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Abstract: Using analytical Lorenz–Mie scattering formalism and numerical methods, we
analyze the response of active particles to electromagnetic waves. The particles are composed
of homogeneous, non-magnetic, and dielectrically isotropic medium. Spherical scatterers and
sharp and rounded cubes are treated. The absorption cross-section of active particles is negative,
thus showing gain in their electromagnetic response. Since the scattering cross-section is always
positive, their extinction can be either positive, negative, or zero. We construct a five-class
categorization of active and passive dielectric particles. We point out the enhanced backscattering
phenomenon that active scatterers display, and also discuss extinction paradox and optical
theorem. Finally, using COMSOL Multiphysics and an in-house Method-of-Moments code, the
effects of the non-sphericity of active scatterers on their electromagnetic response are illustrated.

© 2023 Optica Publishing Group

1. Introduction

Scattering by material particles is a classical problem in electromagnetics and optics. The effect
of a scatterer on incoming waves is dependent, in addition to the size and shape of this object, also
on its material constitution. In the present study, we focus on the electromagnetic response of
particles that are characterized by active material properties. In other words, the medium displays
gain. The problem to be treated consists of a scatterers which are non-magnetic, isotropic, and
homogeneous, characterized by a uniform scalar (complex) permittivity. The objects to be
analyzed are symmetric: spheres and cubes with varying rounding on their edges and corners.
For the analysis of spherical scatterers, we apply the Mie theory, while for the non-spherical
shapes, numerical approaches are used.

A solid foundation to analyze scattering by a sphere rests on the Lorenz–Mie scattering
theory [1, 2]. Mie scattering is indeed a very proven theory to analyze, in a full-wave extension,
the scattering, absorption, and extinction due to spherical particles exposed to electromagnetic
and optical radiation. While there are, in the literature, several extensions of Mie theory to, for
example, core–shell particles [3], layered structures [4], and spheres whose surface is defined by
boundary conditions [5, 6], it seems that spheres with active response have attained much less
attention. Some early theoretical studies on the electromagnetic response of active scatterers
exist from 1970s [7–9], and also worth seeing is the later study on Kerker conditions [10].
The mechanisms to generate active responses (via external energy pumping and stimulated
emission lasing) can be enhanced by strong resonance effects in nanoparticles with silver shell and
gain-impregnated silica core [11], as well as quantum-dot active coated nanoparticles [12], where
in the analysis classical homogenization is applied [13]. A core–shell structure can be "internally
homogenized" using effective medium formulas applicable for dielectric mixtures [14, 15], and
it turns out that also in the active regime, Maxwell Garnett homogenization turns out to be
useful [16].
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In the following, we define an active dielectric medium by the sign of the imaginary part of its
permittivity. Following the time-harmonic notation exp(j𝜔𝑡), the complex relative permittivity
reads 𝜀′ − j𝜀′′ which means that a positive 𝜀′′ corresponds to lossy (dissipative) media, negative
𝜀′′ to gainy (active) media, and 𝜀′′ = 0 stands for lossless (and gainless) media [17, p. 91]. Gain
materials are active while passive media 𝜀′′ ≥ 0 comprise both the dissipative and lossless
classes. The characterization of active and passive scatterers leads to an interesting classification
of particles where we distinguish them based on the signs of their extinction cross section and
the imaginary part of their permittivity. We show how the behavior of the multipolar electric
and magnetic Mie coefficients is strongly dependent on the degree of activity, emphasize the
strong backscattering enhancement for gainy particles, and revisit the fundamental concepts of
extinction paradox and optical theorems. Numerical approaches are compared with the Mie
series results and a good agreement is observed. These numerical approaches allow us to study
how the shape of active scattering particles affects their electromagnetic and optical response.

2. Lorenz–Mie scattering by active spheres

The classical Lorenz–Mie analysis of the scattering process when an isotropic dielectric sphere in
free space (background medium parameters are 𝜀0 and 𝜇0) is exposed to an electromagnetic wave
leads to the scattering (sca), absorption (abs), and extinction (ext) cross sections of the scattering
object. Here we follow the notation in the textbook by Bohren and Huffman [18]. Normalized by
the geometric cross section of the sphere, the cross sections become dimensionless efficiencies
which can be computed from the following series

𝑄sca =
2
𝑥2

∞∑︁
𝑛=1

(2𝑛 + 1)
(
|𝑎𝑛 |2 + |𝑏𝑛 |2

)
(1)

𝑄ext =
2
𝑥2

∞∑︁
𝑛=1

(2𝑛 + 1) Re {𝑎𝑛 + 𝑏𝑛} (2)

𝑄abs = 𝑄ext −𝑄sca (3)

The electric and magnetic Mie coefficients 𝑎𝑛 and 𝑏𝑛 appearing in these expressions read, as
functions of the relative permittivity 𝜀 and radius 𝑎 of the sphere, as

𝑎𝑛 =

√
𝜀 𝜓𝑛 (

√
𝜀 𝑥)𝜓′

𝑛 (𝑥) − 𝜓𝑛 (𝑥)𝜓′
𝑛 (
√
𝜀 𝑥)

√
𝜀 𝜓𝑛 (

√
𝜀 𝑥)𝜉′𝑛 (𝑥) − 𝜉𝑛 (𝑥)𝜓′

𝑛 (
√
𝜀 𝑥)

(4)

𝑏𝑛 =
𝜓𝑛 (

√
𝜀 𝑥)𝜓′

𝑛 (𝑥) −
√
𝜀 𝜓𝑛 (𝑥)𝜓′

𝑛 (
√
𝜀 𝑥)

𝜓𝑛 (
√
𝜀 𝑥)𝜉′𝑛 (𝑥) −

√
𝜀 𝜉𝑛 (𝑥)𝜓′

𝑛 (
√
𝜀 𝑥)

(5)

where the dimensionless size parameter is 𝑥 = 2𝜋𝑎/𝜆, with 𝜆 being the wavelength. Here, the
Riccati–Bessel functions 𝜓𝑛, 𝜉𝑛 are defined in terms of the ordinary spherical Bessel ( 𝑗𝑛) and
Hankel (ℎ𝑛) functions:

𝜓𝑛 (𝜌) = 𝜌 𝑗𝑛 (𝜌), 𝜉𝑛 (𝜌) = 𝜌 ℎ
(2)
𝑛 (𝜌), (6)

The validity of the Mie expansions has been proven for dielectric, magnetic, lossless, and lossy
spheres, as well as impedance-boundary scatterers for a myriad of applications during the past
decades. However, due to the fact that not so many studies have been published for Mie scattering
of active spheres, care has to be taken when the parametric space of the material character of the
sphere is extended by changing the sign of the imaginary part of the permittivity. This is the
focus of the present section where we look carefully on the convergence of the Mie series for
active scattering spheres and compare with the known convergence behavior of the efficiency
series for non-active scatterers. The comparison with numerical approaches is made to both to
verify that out Mie code is correct and to assess the accuracy of the numerical approaches.
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2.1. Wiscombe criterion and convergence of the Mie series

Since the scattering, absorption, and extinction efficiencies (1)–(3) are formally infinite series,
they need to be truncated in the numerical evaluation. Electrically (optically) large spheres
require more terms than small ones: the larger the size parameter 𝑥, the more terms are needed to
maintain the accuracy. The widely-used rule in the existing literature is the so-called Wiscombe
criterion [19]: the required minimum number of terms in the Mie series is

𝑁 =



⌈
𝑥 + 4𝑥1/3 + 1

⌉
𝑥 ≤ 8

⌈
𝑥 + 4.05𝑥1/3 + 2

⌉
8 < 𝑥 < 4200

⌈
𝑥 + 4𝑥1/3 + 2

⌉
4200 ≤ 𝑥 < 20,000

(7)

where the symbol of ceiling ⌈· · · ⌉ denotes the closest integer larger than the argument.
To illustrate the convergence of the Mie series and the validity of the Wiscombe criterion,

Figure 1 shows the error of a truncated series for the extinction efficiency as function of the
number of terms, for passive (𝜀 = 2 − j) and active (𝜀 = 2 + j) spheres with size parameter 𝑥 = 2.
The figure shows that the Wiscombe criterion is extremely conservative when computing the
extinction efficiency: for 𝑥 = 2, the Wiscombe criterion (7) requires 9 terms in the series, which,
according to Figure 1, gives already 13 correct digits! Another interesting observation is that
with a given number of terms 𝑁 , the computed efficiency of the active sphere is more accurate
than for the dissipative one, at least in this case.

Figure 1. The relative error (the vertical axis shows the number of correct digits of the
approximation) of the extinction efficiency 𝑄ext, as function of the number of terms 𝑁
in the Mie expansion for 𝑥 = 2. Blue dots: passive scatterer (𝜀 = 2 − j); orange dots:
active scatterer (𝜀 = 2 + j).

One would expect that the convergence of the Mie series would be slower when the efficiency is
very large, like at resonances, rather than at this arbitrary chosen case (𝑥 = 2, 𝜀 = 2 ∓ j). Figure 2
shows the corresponding comparison at the first resonance of the active sphere (𝑥 = 2.14, 𝜀 = 2+ j)
and the conjugate dissipative sphere (𝑥 = 2.14, 𝜀 = 2 − j). For this case, the efficiency of the
active case converges much more rapidly than in Figure 1: for a given number of terms, the
active sphere is three orders of magnitude more accurate than the dissipative (or lossless, 𝜀 = 2)
case. For comparison, also shown is the fast convergence of the series for a lossless plasmonic
(negative-permittivity) sphere.
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(a) 𝑥 = 2.14 (b) 𝑥 = 0.2, 𝜀 = −2.1

Figure 2. The relative error (the vertical axis shows the number of correct digits of the
approximation) of the scattering efficiency 𝑄sca, as function of the number of terms
𝑁 in the Mie expansion. (a) Blue dots: passive scatterer (𝜀 = 2 − j); orange dots:
active scatterer (𝜀 = 2 + j), green dots: lossless scatterer (𝜀 = 2). (b) The same rapid
convergence for a lossless plasmonic resonance (negative-permittivity sphere).

Figure 3. The convergence of the Mie series as the number of terms 𝑁 for the extinction
efficiency of passive (blue dots, 𝜀 = 2 − j) and active (orange dots, 𝜀 = 2 + j) large
spheres (the size parameter 𝑥 = 100).
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Another look at the convergence is given in Figure 3 where the extinction efficiency estimate
of large spheres (𝑥 = 100) is shown as the number of terms 𝑁 in the Mie series increases. For
this size, the Wiscombe criterion requires 121 terms, while in the figure, the curves stabilize
already at around 100 terms. Extinction is very close but not equal for the passive (𝜀 = 2 − j)
and active (𝜀 = 2 + j) cases: 𝑄ext = 2.086 and 𝑄ext = 2.087, respectively. Active and passive
spheres seem to converge with similar speeds, but the convergence behavior of the passive one
(blue dots) is more stable as 𝑁 increases.

2.2. Extinction paradox

A strong theoretical result for the scattering problem is the so-called extinction paradox [20, 21],
according to which in the high-frequency limit, the extinction cross section of the particle equals
twice its geometrical cross section. In other words, the extinction efficiency 𝑄ext approaches the
value 2 when 𝑥 becomes large. This result has been validated for passive and perfectly conducting
spheres, for which 𝑄ext converges to this value rather smoothly. The paradoxical nature of this
result continues to excite discussion in the literature; see, for instance, the recent critical studies
on the explanation of the extinction paradox [22–24].

Previous literature has not analyzed extinction paradox in the context of active spheres which
motivates us to take a look into the behavior of the extinction of an optically large active sphere.
Figure 4 displays the extinction efficiency of two cases of active spheres (𝜀 = 2+ j and 𝜀 = 2+ j10),
as function of 𝑥. The figures show that the extinction curves of active objects differ radically
from the corresponding passive ones: the extinction efficiency displays strong oscillations for
moderate size parameters. Despite this, the result corroborates the extinction paradox also in the
active case, as the curves stabilize close to the value 2 when 𝑥 reaches values of around 40.

(a) 𝜀 = 2 ∓ j (b) 𝜀 = 2 ∓ j10

Figure 4. The extinction efficiency of active and passive spheres, for a wide variation
of size parameter 𝑥. Blue curves are for passive and orange ones for active scatterers.

2.3. Comparison with numerical approaches

In this section, numerical solutions are compared with the Mie solutions for an active sphere. We
use an in-house Method-of-Moments (MoM) code (based on [25, 26]) and commercial software
COMSOL Multiphysics [27] which is based on the finite element method (FEM). Both methods
are available for arbitrarily shaped particles.

In MoM, an electromagnetic scattering problem is reformulated as a surface integral equation
(SIE) for equivalent electric J and magnetic M surface current densities. This yields surface
mesh and surface unknowns, and the field behavior in a medium is described with a Green’s
function. Compared to the methods based on volume meshing, such as FEM, these properties
could be particularly beneficial in active media where the fields inside the medium may have
strong variations.
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Let us take a look at the behavior of the Green’s function in an active medium. This function
is defined by

𝐺 (r, r′) = 𝑒−j𝑘𝑅

4𝜋𝑅
=

1
4𝜋𝑅

(cos 𝑘𝑅 − j sin 𝑘𝑅) , 𝑅 = |r − r′ | (8)

with an active medium wave number (𝜀′′ < 0)

𝑘 = 𝜔
√
𝜀𝜀0𝜇0 = 𝜔

√︁
𝜀′ − j𝜀′′√

𝜀0𝜇0. (9)

The behavior of the Green’s function in lossless (𝜀 = 3), dissipative (𝜀 = 3 − 1.5j) and active
(𝜀 = 3 + 1.5j) media is illustrated in Figure 5(a). In all three cases, the real part of the
Green’s function has 1/𝑅 type singularity as the field r and source r′ points coincide, while the
imaginary parts are regular as 𝑅 → 0. This indicates that similar singularity subtraction [28]
or cancellation [29] techniques that are developed for the numerical evaluation of the Green’s
function in passive and lossless media would work also in the active case. The difference is that
in active media the Green’s function, both the real and imaginary parts, is a strongly oscillating
function which amplitude increases as the distance between the field and source points increases.
In passive dissipative medium the Green’s function is decaying function as 𝑅 increases.

In this work the classical Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) [30]
surface integral equation formulation with Rao–Wilton–Glisson (RWG) [31] basis and test
functions is applied. Since this approach has not been previously applied for active objects, it is
necessary to verify the correctness and accuracy of the solution. Figure 5(b) displays the results
of this study versus the number of planar triangular for a passive (lossy) and an active sphere.
In both cases the same analytical and numerical methods [25], which are previously developed
for passive materials, and with the same number of integration points are used to evaluate the
singular integrals involving the Green’s function and its gradient. The results indicate that to
obtain the same accuracy as in the passive case, higher mesh density is required in the active
case, particularly as the size parameter 𝑥 increases.
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Figure 5. (a) Real (solid lines) and imaginary (dashed lines) parts of the Green’s
function in lossless, (𝜀 = 3), dissipative (𝜀 = 3 − 1.5j) and active (𝜀 = 3 + 1.5j) media.
(b) Relative error of the MoM solution for a passive sphere (dashed lines, 𝜀 = 3 − 1.5j)
and active sphere (solid lines, 𝜀 = 3 + 1.5j) with increased number of planar triangular
surface elements (𝑁).

In COMSOL [27], the computational setup is similar to the verification example rcs_sphere
that is included with the RF Module. To ensure good accuracy, we have maximum edge length
𝜆/10 in the free tetrahedral meshes in the sphere and also in the air layer surrounding the sphere,
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and an 8-layer swept mesh in the spherical perfectly matched layer (PML). Both the air layer
and the PML are 𝜆0/2 thick. The scattering efficiency 𝑄sca is computed using a surface integral
of the time average power outflow of the scattered field, while the absorption efficiency 𝑄abs is
computed using a volume integral of the electromagnetic power loss density in the sphere.

A comparison of the efficiencies of an active sphere computed with Mie series, MoM code,
and COMSOL software is shown in Figures 6 and 7. In the MoM solution the mesh is the same
for all size parameters, while in COMSOL the thickness of the air layer and the PML relative
to the sphere radius depend on the size parameter 𝑥 and so also the mesh depends on 𝑥. Good
accuracy is obtained with both numerical methods and they agree well with the Mie series results.
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Figure 6. (a) Scattering and absorption efficiency with Mie series, COMSOL and
in-house MoM code versus the size parameter 𝑥 = 𝑘𝑎. (b) Relative errors of COMSOL
and MoM solutions for 𝑄sca and 𝑄abs. An active sphere with 𝜀 = 3 + 1.5j.
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Figure 7. (a) Extinction efficiency with Mie series, COMSOL and in-house MoM
code. (b) Absolute errors of the COMSOL and MoM solutions for 𝑄ext. An active
sphere with 𝜀 = 3 + 1.5j.

3. Mie coefficients and backscattering enhancement

The behavior of the electric and magnetic Mie coefficients 𝑎𝑛 and 𝑏𝑛 determine the spectral
characteristics of the scattering and extinction of the spheres with a given permittivity. It turns
out that there is a drastic difference between the coefficients and consequently the global response
of active dielectric spheres compared to passive and dissipative ones.
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3.1. Properties of Mie coefficients

For lossless/gainless scatterers (𝜀′′ = 0), the Mie coefficients satisfy

Re{𝑐𝑛} = |𝑐𝑛 |2 (10)

where 𝑐𝑛 stands for both the electric (𝑎𝑛) and magnetic (𝑏𝑛) coefficients. From (10), it can
be seen that the absolute value of the coefficients is always between 0 and +1. For dissipative
scatterers, the maximum value is less than one, while for active scatterers, the coefficients do not
have an upper limit. A comparison of Mie coefficients (Figure 8) for the three types of scatterers
illustrates these properties.

(a) 𝑎1 (b) 𝑏1

Figure 8. Comparison of Mie coefficients as function of the size parameter 𝑥 for a
lossless (𝜀 = 3, solid blue), dissipative (𝜀 = 3 − j, dashed orange), and active (𝜀 = 3 + j,
dotted green) non-magnetic sphere.

An interesting result for the Mie coefficients (valid for all 𝑥, 𝑛, and 𝜀 = 𝜀′ − j𝜀′′) is the
following:

2𝑐𝑛 (𝜀)𝑐∗𝑛 (𝜀∗) = 𝑐𝑛 (𝜀) + 𝑐∗𝑛 (𝜀∗) (11)

where the conjugate of a complex number is denoted by 𝜀∗ = (𝜀′ − j𝜀′′)∗ = 𝜀′ + j𝜀′′. For
lossless scatterers (𝜀′′ = 0), Equation (11) returns the result (10). This formula (11) provides a
straightforward way to compute the Mie coefficients of an active sphere from the corresponding
passive ones.

3.2. Multipolar contributions to the efficiencies

As an example of how the different multipoles contribute to the scattering of a sphere, consider
an active sphere with relative permittivity 𝜀 = 2 + j as function of its size. Figure 9 displays how
the various electric and magnetic multipoles account for the total scattering efficiency 𝑄sca. It is
noteworthy that the main, rather sharp, resonance at around 𝑥 = 2.1 is due to the magnetic dipole
while the other resonances from higher-order modes remain softer and take place for optically
larger spheres. This is indeed dramatically different from the behavior of passive scatterers for
which the magnetic dipole resonance cannot be distinguished as a separate peak in the scattering
cross section plot for scatterers with relative permittivity as low as 𝜀′ = 2.

Another perspective how the electric and magnetic multipoles contribute to scattering is shown
in Figure 10. There the contribution of electric and magnetic multipoles into the scattering and
absorption efficiencies of an active sphere with 𝜀 = 3 + j1.5 is illustrated separately. Note the fact
that, concerning the magnetic multipoles, only the magnetic dipole 𝑏1 has a notable effect; all
other resonances in scattering and absorption efficiencies arise from the electric multipoles 𝑎𝑛.
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(a) (b)

Figure 9. (a) The contributions of the electric dipole scattering corresponding to
the coefficient 𝑎1 (long-dashed orange) and the magnetic dipole from coefficient 𝑏1
(short-dashed green) into the total scattering efficiency 𝑄sca (solid blue), as function of
the size parameter 𝑥. (b) The contributions of the orders of multipoles: both dipoles
(𝑛 = 1; long-dashed orange), dipoles and quadrupoles (𝑛 = 1, 2; short-dashed green),
and dipoles, quadrupoles, and hexapoles (𝑛 = 1, 2, 3; dotted red). The results are for an
active sphere with 2 + j.

(a) (b)

Figure 10. (a) The contribution of electric multipoles (orange dashed) and magnetic
multipoles (green dotted) to the scattering efficiency (blue solid) as function of the size
parameter 𝑥. (b) The same for the absorption efficiency. The results are for an active
sphere with 𝜀 = 3 + j1.5.



Research Article Journal of the Optical Society of America B 10

3.3. Backscattering enhancement

In our previous short study, we have emphasized the particular character in the scattering
behavior of active dielectric objects: the enhanced backscattering [32]. This section illustrates the
characteristics of the backscattering behavior of active spheres, emphasizes the notable difference
in scattering in comparison with passive spheres, and connects the phenomenon with the dipolar
Mie coefficients and the so-called second Kerker condition.

From the Mie coefficients, the backscattering and forward scattering cross sections and
efficiencies (𝑄b and 𝑄f) can be computed:

𝑄b =
1
𝑥2

����� ∞∑︁
𝑛=1

(2𝑛 + 1) (−1)𝑛 (𝑎𝑛 − 𝑏𝑛)
�����2 (12)

𝑄f =
1
𝑥2

����� ∞∑︁
𝑛=1

(2𝑛 + 1) (𝑎𝑛 + 𝑏𝑛)
�����2 (13)

As the imaginary part of the permittivity of a sphere changes sign, its forward-to-backward
scattering cross section 𝑄f/𝑄b changes drastically. This is illustrated in Figure 11 for spheres
with varying size (the real part of the relative permittivity is kept constant 𝜀′ = 3). There it can
be seen that while for passive spheres 𝜀′′ > 0 this ratio is of the order of unity and decreases
when the size parameter becomes larger, for negative 𝜀′′ values, it has a very dynamic behavior
and can reach very large values.

Another way of illustrating the backscattering enhancement is the asymmetry parameter 𝑔
which weighs the scattering over all the spatial directions [18, p. 72]:

𝑔 = ⟨cos 𝜃⟩ = 𝑄sca⟨cos 𝜃⟩
𝑄sca

(14)

where

𝑄sca⟨cos 𝜃⟩ =
4
𝑥2

∞∑︁
𝑛=1

𝑛(𝑛 + 2)
𝑛 + 1

Re
{
𝑎𝑛𝑎

∗
𝑛+1 + 𝑏𝑛𝑏

∗
𝑛+1

}
+ 4

𝑥2

∞∑︁
𝑛=1

2𝑛 + 1
𝑛(𝑛 + 1) Re

{
𝑎𝑛𝑏

∗
𝑛

}
(15)

Positive values of 𝑔 indicate that the object scatters mostly into the forward hemisphere while
negative values mean that the backward scattering is dominant. This is also shown in Figure 11.

While the enhanced backscattering is responsible for much of the large 𝑄b/𝑄f values (and
negative 𝑔 values) in Figure 11, this ratio can also be locally large due to very low forward
scattering cross section. For example, for a sphere with 𝑥 = 1.65 and 𝜀 = 3 + j2, the back-
to-forward ratio is around 17.2 and 𝑔 ≈ −0.423. This can be connected to the second Kerker
condition for which the electric and magnetic dipole Mie coefficients 𝑎1 and 𝑏1 are opposite
complex numbers, leading to a vanishing dipole contribution in Equation (13) for the forward
scattering efficiency [33]. Indeed, for these values, the coefficients are

𝑎1 ≈ 0.739 + j1.16 and 𝑏1 ≈ −0.789 − j1.10 (16)

4. Zero-extinction objects

4.1. Classification of passive and active scatterers

Depending on the sign of the imaginary part of the permittivity of an object, it can be dissipative
𝜀′′ > 0, lossless (and gainless) 𝜀′′ = 0, or active 𝜀′′ < 0, keeping in mind the time-harmonic
notation exp(j𝜔𝑡) and the electrical engineering convention 𝜀 = 𝜀′ − j𝜀′′. Passive media are
characterized by 𝜀′′ ≥ 0, including both lossless and dissipative cases. The scattering efficiency
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(a) backward-to-forward ratio (b) asymmetry parameter

Figure 11. Illustration of the balance between backscattering and forward scattering of
active 𝜀′′ < 0 and dissipative 𝜀′′ > 0 spheres, with real part of the relative permittivity
being 𝜀′ = 3, as function of the size parameter 𝑥 and the imaginary part 𝜀′′. The blue
plane shows the level 𝑔 = 0.

(1) is always positive regardless of the sign of 𝜀′′, but the absorption efficiency (3), which has the
same sign as 𝜀′′, can be positive, zero, or negative, as has been pointed out previously [34,35].
This means that for active scatterers, the sign of the extinction efficiency (2) can also vary. We
can hence define three classes of active objects: positive extinction, zero extinction, and negative
extinction objects, leading to the classification in Table 1.

𝜀′′ 𝑄sca 𝑄abs 𝑄ext

DPE > 0 dissipative (positive extinction) > 0 > 0 > 0

LPE = 0 lossless (positive extinction) > 0 = 0 > 0

APE < 0 active (positive extinction) > 0 < 0 > 0

AZE < 0 active (zero extinction) > 0 = −𝑄sca = 0

ANE < 0 active (negative extinction) > 0 < 0 < 0

Table 1. Five classes of scatterers (two passive and three active), determined by the
signs of the absorption and extinction efficiencies.

4.2. Zero-extinction scatterers

The three efficiencies, as Table 1 shows, can combine with different signs when the parameters of
the object change. While extinction is always positive for passive scatterers, the active side is
very dynamic as the sign of extinction varies. In Figures 12–14 the character of the extinction
efficiency is illustrated within the parametric space of the scatterers (the size and complex
permittivity). The gray and white domains signify the sign of extinction. While the dissipative
side of the figures (𝜀′′ < 0) is always gray (denoting positive extinction), on the active side the
landscape is more varied. The three scatterer types (APE, AZE, and ANE) populate themselves
into a complex variety of domains and surfaces within the three-dimensional (𝑥, 𝜀′, 𝜀′′) parameter
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space of the sphere. Zero-extinction (AZE) objects are located on the boundaries between the
white and gray regions in the figures.

(a) 𝜀′ = 1.1 (b) 𝜀′ = 4 (c) 𝜀′ = 7

Figure 12. The sign of the extinction efficiency of dielectric spherical scatterers
depicted as gray (APE and DPE, 𝑄ext > 0) and white (ANE, 𝑄ext < 0) in the plane
with axes of the imaginary part of the relative permittivity 𝜀′′ and the size parameter of
the sphere 𝑥. Note the rich structure of extinction variation on the active side (𝜀′′ < 0).

(a) 𝑥 = 1 (b) 𝑥 = 2 (c) 𝑥 = 3

Figure 13. The sign of the extinction efficiency, as in Figure 12, but as function of the
real (𝜀′) and imaginary (𝜀′′) parts of the permittivity.

4.3. Optical theorem

The so-called optical theorem in the scattering theory has a long history which starts already
from 150 years ago, with the studies by John William Strutt (who later rose in peerage as Lord
Rayleigh) [36, 37]. This fundamental theorem connects the extinction efficiency of an object to
its forward scattering characteristics.

Using the notation in Bohren and Huffman [18, p. 112], the extinction cross section of a sphere
is connected to the scattered field into the forward direction (𝑆(0◦)) as

𝐶ext =
4𝜋
𝑘2 Re{𝑆(0◦} (17)
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(a) 𝜀′′ = −1 (b) 𝜀′′ = −2 (c) 𝜀′′ = −3

Figure 14. The sign of the extinction efficiency, as in Figure 12, but as function of the
size parameter 𝑥 and the real part of the permittivity 𝜀′.

where
𝑆(0◦) = 1

2

∑︁
𝑛

(2𝑛 + 1) (𝑎𝑛 + 𝑏𝑛) (18)

This gives us a form of the optical theorem:

𝑄ext =
4
𝑥2 Re{𝑆(0◦)} (19)

For passive scatterers, the connection has been established in the past literature. Taking
arbitrary parameters, like, for example 𝜀 = 2.3 − j1.2 and 𝑥 = 3.4, we have

𝑄ext = 2.76096 and
4
𝑥2 𝑆(0

◦) = 2.76096 + j 0.14832 (20)

The optical theorem seems particularly relevant in the special case of AZE scatterers for which
the extinction cross section vanishes. However, this does not mean that the forward scattering
should vanish; only the real part of 𝑆(0◦) according to (19). Let us confirm this result numerically
by taking an AZE sphere 𝜀 = 2 + j with 𝑥 = 2.69156. In this case we find that

𝑄ext ≈ 0 and
4
𝑥2 𝑆(0

◦) ≈ j 3.40627 (21)

in agreement with the optical theorem.

5. Morphological effects on scattering response by active particles

So far the scattering response of spherical objects has been investigated. In this section we
study qualitative effects of the shape of an active particle on the response of scattering and
extinction characteristics. We proceed with another symmetric object, a cube, in which case we
consider four different wave incidences and polarizations: face-on, edge-on (E), edge-on (H), and
vertex-on. These are defined in Figure 15 by the vector directions: electric field (E), magnetic
field (H), and the incident wave propagation direction (k).

Figures 16 and 17 show the scattering, absorption and extinction efficiency for a cube having
the same volume as a sphere with size parameter 𝑥 = 𝑘𝑎. The efficiency is normalized using
the geometrical cross section of the cube, and given for the four incident fields mentioned
above. The results computed with both COMSOL and MoM are shown. The scattering response
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(a) face-on (b) edge-on (E)

(c) edge-on (H) (d) vertex-on

Figure 15. The four different excitations with electric field (E), magnetic field (H), and
the 𝑧-directed incident wave propagation direction (k).

(efficiency) and the geometrical cross section depend on the incident field propagation direction
and polarization, except in the face-on and vertex-on cases where the solutions are independent
on the incident field polarization.

To study the effect of the shape of an active particle on the response of scattering and extinction
characteristics, the transformation of a sharp cube into a sphere is considered next. The geometries
(rounded cubes) used in this study are illustrated in Figure 18. Figure 19 shows the scattering
and absorption efficiency with face-on polarization. At the first two resonances (maxima of the
efficiency) close to 𝑥 = 1.7 and 𝑥 = 2.6, the effect of this transformation on the efficiency is
relative smooth, while for other resonances at larger 𝑥 values the situation is more complicated.

To illustrate the field behavior at the resonances, we take a look at the near-field solutions of
active particles. Figures 20 and 21 show the electric field at the 𝑥𝑧-plane for an active sphere
and cube with 𝜀 = 3 + 1.5j. In both cases the field is plotted for four different size parameters
corresponding to the maxima of the scattering efficiency in Figure 6 and in Figure 16, respectively.
The incident field is a +𝑧-propagating plane wave with an 𝑥-polarized electric field.

Clearly, the first two resonances of the sphere and cube are due to similar field solutions. This
may also be concluded from Figure 19 where the first two maxima of 𝑄sca for a sphere and
cube are relative close to each other, at 𝑥 = 1.71 and 𝑥 = 2.55 (sphere) and at 𝑥 = 1.75 and
𝑥 = 2.60 (cube). Also at the third resonances (𝑥 = 3.7 for a sphere and 𝑥 = 3.5 for a cube) we
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Figure 16. Scattering (a) and absorption (b) efficiency with COMSOL (solid lines) and
MoM (circles) in logarithmic scale for a cube with 𝐸 = 3 + 1.5j and with four different
incident waves. The cube has the same volume as a sphere with size parameter 𝑥 = 𝑘𝑎.
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Figure 17. Extinction efficiency with COMSOL (solid lines) and MoM (circles) for a
cube with 𝜀 = 3 + 1.5j and with four different incident waves, as in Figure 16.
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𝑟0 = 𝐿/20 𝑟0 = 𝐿/5 𝑟0 = 𝐿/3 𝑟0 = 𝐿/2.2

Figure 18. Geometry of a rounded cube with side length 𝐿 and different fillet radius 𝑟0.
From left to right a smooth transition from a slightly rounded cube to almost a sphere.
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Figure 19. Scattering (a) and absorption (b) efficiency for an active cube with 𝜀 = 3+j1.5
transforming into a sphere and face-on polarization. The geometry of the intermediate
steps are shown in Figure 18. For a sphere the results are computed with Mie series, in
other cases COMSOL solutions are shown. All scatterers have the same volume and
the efficiency is normalized using the geometrical cross section of each object.

may recognize some similarities in the field solutions. The situation with the fourth resonances,
however, is more complicated and a clear correspondence between the field solutions is not
recognized. We note that for a cube with 𝑥 = 4.15 (Figure 21(d)) the fields are strongly localized
to the vertices and exactly the same field solution may not exist for a sphere.

6. Conclusion

The scattering response of material particles to electromagnetic and optical wave excitation
depends strongly on their geometry and medium constitution. This paper focused on the
absorption, scattering, and extinction of non-magnetic objects whose permittivity is isotropic but
active (gainy), in other words, the imaginary part of the permittivity has the opposite sign than
particles that are dissipative. Since the electromagnetic response of the scatterer needs to be
described by absorption and extinction, in addition to the scattering, we arrived at an interesting
classification of the objects (DPE, LPE, APE, AZE, ANE), depending on the sign (positive, zero,
or negative) of the extinction cross section.

Lorenz–Mie theory was applied in most of the computations. Among the interesting results was
the characteristic property of electromagnetically active particles that they tend to direct scattering
into the backward half plane and their strong back-to-front scattering ratio. Nevertheless, there
are strong theoretical identities, like the extinction paradox and optical theorem, that remain valid
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(a) 𝑥 = 1.71 (b) 𝑥 = 2.55

(c) 𝑥 = 3.70 (d) 𝑥 = 4.75

Figure 20. Electric field (computed with Mie series) at the 𝑥𝑧-plane for an active sphere
with 𝜀 = 3 + 1.5j and with different size parameters. The incident field is propagating
along the +𝑧 axis and incident electric field is 𝑥 polarized. Color indicates magnitude
(color scale varies in the figures) and arrows show the direction of the field. In the
figures, 𝑥-axis is horizontal and 𝑧-axis vertical.

even if the scatterer is active. These were discussed. Finally, using numerical approaches (Method
of Moments and finite-element–based codes), the focus was on scatterer shapes differing from
sphere (sharp and rounded cubes). The scattering spectrum of the particles and the position of the
resonances evolves along with the change of the geometry from a sphere towards a cube, leading
to a possibility for sensing the particle shape using the data of its electromagnetic scattering
response.
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