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Abstract

We study experimentally and theoretically the transfer of population between the ground state

and the second excited state in a transmon circuit by the use of superadiabatic stimulated Raman

adiabatic passage (saSTIRAP). We show that the transfer is remarkably resilient against variations

in the amplitudes of the pulses (scaling errors), thus demostrating that the superadiabatic process

inherits certain robustness features from the adiabatic one. In particular, we put in evidence a new

plateau that appears at high values of the counterdiabatic pulse strength, which goes beyond the

usual framework of saSTIRAP.

I. INTRODUCTION

In recent years, shortcuts to adiabaticity have emerged as a powerful technique of quan-

tum control. While in the past both adiabatic and Rabi types of control have been of

tremendous utility, modern quantum control based on shortcuts to adiabaticity aims at

combining the advantageous features of both of these techniques. Specifically, adiabatic

processes are known to be insensitive to small errors in the shape of the pulses, but their

time of operation is slow, limited by the adiabatic theorem. On the other hand, control

methods based on Rabi oscillations, as typically used for quantum gates, are fast but needs

precise timings and pulse-shape control. Thus, processes that are both fast and resilient

against variations of the pulse parameters are of significant interest for the field of quantum

information processing. Here we discuss one such process, the superadiabatic correction

of STIRAP (stimulated Raman adibatic passage) and observe its robustness features in an

experiment of population transfer in a transmon qubit.

Adiabatic control methods based on the stimulated Raman adiabatic passage (STIRAP)

have been widely studied and integrated into various experimental schemes [1, 2]. Recently,

a lot of interest has been raised by the concept of superadiabatic or transitionless process,

introduced by Demirplak and Rice [3, 4] and by Berry [5]. Superadiabatic processes belong

to a more general class of protocols generically referred to as shortcuts to adiabaticity. When

applied to STIRAP, this results in the so-called saSTIRAP protocol, where a counteradia-

batic pulse is applied in addition to the usual pump and Stokes STIRAP pulses [6, 7].
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Due to the fact that experiments are subjected to various sources of errors and imper-

fections, a key task is to characterize the robustness of these protocols. For any practical

implementation, we would need to understand if the generic features of a process typically

designed for ideal operation remain valid in realistic conditions. For STIRAP, the effects of

noise have been studied already theoretically as well as on some experimental platforms. For

example, in superconducting circuits the reduction of population transfer due to broadband

colored noise was discussed in Ref. [8, 9]. In Ref. [10], it was shown that saSTIRAP works

well in the noisy environment consisting of dissipation and Ornstein-Uhlenbeck dephasing.

It was found that the performance of shortcuts to adiabaticity decreases with the correlation

time of the Ornstein-Uhlenbeck noise [11], see also [12]. In the context of shortcuts to adia-

baticity using the Lewis-Riesenfeld method, various noises (white noise, Ornstein-Uhlembeck

noise, flicker noise, constant error) in the spring constant of the trap have been studied in

Ref. [13, 14]. Other errors, such as the accordion noise in the wave vector of the trap, and

errors in the amplitude and phase of the trap have been addressed systematically in Ref.

[15]. Another approach is to mitigate decoherence by incorporating it into the adiabatic

evolution and into the STA protocols [16, 17] and to speed up the dynamics by considering

non-Hermitian Hamiltonians [18, 19].

For superadiabatic processes, which is our main interest in this work, several theoretical

studies have been performed. Already in 2005, Demirplak and Rice have addressed the

sensitivity of the counterdiabatic technique to errors such as pulse width, location of the

peak, and intensity, demonstrating that a window of errors exist where high-fidelity transfer

can be maintained [20]. In the case of two-level systems, the robustness of several driving

schemes against off-resonance effects, as well as the tradeoff with respect to the speed of the

process, has been analyzed recently in Ref. [21]. The effect of dephasing for superadiabatic

STIRAP in three-level system has been considered in [22]. In Ref. [23] transfer protocols in

a system of coupled 1/2 spins have been analyzed, where the systematic errors due to shifts

in the magnetic field and due to the Dzyalozynskii-Moryia interaction between the two spins

are treated perturbatively.

In the present work we study experimentally and theoretically the robustness of sa-

STIRAP in a three-level system with respect to scaling errors. For a three-level system,

the superadiabatic STIRAP (saSTIRAP) is characterized by the simultaneous application of

three pulses, the pump and Stokes pulses of STIRAP (coupling the levels |0⟩−|1⟩ and |1⟩−|2⟩

3



respectively) and the counterdiabatic pulse coupling into the |0⟩−|2⟩ transition. These three
pulse drive the three-level transmon concurrently in a loop (also called ∆-driving). Scaling

errors are errors which come into play due to technical limitations, causing miscalibrations

during the experimental implementation. For a given pulse shape (say a Gaussian), the

errors can originate from the miscalibration of the pulse-amplitude, pulse-width, phase and

relative placement of the pulse in the pulse sequence. Robustness under scaling has also

been discussed theoretically in Ref. [24], where a cost functional has been introduced while

observing random scaling with STIRAP pulses, and in Ref. [25], where optimal STIRAP

population transfer was observed as a function of the relative delay between the pump and

Stokes pulses.

Here we analyse the robustness of saSTIRAP in wide ranges of experimental parameters,

providing a systematic characterization of robustness under scaling errors. We also analyse

the imperfections related to the counterdiabatic term in detail. We first present a method

of characterizing this term based on the Wigner-Ville spectrum. Then we focus on the

phase of the drive, and the saSTIRAP performance resulting from the use of two-photon

resonant drive as compared to the direct coupling between the initial and the target states.

We characterize the experimentally-achieved quantum speed limit during the state evolution

in STIRAP and saSTIRAP based on the Bures distance. Next, we observe the formation

of plateaus of nearly-constant populations in the final state as a function of STIRAP and

counterdiabatic pulse areas. This demonstrates that saSTIRAP is largely insensitive to scal-

ing errors. Furthermore, we extend our study to counterdiabatic pulsea areas significantly

larger than the superadiabatic value of π. Suprisingly, we observe the existence of regions

where population transfer still occurs with high efficiency.

II. EXPERIMENTAL SETUP

The experiments are performed on the three lowest energy levels (|0⟩, |1⟩, |2⟩) of an

artificial atom (see Fig. 1) constituted by a pair of Josephson junctions with transition

frequencies ω01 = 2π×7.395 GHz and ω12 = 2π×7.099 GHz, with anharmonicity 2∆ = (ω01−
ω12) = 2π×296 MHz. Here, we consider Gaussian shaped pulsed fields: Ω01(t) = Ω01e

−t2/2σ2

and Ω12(t) = Ω12e
−(t−ts)2/2σ2

, which couple with transitions |0⟩−|1⟩ and |1⟩−|2⟩ respectively.
These Gaussians have the same values of standard deviation σ and are being truncated at
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FIG. 1. a) The three-level system is driven by two microwave fields applied resonantly to the

0-1 and 1-2 transitions and an additional field applied off-resonantly with respect to state |1⟩. b)

Simplified schematic of experiment, showing the transmon device coupled to a readout resonator

and placed at the mixing chamber in a dilution refrigerator, as well as the electronic blocks used

to control the system.

±nσ. The counter-intuitive STIRAP pulse sequence requires the drive Ω12(t) to set in before

the drive Ω01(t) with an overlap for time, ts = −κσ. The counterdiabatic drive Ω02(t) = 2Θ̇,

where Θ = tan−1(Ω01(t)/Ω12(t)) [26]. In two-photon resonance excitation, amplitudes of the

effective couplings Ω̃12 =
√
2Ω̃01 and phases of the drives, Φ = ϕ01 + ϕ12 + ϕ20 = −π/2.

In the rotating wave approximation applied to the transmon circuit,

H01(t) =
ℏ
2
Ω01(t)e

iϕ01 |0⟩⟨1|+ h.c., (1)

H12(t) =
ℏ
2
Ω12(t)e

iϕ12 |1⟩⟨2|+ h.c., (2)

The 0-2 coupling is

H̃2ph(t) =
ℏ
2

[
Ω̃01(t)e

−i∆t+iφ̃|0⟩⟨1|+ Ω̃12(t)e
+i∆t+iφ̃|1⟩⟨2|

]
+ h.c. (3)

resulting in a 0-2 Rabi frequency Ω02 = Ω̃01Ω̃12/(2∆) and phase ϕ02 = 2φ̃+ π,

H02(t) = −ℏΩ̃01Ω̃12

4∆
e2iφ̃|0⟩⟨2|+ h.c. (4)

The evolution of the system can be formulated as a dynamical map with trace-class

generator L,

ρ̇(t) = L[ρ(t)], (5)
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where L[ρ(t)] = (i/ℏ)[ρ(t), H(t)] + L[ρ(t)], with L the Lindblad superoperator,

L[ρ(t)] =
∑
c

Γc

(
Λcρ(t)Λ

†
c −

1

2
{Λ†

cΛc, ρ(t)}
)
, (6)

where c is an index denoting the dissipation channel with Lindblad operator Λc. For this

sample, the dissipation results predominantly from relaxation processes, namely two decay

channels are present: the decay from level 2 to level 1 with relaxation rate Γ21 and Λ21 =

|2⟩⟨1| and the decay rate from level 1 to the ground state, with Λ10 = |1⟩⟨0|. We get

Γ10 = 5.0 MHz and Γ21 = 7.0 MHz, with dephasing times being dominated by the energy

relaxation for this sample. For a three-level system [27, 28], the Lindbladian is L[ρ] =

−Γ21ρ22|2⟩⟨2| − (Γ10ρ11 − Γ21ρ22)|1⟩⟨1|+ Γ10ρ11|0⟩⟨0|.

III. NUMERICAL ANALYSIS AND OPTIMIZATION OF DRIVE PARAMETERS

The superadiabatic STIRAP is driven jointly by the drives H01(t), H12(t), and H̃2ph(t).

Thus, a precise saSTIRAP implementation involves a balance between the choice of several

parameters. In the following subsections, we analyse the robustness of saSTIRAP with

respect to each of these parameters with wide ranges of experimentally feasible values. It

is noteworthy that saSTIRAP is found to display remarkable resilience against variation in

these parameter values. We perform a quantitative analysis of the saSTIRAP protocol using

the population transferred to the second excited state p2 as the figure of merit.

A. Wigner-Ville analysis of the counterdiabatic pulse

The Wigner-Ville (WV) spectrum is a mathematical tool of great utility for character-

izing transient processes, allowing the analysis of non-stationary signals in both time and

frequency domains [29]. This allows us to identify all frequency components contained in

the autocorrelation function at any time. Note that for non-stationary noises the usual tools

are generally not applicable, as the Wiener-Kinchin theorem, which connects the correlation

function with the power spectrum, is not valid. Here we employ the Wigner-Ville analysis for

obtaining the spectral content of the correlations of the counterdiabatic pulse. The reason

for this choice is that the counterdiabatic pulse is the key component of our scheme and at

the same time the pulse most difficult to generate precisely.
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For a time-dependent complex variable x(t) with correlation function ⟨x(t + τ/2)x∗(t −
τ/2)⟩ we define the Wigner-Ville spectrum

SWV (ω, t) =

∫ ∞

−∞
e−iωτ ⟨x(t+ τ/2)x∗(t− τ/2)⟩dτ. (7)

For stationary systems, one recovers the usual definition of power spectral density as

Sxx(ω) = SWV (ω, 0). The instantaneous power at any moment t can be obtained by summing

the Wigner-Ville spectrum over all infinitesimal bandwidths

⟨|x(t)|2⟩ = 1

2π

∫ ∞

−∞
dωSWV (ω, t). (8)

In the case of saSTIRAP, all ac-Stark energy shifts are related to the same function, the

two-photon coupling. Thus, all cross-correlations between noises become self-correlations of

the effective 0 - 2 coupling

Ω02(t) = − ts
σ2

1

cosh
[
− ts

σ2

(
t− ts

2

)] . (9)

Thus we can obtain the Wigner-Ville spectrum

S
(02)
WV (ω, t) =

∫ ∞

−∞
e−iωτ ⟨Ω02(t+ τ/2)Ω02(t− τ/2)⟩dτ,

=
2|ts|
σ2

∫ ∞

−∞

e−i σ2

|ts|
ωτ

cosh[2ts
σ2 (t− ts

2
)] + cosh[ ts

σ2 τ ]
dτ. (10)

This function is quantified numerically and plotted versus frequency ω and time t as shown

by continuous lines in Fig. 2(a). An approximation of the Wigner-Ville distribution func-

tion for small t and τ i.e. with vanishing self-correlations at larger τ , is S
(02)
WV (ω, t) ≈

2
√
π|ts|/σ2e−

t2s
σ4 (t− ts

2
)2e

−σ4

t2s
ω2

. This is plotted as a function of frequency and time with dot-

ted lines in Fig. 2(a).

To get an understanding of the behaviour of this spectrum, we noticed that it has maximal

values at ω = 0 and t = ts/2, otherwise S
(02)
WV (ω, t) drops fast to zero. The WV spectrum in

the time-domain for ω = 0 is given by

S
(02)
WV (0, t) =

8t2s
σ4

(
t− ts

2

)
cosech

[
2|ts|
σ2

(
t− ts

2

)]
, (11)

and in the frequency domain corresponding to t = ts/2 it is given by

S
(02)
WV (ω, ts/2) = 4πω cosech[σ2πω/|ts|]. (12)
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t
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s]

ω [MHz] ω [MHz] ω [MHz] ω [MHz]

(a) (b) (c) (d)

FIG. 2. (a) The contour plot of the Wigner-Ville spectrum Eqs. (10) as a function of frequency

and time is shown with continuous lines for κ = −1.5, σ = 30 ns. The doted lines represent the

approximation described in the text. (b) Surface maps of the WV spectrum obtained from self-

correlations of the drive Ω̃12(t)e
i∆t+iφ̃ with φ̃ = −π/4. The WV spectrum of Ω̃01(t) with truncated

saSTIRAP sequence at n = 2 is presented in panel (c) and the corresponding WV spectrum of

Ω̃01(t) with infinite extent is shown in panel (d).

Each of these attain a maximum value of 4|ts|/σ2, which is four times the maximum of

Ω02(t) drive. The zero frequency WV S
(02)
WV (0, t) is narrower than Ω02(t), which in terms of

full width at half maxima (FWHM) reads FWHM[S
(02)
WV (0, t)]<FWHM[Ω02(t)]. This feature

appears in the frequency domain as well, where S
(02)
WV (ω, ts/2) at t = ts/2 is narrower than

the Fourier transform of the drive, FT [Ω02(t)] = Ω02(ω) ≡
√
π/2/ cosh(πσ2ω/(2|ts|)).

The experimental implementation of the Ω02(t) drive has been done via two-photon reso-

nant drive as per Eq. (3) with Ω̃01(t) = Ω̃12(t)/
√
2 =

√√
2∆Ω02(t). These two simultaneous

pulses are off-resonant from the |0⟩− |1⟩ and |1⟩− |2⟩ transitions by −∆ and ∆ respectively,

as shown in Fig. 1(a). The WVD of the two-photon resonance is linearly shifted in frequency

due to time-dependent phase factor e±i∆t, such that its maximum lies at (t = ts/2, ω = ±∆)

as shown in Fig. 2(b) for Ω̃12(t).

Two-photon resonant pulses have 1/
√
cosh pulse envelopes, which are generated using an

arbitrary waveform generator with a sampling rate of 1 G-samples/s. The simulations of

the WVD of this smooth function shown here are performed with discrete number of time

points 100−200, which is in the same range as the number of experimental pulse points. In

the ideal situation, as shown in Fig. 2(b,d), no spurious excitations are observed. However,
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in the actual implementation, the pulses are truncated. Thus, in this case the integration

limits of the auto-correlation function narrows down from (−∞,+∞) to (ti + τ/2, tf − τ/2)

as x(t± τ/2) vanishes for tf < (t± τ/2) < ti. This truncation of the drives leads to a ripple

effect [30], which can be troublesome in frequency domain causing spurious excitations as

shown in Fig. 2(c) for n=2. Unlike the Fourier transform, the WV spectrum provides the

complete picture of these ripples in both time and frequency domains. It is noteworthy that

the truncation has more adverse effects close to the beginning and the end of the drive. Also,

corresponding to different time points of the drive, these ripples shift along the frequency

axis as shown in Fig. 2(c). Thus abrupt truncation not just leads to a broader bandwidth but

also causes spurious excitations for a varied range of frequencies. We avoid the generation

of these ripples by using an optimal truncation of the drives.

An approximation of the spectral power density in the frequency domain,
∫ tf
ti
SWV (ω, t)dt

gives an average power distribution among various frequencies. An average of this quantity

over frequency provides the average power associated with the drive. Using this definition of

average power, we find that the truncation of our pulse sequence for n ≥ 4 does not change

significantly this average power. More importantly, the ripples in Fig. 2(c) are small for

n = 3 and almost vanish for n ≥ 4. Thus, when evaluating the experimental feasibility, we

conclude that a truncation at n = 3 is a reasonable compromise, achieving both short total

transfer time and avoiding spurious excitations.

B. Optimal phases of the drives

We simulate saSTIRAP protocols for different phases of the counter diabatic drive (ϕ02),

with ϕ01 = ϕ12 = 0. For best transfer in a saSTIRAP, ϕ01 + ϕ12 + ϕ20 = −π/2 [7] which is

reflected in Fig. 3(a1,a2) presenting the maximum population attained in the second excited

state (p2); given different values of the initial phases ϕ02 and standard deviations σ of the

Gaussian drives in the range σ ∈ [13.5, 57.5] ns, without and with decoherence respectively.

The value of κ is fixed at κ = 2.7 such that ts = −2.7σ.

In Fig. 3(b1,b2) the vertical axis represents the time interval T01 which extends from the

starting of the saSTIRAP pulse sequence (t = ti) to the middle of the 0 − 1 drive. Here

σ ∈ [13.5, 45]ns, κ ∈ [3, 1.5], such that T01 = nσ + κσ, where n = 3 (the Gaussians are

truncated at ±nσ). The range of T01 is taken along the diagonal connecting (σ = 13.5 ns,
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σ
[n
s]

φ02/π φ02/π

T
0
1
[n
s]

φ02/π φ02/π

(a1) (b1)(a2) (b2)

FIG. 3. Maximum attained population p2 is simulated for saSTIRAP as a function of (a) initial

phase of the counter diabatic drive (ϕ02) and standard deviation of the Gaussian drives (σ) with

κ = 2.7, ϕ01 = ϕ12 = 0. (b) initial phase of the counter diabatic drive (ϕ02) and total time taken

by the saSTIRAP drives (T01), where ϕ01 = ϕ12 = 0, σ ∈ [13.5, 45] ns and κ ∈ [1.5, 3]; the pulse

sequence is truncated in the middle of the Gaussian drive Ω01(t) such that T01=3σ + κσ. Results

from the simulations are obtained (a1, b1) without decoherence, (a2, b2) with decoherence, and

the phase ϕ02 is constant in time. Vertical dashed line in each plot corresponds to ϕ02 = π/2.

κ = 3.0) to (σ = 45 ns, κ = 1.5) in Fig. 4. Fig. 3(b1,b2) show the maximum population in

the second excited state without and with decoherence respectively, with constant phases

of the drives. This surface plot has a flattened profile for maximum population transfer

around ϕ02 = π/2. The distribution is more sensitive to ϕ02 around an optimal transfer

time, T01 = 170 ns, which also corresponds to maximal population transfer in STIRAP.

IV. EXPERIMENTAL RESULTS

A. STIRAP vs saSTIRAP

An ideal STIRAPmay be designed for a perfect transfer of the population from the ground

state to the second excited state in a three-level system. On the other hand, sa-STIRAP

is much more robust against the parameters such as amplitudes, standard-deviations, and

the relative separation between the pair of counter-intuitive Gaussian profiles, wherein the

imperfections of these parameters is accounted for by an additional two-photon resonance.

Next, we study experimentally the effect of changing the STIRAP pulse width σ and the
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p
2

p
2

p
2

FIG. 4. Population p2 in the state |2⟩ (a) ideally expected, (b) simulated with decoherence and

(c) experimental data for the STIRAP process and saSTIRAP with parameters Ω01/(2π) = 44

MHz, Ω12/(2π) = 37 MHz as a function of the pulse width σ and the normalized pulse separation

κ = |ts|/σ. Optimal populations resulting from STIRAP are shown with black mesh and for

saSTIRAP without mesh.

normalized STIRAP pulse separation κ = |ts|/σ, see Fig. 4. For the data presented we

took Ω01 = 2π × 44 MHz and Ω12 = 2π × 37 MHz, which are both much smaller than the

qubit anharmonicity 2∆ = 2π × 296 MHz. Gaussian drives are truncated at n = ±3. It is

clear from Fig. 4 that saSTIRAP is insensitive to variations in σ and κ for a significantly

wide range of values, whereas STIRAP typically works well when the pulses are relatively

close to each other, corresponding to |ts|/σ = 1.5. Figs. 4 (b,c) show that simulation and

experimental results are in very good agreement with each other. These plots are obtained

under strong decoherence, whose effect is partially mitigated by optimally truncating the

STIRAP and saSTIRAP sequences in the middle of the drive Ω01(t). By this time, the

maximum transfer has already taken place and beyond this, the decay of p2 dominates over

the slow transfer of p0 to p2. Fig. 4(a) presents the ideal p2 resulting from ideal STIRAP

and saSTIRAP drives in the absence of decoherence, wherein there is a similar decline in

STIRAP population transfer.

The plots which include the counterdiabatic correction demonstrate that the protocol is

effective in counteracting the diabatic excitations, and we reach experimental values for p2 in

the range 0.8 - 0.9. These results can be also analyzed from the point of view of the quantum

speed limit, by looking at the transfer time ttr over which population transfer occurs. We
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define the transfer time as

ttr = tf − ti = (2n+ κ)σ (13)

between an initial dark state |D(ti)⟩ and a final state |D(tf )⟩. A convenient choice for a

dissipative system is to take an initial state with 99 % population in |0⟩ (mixing angles

Θ(ti) = 0.03π) and a final state with 80 % population in |2⟩ (mixing angle Θ(tf ) = 0.35π).

For dissipationless systems the latter is usually taken 90%, see [31].

To further confirm these results, we realized another set of experiments where we observed

the transfer efficiency of saSTIRAP against STIRAP area (A) by varying the width (σ) of

the STIRAP drive at constant amplitudes Ω01/(2π) = 25 MHz and Ω12/(2π) = 16 MHz.

We perform five different experiments where the aim was to reach a target value p2 = 0.55

by adjusting the parameters (σ, A02). We found experimentally (10 ns, π/2), (17 ns, 3π/2),

(17 ns, π/3), (25 ns, 5π/4), and (25 ns, 0). The experimental points correspond well to the

simulation.

Several bounds on the speed of state transfer have been derived in open systems, for

example based on Fisher information [32], on relative purity [33], and on the Bures distance

[34, 35]. To find the quantum speed for evolution from a pure initial state ρ0 = |ψ(0)⟩⟨ψ(0)|
at t = 0 to a mixed state ρτ at t = τ , we use the bounds derived in Ref. [34],

TQSL =
sin2(dB(ρ0, ρτ ))

λopτ
(14)

where dB(ρ0, ρτ ) = arccos(
√
F (ρτ , ρ0)) is the Bures distance and F (ρτ , ρ0) =

(
tr
√√

ρ0ρτ
√
ρ0
)2

is the fidelity (F (ρτ , ρ0) = ⟨ψ(0)|ρτ |ψ(0)⟩ for a pure ρ0). This yields

TQSL =
1− F (ρτ , ρ0)

λopτ
(15)

and

λopτ =
1

τ

∫ τ

0

||L[ρ(t)]||opdt (16)

and ||L[ρ(t)]||op = maxi{si(t)} is the operator norm (si are the singular values of L[ρ(t)]

defined as eigenvalues of
√

L†[ρ(t)]L[ρ(t)], where L† is the adjoint of L). In the case when

the dissipation is mainly due to relaxation processes, see Eqns. (5) and (6), operator L[ρ(t)]

is Hermitian. We obtain the Bures distance and corresponding quantum speed for the mixed

state evolution under STIRAP and saSTIRAP drives (see Eqns. 1, 2, 3), with σ = 30 ns,

κ = 1.5, Ω01/2π = 44 MHz, Ω12/2π = 37 MHz, and n = ±3. In the ideal situation, where
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the initial state is |0⟩ and the final state is −|2⟩, the Bures distance between the initial

and the final state is 0.5π. However, with given STIRAP and saSTIRAP parameters, the

maximum Bures distance is 0.48π without considering decoherence and 0.33π in the presence

of decoherence. Correspondingly, the instantaneous rate of change of quantum state also

varies with and without decoherence as shown in Fig. 5(a), where continuous curves are

obtained by considering the pure state evolution (no decoherence) and dotted curves are

obtained from the mixed state evolution (with decoherence). The rate of change ||ρ̇(t)|| of
a quantum state at an arbitrary time (t) is defined as the operator norm of ρ̇(t), which is in

fact the same as ||L[ρ(t)]||op, see Eq. (5). It is noteworthy that the rate of change of quantum

state in saSTIRAP (in red) is much higher than that of STIRAP (in blue), while both of

these peak around the middle of the sequence. In Fig. 5(b), the quantum speed limit (TQSL)

under saSTIRAP drive is shown as a function of time for pure and mixed states. In case of

pure state evolution, TQSL reaches a maximum of 13.9 ns while the mixed state evolution

has a lower bound at TQSL = 12.6 ns. This faster mixed state evolution is deceptive, as it

results from the smaller Bures distance and infact has lower value of ||ρ̇(t)||.
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FIG. 5. (a) Instantaneous rate of change of quantum state resulting from STIRAP and saSTIRAP

evolutions without (continuous) and with (dotted) decoherence. Here σ = 30 ns, κ = 1.5, Ω01/2π =

44 MHz, Ω12/2π = 37 MHz, and n = ±3. (b) Corresponding quantum speed limit without

(continuous) and with (dotted) decoherence as a function of time, and (c) TQSL resulting from

saSTIRAP with decoherence for different values of σ and κ.

Considering Fig. 5(a) again, it is evident that TQSL for STIRAP is an order of magnitude

larger than that of saSTIRAP, which is attributed to almost the same Bures distance while

an order of magnitude difference exists in the rate of evolution of the quantum states.

Finally, we compare the quantum speed limits of the mixed state evolutions for different

STIRAP parameters: (σ = 15 ns, κ = 3), where saSTIRAP evolution is predominantly
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achieved by the counterdiabatic drive, as can be seen from Fig. 4 and for (σ = 15 ns,

κ = 1.5), which corresponds to much shorter pulse duration. Results from the comparisons

are shown in Fig. 5(c), where red curve presents the fastest evolution with TQSL = 9.6 ns.

Another interesting point would be to compare the quantum state evolution under STIRAP

and saSTIRAP for (σ = 15 ns, κ = 3), where ill performance of STIRAP is readily seen

in Fig. 4(a) as well as from dB(ρti , ρtf ) = 0.19π (without decoherence). In this case, the

maximum value of the rate of change of quantum state under STIRAP (||ρ̇(t)|| ≈ 215 MHz)

is of the same order of magnitude as that of saSTIRAP (||ρ̇(t)|| ≈ 250 MHz). However, in

the same time T = tf − ti, STIRAP leads to nowhere close to the expected final state, while

saSTIRAP driven ρti is close to the final state with dB(ρti , ρtf ) = 0.43π.

For pure states the Bures distance becomes the Fubini-Study distance

dFS(|ψ1⟩, |ψ2⟩) = cos−1
√
F (|ψ1⟩, |ψ2⟩) (17)

where the fidelity is defined as F (|ψ1⟩, |ψ2⟩) = |⟨ψ1|ψ2⟩|. In the case of dark states |D⟩ =
cos θ|0⟩ − sinΘ|1⟩ we have

dFS(Θ1,Θ2) = |Θ1 −Θ2|2 (18)

and the Bures distance is dBures =
√

2(1− cos(Θ1 −Θ2)).

B. Pulse area

STIRAP is known to be insensitive to the amplitudes of the drives once it satisfies the

adiabaticity criteria, Ωσ >>
√
π/4 (assuming Ω01 = Ω12 = Ω). Thus for a fixed σ, there

is a threshold Ω beyond which the value of Ω ceases to matter anymore in a STIRAP.

This robustness feature of STIRAP is passed onto saSTIRAP, as seen in Fig. 6, where the

population transferred from the ground state to the second excited state p2 is plotted as a

function of the STIRAP area, A =
∫∞
−∞

√
Ω01(t)2 + Ω12(t)2dt and two-photon pulse area,

A02 = 2Θ(tf ). The STIRAP area is spanned by linearly varying the drive-amplitudes in

the ranges: Ω01 ∈ 2π × [0, 80] MHz and Ω12 ∈ 2π × [0, 58] MHz with asymmetry η =

(Ω01 − Ω12)/(Ω12 + Ω01) = 0.16, while keeping σ = 30 ns, ts = −1.5σ, ti = −3σ + ts,

and tf = 3σ fixed. The area of the two-photon drive is spanned by simply varying the

target mixing angle Θ(tf ), such that A02 ∈ [0, 4π]. In Fig. 6, A02 = 0 corresponds to purely

STIRAP implementation. In that case, population transfer efficiency becomes significant for
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FIG. 6. Transferred population p2 from a) simulation, b) experiment- as a function of the STIRAP

pulse area A and the two-photon pulse area A02. The STIRAP Rabi couplings are varied linearly

from zero to a maximum value of Ω01/(2π) = 80 MHz and Ω12/(2π) = 58 MHz while keeping

the asymmetry constant at η = 0.16. Similarly, the two-photon pulse was varied from zero to

maximum values of Ω̃12/(2π) =
√
2Ω̃01/(2π) = 118 MHz. The separation time was ts = −45 ns

and the width was σ = 30 ns.

A > 4π. From the adiabaticity criteria, we have Ω >> 14.8 MHz and to an approximation

A >> 3.17π. Fixing the STIRAP area A = 4π, and amplitude ratio, a = (1− η)/(1 + η) =

Ω12/Ω01 = 0.725, we obtain Ω01/2π = 18.6 MHz and Ω12/2π = 13.48 MHz. The efficiency of

STIRAP and its robustness against the drive-amplitudes can be observed along the vertical

stretch forA02 = 0. The area of the counter-diabatic saSTIRAP drive, A02 =
∫∞
−∞ Ω02(t)dt =∫ tf

ti
2Θ̇(t)dt = 2θ(tf ), is equal to π for saSTIRAP. The drive Ω02(t) has a maximum amplitude

of −ts/σ2 at t = ts/2, see Eq. (9) and the corresponding amplitudes of two-photon drives

can be obtained by using: Ω̃12 =
√
2Ω̃01 =

√√
2∆Ω02. In the experiments and simulations

a linear variation of Ω̃12 ∈ 2π[0, 118] MHz corresponds to A02 ∈ [0, 4π]. As A02 is increased

from zero, the population transfer begins to improve and for A02 = π, we have saSTIRAP

with a near perfect population transfer. This narrow region around A02 = π is clearly

insensitive to the STIRAP area A. As STIRAP begins to work properly, this narrow region

gets wider and we obtain a highly efficient population transfer. With A02 approaching 2π,

the counter-diabatic two-photon drive of saSTIRAP effectively corresponds to a 2π rotation

in the |0⟩ − |2⟩ subspace. For A02 = 3π, a saSTIRAP like transfer is observed again. Here

the two-photon drive effectively implements a 3π rotation such that initial state |0⟩ ends up
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close to i|2⟩, which interferes constructively with the output state (−|2⟩) from STIRAP. The

phase difference between these two output states prevents them to interfere destructively.

The periodicity of the pattern for relatively small values of A in Fig. 6 is infact a consequence

of Rabi oscillations in the |0⟩ − |2⟩ subspace due to two-photon drives: Ω̃01(t), detuned by

−∆ from ω01 and Ω̃12(t), detuned by ∆ from ω12.

To summarize, we have demonstrated robustness under scaling for the superadiabatic

protocol under typical experimental constraints related to noise and maximally-achievable

drive amplitudes.

V. DISCUSSION: COMPARISON WITH SASTIRAP BY DIRECT-COUPLING

COUNTERDIABATIC DRIVE

In order to understand better the previous results, we analyze here the case of saSTIRAP

using a counterdiabatic drive that couples directly with transition |0⟩ − |2⟩. This is the

standard way to obtain a highly efficient desired population transfer. We study here what

happens when the strength of this counterdibatic drive area exceeds the value of π obtained

in the standard superadiabatic theory.

The superadiabatic(sa)-STIRAP closely follows the dynamics of adiabatic population

transfer via STIRAP while correcting for any non-adiabatic excitations. The counterdiabatic

(0−2) drive can be understood as working in parallel with the STIRAP sequence; they inter-

fere constructively to achieve the final dark state |ψf⟩ = |D⟩ = cos(Θ(tf ))|0⟩− sin(Θ(tf ))|2⟩
with mixing angle Θ(tf ) = 2nπ + π/2, where n ∈ Z. saSTIRAP is strictly defined for

A02 = π and ϕ20 = −π/2 where the phases ϕ01 and ϕ12 of the STIRAP pulses are fixed to

0 in Eq. (1) and Eq. (2). However, now the 0-2 drive, which in Eq. (4) was obtained from

the effective two-photon drive, is now realized directly as H02 = (iℏΩ02/2) (|0⟩⟨2| − |2⟩⟨0|).
Importantly, this means that energy-level shifts, which inevitably appear in the two-photon

drive, do not appear. We simulate the dynamics of a three-level system initialized in the

dark state |ψi⟩ = |D⟩ = cos(Θ(ti))|0⟩ − sin(Θ(ti))|2⟩ with mixing angle Θ(ti) = 0. The

decoherence is neglected altogether. We extend the simulation to a much broader range of

A02 beyond the standard area of A02 = π and observe a periodically repeating pattern with

features similar to saSTIRAP, see Fig. 7.

The counterdiabatic pulse areaA02 =
∫∞
−∞ Ω02(t)dt = 2

∫ tf
−ti

Θ̇(t)dt = 2Θ(tf ) since Θ(ti) =
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FIG. 7. Results from simulations of saSTIRAP with a direct 0 − 2 counterdibatic drive and in

the absence of decoherence. (a) Final populations - p0, p1, and p2 resulting from saSTIRAP,

as a function of amplitudes of STIRAP drives (Ω01, Ω12) and area of the superadiabatic drive

(A02). Here σ = 30 ns, ts = −45 ns, ti = −3σ + ts, tf = 3σ, ϕ01 = ϕ12 = 0, and ϕ20 = −π/2.

Corresponding population-transfer profiles over time are plotted for Ω01 = Ω12 = 2π×8 MHz with

(b) A02 = 0, (c) A02 = π, and (d) A02 = 5π. These points are also marked with red cross marks

in the surface map of p2.

0. Therefore, the final angle is Θ(tf ) = A02/2 and the corresponding final state is

|ψf (A02)⟩ = cos(A02/2)|0⟩+ eiϕ sin(A02/2)|2⟩ (19)

which is a dark state (|D(θ)⟩ = cos θ|0⟩ − sin θ|2⟩) for A02 = 2nπ + θ and ϕ = (2mπ +

ϕ20 − π/2), where n,m ∈ Z. Populations of the ground state – p0, first excited state – p1,

and second excited state – p2 obtained in a saSTIRAP are plotted with resect to maximum

amplitudes in the STIRAP drive (Ω01 = Ω12) and area of the counterdiabatic pulse- A02,

as shown in Fig. 7. Simulations in Fig. 7 have STIRAP drives with fixed width σ = 30

ns and overlap ts = −1.5 × σ with each Gaussian being truncated at ±3σ. In Fig. 7(a),

Ω01 = 0 corresponds to Rabi oscillations in the 0− 2 subspace, such that p0 + p2 = 1, while
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p1 = 0. A02 = 0 corresponds to the STIRAP implementation alone, which begins to work

well beyond Ω01 = 2π × 15 MHz. STIRAP population dynamics with time, in the region

of inefficient implementation with Ω01 = Ω12 = 2π × 8 MHz is shown in Fig. 7(b). As the

counterdiabatic pulse of saSTIRAP comes into picture, there is a dramatic improvement with

a perfect population transfer as shown in Fig. 7(c). Interestingly, highly efficient population

transfer appears also at other values of A02, most notable near values A02 = 4nπ+π (n ∈ Z,

n ̸= 0). An example of time-domain population transfer is shown in Fig. 7(d) for A02 = 5π.

However, it is important to notice that in this case has additional oscillations in the middle

of the sequence, therefore the non-adiabatic terms are not suppressed. Still, such protocols

are also interesting and can be used to realize holonomic gates, see for example Ref. [36] for

an experimental realization.

Another interesting situation arises for A02 = 3π, where there is destructive interference

between states resulting from STIRAP and counter-diabatic drive for Ω01 = Ω12 = 2π × 8

MHz. The destructive interference is due to an overall phase of eiπ acquired by the target

dark state in the case of direct 0 – 2 drive (with A02 = 3π), i.e. under H02(t) drive

the corresponding final states, see Eq. (19) for A02 = π and 3π are related as |ψf (π)⟩ =

eiπ|ψf (3π)⟩.
This interference is absent in the results discussed in previous section with reference to

Fig. 6. In fact under two-photon drive the state does not develop an overall phase of eiπ for

the case of A02 = π vs A02 = 3π.

The final state from the two-photon drive contains both real and imaginary parts, which

do not get nullified by the final state resulting from STIRAP, which has only real coefficients.

The difference between the actions of direct 0 – 2 drive and the two-photon drive can be ex-

plained by considering the details of the effective two-photon drive in the 0−2 subspace. Let

us consider the evolution of an arbitrary state α|0⟩+β|1⟩+ γ|2⟩ driven by two-photon drive

Hamiltonian given in Eq. (3). Here we use the method of adiabatic elimination by assuming

Ω02 << ∆ and β̇ = 0 as described in Ref. [37]. This leads to an effective Hamiltonian in the

0− 2 subspace,

Heff
2ph(t) = −ℏΩ̃01Ω̃12

4∆

(
1

2λ
|0⟩⟨0|+ λ

2
|2⟩⟨2|+ e2iφ̃|0⟩⟨2|

)
+ h.c.. (20)

This Hamiltonian is clearly different from the directly coupled drive H02(t) from Eq. (4 in the

0 − 2 subspace. These additional diagonal terms in Eq. (20) are responsible for generating
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additional relative phases during the evolution, which lead to different phases of the complex

coefficients, even though their absolute values remain close to the ones expected from a direct

0–2 drive.

In addition, from Fig. 6(a) and Fig. 7(a), imperfections in the p2 surface maps in the

form of tilted arcs with tails for increasing values on A02 occur. This happens because

Ω02 becomes comparable with the anharmonicity ∆, and also because of higher truncation

errors due to increasing 0 − 2 pulse amplitude. Despite these imperfections, a much wider

plateau of efficient population transfer is formed, featuring insensitivity to pulse parameters.

The structure of this plateau is preserved even in the presence of decoherence. An added

advantage is seen for A02 = π, 5π in Fig. 7(a), and A02 = π, 3π in Fig. 6, where population

transfer is resilient to the STIRAP drive amplitudes. We have verified that a similar plateau

structure of efficient population transfer can be obtained for constant Ω01 and Ω12 by varying

the total pulse duration, which is a combination of σ, κ, and n. The plateau of efficient

population transfer in this case is resilient to errors in the total pulse duration. The large

flexilibility in the choice of parameters without compromising the efficiency of the protocol

makes the protocol remarkably robust.

VI. CONCLUSION

In the loop configuration for a transmon device, we have implemented a superadiabatic

protocol where two couplings produce the standard stimulated Raman adiabatic passage,

while the third is a counterdiabatic field that suppresses the nonadiabatic excitations. This

technique enables fast operation and it is remarkably robust against errors in the shape of

the pulses. The superadiabatic method enables a continuos interpolation between speed and

insensitivity to errors, allowing one to select the optimal values under realistic experimental

constraints. We also observe the appearance of plateaus characterized by highly efficient

transfer of population at large values of the counterdiabatic pulse area.

Appendix A: Appendix: Dynamic phase corrections

Following Ref. [37], dynamic phase corrections implemented to drives Ω01(t), Ω12(t),

and Ω02(t) (with A02 = π) are ϕ01(t) = ϕ01 + 2
√
2ℏΘ(t), ϕ12(t) = ϕ12 − (5ℏ/

√
2Θ(t), and
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FIG. 8. (a) Population p2 resulting from saSTIRAP with dynamically varying phases of the drives

is plotted as a function of initial phase of the 0 − 2 drive. (a1, a3), (a2, a4) show the transferred

population (p2) without and with decoherence respectively in case of dynamically varying phase

(ϕ02(t)). Vertical dashed line in each plot corresponds to ϕ02 = π/2. p2 as a function of κ and σ in

the case of saSTIRAP with constant phases of the drives and with dynamic phases of the drives.

(b) p2 from saSTIRAP driven dynamics as a function of κ and σ.

ϕ02(t) = ϕ02 − (ℏ/
√
2Θ(t) respectively. We simulated saSTIRAP with dynamically varying

phases by incorporating these ac-Stark shift corrections. Fig. 8(a) presents the resulting

surface maps of p2 as a function of initial phase of the 0 − 2 drive plotted with σ in parts

(a1,a2) and as a function of the transfer time in parts (a3, a4), similar to that of Fig. 3.

Interestingly, by attributing time-dependent dynamical phases to the drives in order to

compensate the ac-Stark shifts resulting from the two-photon resonanant drive, intial choice

of ϕ02(t = 0) = π/2 is not necessarily optimal. A clear shift in the initial ϕ02(t) is observed

as shown in Fig. 3(a3,a4) without and with decoherence.

In Fig. 8(b), results from saSTIRAP driven dynamics is shown as 3D map of p2 as a

function of κ and σ. The map in which p2 decreases for smaller values of σ and relatively

larger ts/σ
2 is acquired with constant phases ϕ01 = ϕ12 = 0, ϕ20 = −π/2. The map acquired

with dynamic phase corrections as described above has higher values for the shown range.

Thus, ac-Stark shift compensations using dynamic phases of the drives results into highly

efficient population transfer. Constant phases of the drives are at their worst performance
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for small σ values, which is the region where STIRAP drives are also not effective. In this

region, the saSTIRAP efficacy highly depends upon the 0 − 2 drive. Therefore, this region

faces maximum errors due to the detuned two-photon drives and hence there is a lot of room

for the improvement by compensating the corresponding ac-Stark shifts.

Appendix B: Appendix: Majorana representation

To compare further the efficacies of STIRAP and saSTIRAP, we present a geometrical

visualization of the results from STIRAP and saSTIRAP on the Majorana sphere [38]. The

transmon, initialized in its ground state (|0⟩), is driven by the STIRAP and saSTIRAP

Hamiltonians with σ = 35 ns, κ = 2.7 and n = ±3 in a decohering environment. Sub-

ject to the strong decoherence (as mentioned in the main text), the mixedness keeps on

increasing and the purity of the single qutrit state drops to as low as 0.45. However, by

considering a optimal truncation of the pulse sequence, which falls close to the middle of the

0 − 1 Gaussian drive, the purity saturates close to 0.8. Majorana trajectories in Fig. 9(a),

(b) present the mixed state dynamics for the maximum population transfer, for STIRAP

and saSTIRAP drives respectively. Here we show the trajectories followed by the dominant

eigenstates alone, as other two eigenvalues are order of magnitude lower. The corresponding

variation of populations in levels |0⟩ (black lines), |1⟩ (red lines), and |2⟩ (blue lines) are

shown in Fig. 9(c). The optimally truncated dynamics is shown with continuous lines (thick

for saSTIRAP and thin for STIRAP) until a maximum transfer of population from |0⟩− |2⟩
is achieved, while the respective curves continue as dashed (STIRAP) and dotted (saSTI-

RAP) lines. The levels of decoherence and other experimental parameters of STIRAP and

saSTIRAP are the same, but the results from saSTIRAP are clearly better.

ACKNOWLEDGMENTS

We thank Dr. Sergey Danilin for fabricating the sample used in these experiments and for

assistance with the measurements. We acknowledge financial support from the Finnish Cen-

ter of Excellence in Quantum Technology QTF (projects 312296, 336810) of the Academy of

Finland. We also are grateful for financial support from the RADDESS programme (project

328193) of the Academy of Finland and from Grant No. FQXi-IAF19-06 (“Exploring the

fundamental limits set by thermodynamics in the quantum regime”) of the Foundational

21



0

10
-7

0

0.5

1

p
0

p
1

p
2

Ω01(t)

Ω12(t)

Ω̃01(t)

ti tf0
T01

P
o
p
u
la
ti
o
n
s

Time (t) [ns]
−200 105

(a) (b)

(c)

S1
S2
|〈J〉|

FIG. 9. Majorana trajectories of a qutrit driven by (a) STIRAP, (b) saSTIRAP are shown, where

the red and blue trajectories follow two Majorana stars representing a qutrit and the black tra-

jectory is the path traversed by the averaged magnetization vector. (c) saSTIRAP drives and

corresponding variation of populations in levels |0⟩ (black), |1⟩ ( red), and |2⟩ (blue) with optimal

transfer time and total transfer time are shown with solid lines (thick for saSTIRAP and thin for

STIRAP) and dashed lines (for STIRAP or dotted for saSTIRAP) respectively.

Questions Institute Fund (FQXi), a donor advised fund of the Silicon Valley Community

Foundation. This project has received funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement no. 824109 (European Microkelvin

Platform project, EMP). This work used the experimental facilities of the Low Temperature

Laboratory of OtaNano.

Data Accessibility Data related to the experiments and simulatons can be obtained

from the authors under reasonable request.

Author’s Contributions AV carried out the measurements under the supervision of

GSP, and did the preliminary data analysis. SD did an in-depth analysis of the data and

contributed significantly to the theoretical analysis. SD and GSP wrote the manuscript. All

22



authors read and approved the manuscript.

Competing Interests The authors declare that they have no competing interests.
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[38] Dogra S, Vepsäläinen A, Paraoanu GS. 2020 Majorana representation of adiabatic and su-

peradiabatic processes in three-level systems. Phys. Rev. Research 2, 043079.

25


