is proportional to g2 � 1, and thus we neglect it in the following. In addition,
we can derive an explicit expression for the emission rate of quanta to the bath

γ −
j [ω j (t )] = g2

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′]μω−ω′[−ω j (t )]

= g2
∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′]
∫ ∞

−∞
dseisω j (t )〈b̃ω(s)b̃†

ω′ (0)〉, (A27)

in terms of the spectral density. Using the fact that b̃ω(t ) = Û †
B (t, 0)b̂ωÛB(t, 0) = e−iωsb̂ω, we obtain

γ −
j [ω j (t )] = g2

∫ ωm

0
dωh j[ω]

∫ ωm

0
dω′h j[ω

′]
∫ ∞

−∞
dseis[ω j (t )−ω]〈b̂ωb̂†

ω′ 〉 = 2πg2
∫ ωm

0
dω′h j[ω

′]h j[ω j (t )]
〈
b̂ω j (t )b̂

†
ω′

〉
= 2πg2h2

j [ω j (t )]
〈
b̂ω j (t )b̂

†
ω j (t )

〉 ≡ 2πg2h2
j [ω j (t )](1 + nTe [ω j (t )]), (A28)

provided that 0 < ω j (t ) < ωm. Here, nTe [ω] is the Bose-
Einstein distribution, and we have used the fact that∫ ∞
−∞ dseisω = 2πδ(ω), with δ(ω) being the Dirac delta func-

tion. Introducing the spectral density Jj[ω] ≡ 2πh2
j [ω], we

find

γ −
j [ω j (t )] = g2Jj[ω j (t )](1 + nTe [ω j (t )]). (A29)

Analogously, we find a similar expression for the absorption
rate of quanta from the bath reading

γ +
j [ω j (t )] = g2Jj[ω j (t )]nTe [ω j (t )]. (A30)

We note that the rates fulfill detailed balance, γ +
j [ω j (t )]/

γ −
j [ω j (t )] = nTe [ω j (t )]/(1 + nTe [ω j (t )]) = e−h̄ω/(kBTe ) as ex-

pected. Using the expressions for the rates, we finally arrive
at the master equation in Eq. (2) of the main text,

d ρ̂(t )

dt
= − i

h̄
[Ĥ (t ), ρ̂(t )] +

N∑
j=1

γ j[ω j (t )]D j (t )ρ̂(t ), (A31)

with γ j[ω j (t )] = g2Jj[ω j (t )] and the dissipator

D j ρ̂ = (1 + nTe [ω j (t )])
(
â j ρ̂â†

j − 1
2 {â†

j â, ρ̂})
+ nTe [ω j (t )]

(
â†

j ρ̂â j − 1
2 {â j â

†
j , ρ̂}). (A32)

APPENDIX B: DERIVATION OF EQUATION (4)

As our starting point, we take Eq. (2) with α = 0, for which
it for the oscillators simplifies to

d ρ̂(t )

dt
= −i

N∑
j=1

ω j[â
†
j â j, ρ̂(t )] +

N∑
j=1

γ j (ω j )D j ρ̂(t ), (B1)

having omitted the explicit time dependence of the oscillator
frequencies, ω j = ω j (t ). In this case, the harmonic oscillators

are independent, and we can treat each of them separately as

d ρ̂ j (t )

dt
= −iω j[â

†
j â j, ρ̂ j (t )] + γ j (ω j )D j ρ̂ j (t ), j =1, . . . , N.

(B2)

Next, we introduce a characteristic function for each oscillator
by defining

χ j (λ, t ) = Tr(ρ̂ j (t )D̂ j (λ)), D̂ j (λ) = eλâ†
j −λ∗â j , (B3)

where D̂ j (λ) is the displacement operator. The equation of
motion for χ j (λ, t ) follows from Eq. (B2) and reads

dχ j (λ, t )

dt
= U jχ j (λ, t ) + D jχ j (λ, t ), (B4)

where

U jχ j (λ, t ) = −iω j (t )[λ∗∂λ∗ − λ∂λ]χ j (λ, t ) (B5)

corresponds to the unitary dynamics, while the dissipator
leads to the term

D jχ j (λ, t ) = − (γ (ω j )/2)[λ∗∂λ∗ + λ∂λ

+ λ∗λ(2nB + 1)]χ j (λ, t ). (B6)

Now, the characteristic function of a thermal state with aver-
age occupation nT (t ) reads

χT (λ, t ) = e−λλ∗[nT (t )+1/2]. (B7)

Inserting this expression into Eq. (B4), we then find

dχT (λ, t )

dt
= −λλ∗ṅT (t )χT (λ, t )

= λλ∗γ (ω j (t ))[nT (t ) − nB]χT (λ, t ), (B8)

which directly leads us to Eq. (4).
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APPENDIX C: DERIVATION OF EQUATION (6)

We start by writing the Hamiltonian in Eq. (1) as

Ĥ (t ) = h̄�a† ·
(

ωs α

α† �(t )

)
· �a

= h̄�a† · H (t ) · �a
= h̄

∑
m,n

Hmn(t )â†
mân, (C1)

where �a = (âs, â1, . . . , âN )T contains the annihilation opera-
tors and we have defined the matrix H (t ) reading

H (t ) =

⎛
⎜⎜⎝

ωs α · · · α

α ω1 · · · 0

α 0 . . . 0
α 0 · · · ωN

⎞
⎟⎟⎠. (C2)

The equations of motion for the correlators, 〈â†
k âl〉 =

tr{â†
k âl ρ̂}, follow from Eq. (2) and read

d

dt
〈â†

k âl〉 = − i

h̄
tr{â†

k âl [Ĥ, ρ̂]} + γ

N∑
j=1

tr{â†
k âlD j ρ̂}

= − i
∑
m,n

Hmn(tr{â†
k âl â

†
mânρ̂} − tr{â†

mânâ†
k âl ρ̂})

+ γ

N∑
j=1

[1 + nB(ω j )]tr

{
â†

k âl

(
â j ρ̂â†

j − 1

2
{â†

j â j, ρ̂}
)}

+ γ

N∑
j=1

nB(ω j )tr

{
â†

k âl

(
â†

j ρ̂â j − 1

2
{â j â

†
j , ρ̂}

)}

=
∑

m

[(iHkm)〈â†
mâl〉 + 〈â†

k âm〉(−iHlm)] + γ [nB(ωl )δkl − 〈â†
k âl〉]

=
∑

m

(Wkm〈â†
mâl〉 + 〈â†

k âm〉W ∗
ml ) + Fkl , (C3)

which is Eq. (6). Here, we have introduced the matrix � = diag(0, γ /2, γ /2, . . . , γ /2) and defined

W = iH − � (C4)

together with F = diag(0, γ nB(ω1), . . . , γ nB(ωN )).
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