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Inverse propagation method for evaluation of
superresolution granted by dielectric
microparticles
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1Department of Electronics and Nano-Engineering, Aalto University, P.O. Box 15500, FI-00076 Aalto,
Finland
*reza.heydarian@aalto.fi

Abstract: In this work we report a theoretical study of the lateral resolution granted by a simple
glass microcylinder. In this 2D study, we had in mind the 3D analogue – a microsphere whose
ability to form a deeply subwavelength and strongly magnified image of submicron objects has
been known since 2011. Conventionally, the microscope in which such the image is observed is
tuned so that to see the areas behind the microsphere. This corresponds to the location of the
virtual source formed by the microsphere at a distance longer than the distance of the real source
to the miscroscope. Recently, we theoretically found a new scenario of superresolution, when the
virtual source is formed in the wave beam transmitted through the microsphere. However, in
this work we concentrated on the case when the superresolution is achieved in the impractical
imaging system, in which the microscope objective lens is replaced by a microlens located at a
distance smaller than the Rayleigh range. The present paper theoretically answers an important
question: which scenario of far-field nanoimaging by a microsphere grants the finest spatial
resolution at very large distances. We found that the novel scenario (corresponding to higher
refractive indices) promises further enhancement of the resolution.

© 2022 Optical Society of America

1. Introduction

Before 2011 the far-field subwavelength imaging without fluorescent labels (key component in the
stimulated emission depletion method) and sophisticated post-processing was basically related
to an effect of the so-called metamaterial hyperlens. This is a tapered/curved nanostructure
with alternating plasmonic metal and dielectric constituents (both strongly submicron ones)
forming the so-called hyperbolic metamaterial [1–4]. The situation changed after the discovery
of the same and even drastically improved functionality offered by a simple glass microsphere
located on a silicon substrate, when the submicron objects were located in a crevice formed
between the sphere and the substrate [5]. In most of studied structures the dielectric microspheres
whose refractive index was within the interval = = 1.4 − 1.8 demonstrated the broadband spatial
resolution of two point scatterers separated by the subwavelength gap X � _, accompanied by the
magnification of this gap " � 1. Many such cases were studied already in the initial paper [5].
In that work the best achieved result was Xmin = 50 nm (that equals to _−/8 and _+/14 for the
illumination in the band [_−, _+]), and " = 8. Further experimental studies of this effect revealed
many interesting features [6–12]. The minimal spatial resolution X of two point scatterers located
either on the sphere surface (practically, sandwiched between the sphere and substrate) or in its
near vicinity (practically, in a crevice between the bottom surface of the sphere and the substrate)
noticeably depends on the refractive index of the microsphere and on the illumination. In the
broadband regime this resolution is inverse proportional to the image magnification " which
was of the order of 10 in all these works. The results for ultimate values of X and " were slightly
different for coherent and non-coherent illumination, for polarized and non-polarized light, they
also depend on the incidence angle if the imaging is obtained in the laser light. However, even in



the daylight a simple glass microsphere with the refractive index in the interval = = 1.4 − 1.6
demonstrated the broadband subwavelength resolution X � _ and magnification " � 1.

One theoretically found several resonant mechanisms of the far-field magnified subwavelength
imaging functionality (that can be called for brevity, hyperlens functionality) of the dielectric
microsphere. Some of them are related to the resonances [6, 8–11]. However, in the cited works
starting from [5] the broadband, non-resonant subwavelength imaging granted by a microsphere
was reported. An attempt of this explanation was done in work [13] (evanescent-to-propagating
waves conversion) but this explanation was severely disputed in [14].

Note, that to check any hypothesis about the physical mechanism underlying this resolution
by full-wave simulations is impossible. Available supercomputers allow one to simulate only
the first stage, in which the incident light scattered by an object transmits through the sphere.
The next stage – evolution the imaging beam due to the Abbe diffraction can be simulated only
in the 2D case, when the imaging beam is formed not by a microsphere but by a microcylinder.
Therefore, in [14] microspheres were replaced by microcylinders, and the point dipole sources by
the dipole lines. This substitution offers a huge economy of the computational resources keeping
the same underlying physics. However, even this simplification does not allow any existing
computer system to simulate the imaging beam over its giant optical path through a realistic
macroscopic lens – the microscope objective. To take the diffraction into account one utilizes the
point-spread function technique. This standard approach was used in [14] in order to convince
the readers that the explanation of the effect in [13] was incorrect. However, in [14] no alternative
explanations were suggested.

In our recentworks [15,16] the non-resonant hyperlens-like operation of a dielectricmicrosphere
was assumed to be related to the normal polarization of the scattering object. Prior to these works
only in [17] the superresolution X = 0.24_ was simulated for an object formed by two normally
polarized non-coherent dipoles. However, this result was obtained for a non-realistic imaging
system in which a microsphere almost touches a hemispherical microlens i.e. they are coupled
via near fields. In this microscopic imaging system the evanescent waves are involved in the
imaging, and the superresolution was simulated for the tangential dipoles as well.
In works [15, 16] we claimed that for normally polarized dipoles and only for them the

superresolution granted by a glass microsphere is achievable without involving the evanescent
waves. Note, that in all reported experiments the normal polarization of the imaged objects was
present. In work [18] we explained that the normal polarization of the object arose even in the
case when the light was normally incident on the substrate from the bottom. This is so because
the submicron crevice between the sphere and the substrate is tapered that obviously results in
the cross-polarization effect.
Paper [15] was dedicated to the possibility of the coherent subwavelength imaging in the

obliquely incident laser light. The non-coherent case was considered in [16]. Prior to our works,
in [8] the authors assumed that the microsphere excited by a point dipole located on its surface or
in its close vicinity creates a virtual source (VS) located in front of the sphere (in our terminology
the side of the sphere where actual sources are located is the front side). The substantial distance
from the VS to the sphere center implies the magnification of the gap between two dipoles located
on the sphere. Initially, we only aimed to prove that this idea is correct i.e. that the wave beam
created by a point source after its transmission through the microsphere is a spherical wave whose
virtual phase center is distanced from the source and can be treated as a VS.

The main result of [16] is prediction of the new scenario of nanoimaging. Besides of the
scenario assumed in [8] when the VS is in front of the sphere we found that for sufficiently large =
and large '/_ the imaging beam collimates behind the sphere and propagates like a parallel wave
beam. This imaging beam propagates almost without divergence until the distances of the order
of the Rayleigh range �' and then sharply diverges transforming into a spherical wave. This
wave has the directional intensity pattern with the zero on the beam axis (the beam axis is the



direction of the source dipole). Its phase center treated as the VS is spread, however, its effective
transverse size is much smaller than �', that results in the high magnification " allowing to
resolve two point sources with a small gap X between them.
Both numerically revealed scenarios – the known one when the VS is formed in front of the

sphere and the new one when it is located behind its back side – enable the superresolution (i.e.
spatial resolution X < 0.5_) without involvement of evanescent waves [19–22]. However, the
applicability of these method is restricted [21,22]. In our case, the superresolution is achieved
without evanescent waves due to the annular pattern of the imaging beam. An exact zero of the
electromagnetic field on its axis keeps the information of the point source lateral location up to
arbitrary distances.
The present paper is dedicated to the comparison of two scenarios of nanoimaging granted

by a glass microsphere. In [16] we concentrated our efforts on a proof that the microsphere
superresolution is achievable in principle. Unfortunately, we could not proceed in a standard
way splitting our numerical model onto a full-wave part (formation of the imaging beam) and
approximate part using the point-spread function. Our imaging beam is tubular, and for such
beams the apparatus of the point-spread function is not developed in the available literature.
Therefore, in our simulations we restricted the size of the whole system by the Rayleigh range
and our focusing system was a microlens placed at the distance shorter than �'. We have
simulated the subwavelength resolution in [16] but our nanoimaging system was as impractical,
as that from [17]. A practical system – that with a macroscopic objective lens and a giant optical
path of the imaging beam – was considered in [16] only on the level of qualitative estimates.
In the present paper, we avoid analytical estimations. Our goal is to understand which of two
scenarios of the microsphere nanoimaging is more promising for superresolution – the known
one, implemented in the reported experiments, or the novel one, not yet studied experimentally.
Again, we replace our microsphere with a microcylinder hoping that this simplification does
not change the underlying physics. Though the imaging beam propagation in free space can
be simulated using dense integral equation solver which allows one to save the computation
resources replacing the bulk mesh with the surface one, it did not help us to properly simulate
the imaging beam in the 3D case. This so because the simulation of a radial dipole near the
microsphere demands a much finer meshing compared to the case of the tangential dipole. Using
the supercomputer we managed to obtain the convergent solution for the transmitted wave beam
only in the range ('/_) < 3. These sizes in accordance to [16] are hardly sufficient for the
claimed non-resonant superresolution.

2. Superresolution of real sources via resolution of virtual sources

2.1. Simplistic retrieval of virtual sources positions

A point dipole located on the surface of the sufficiently large microsphere or in its close vicinity
creates inside the sphere the field which can be identified with the continuum of rays propagating
from the dipole and experiencing the partial or total internal reflection from its surface. The
diffraction effects and excitation of creeping waves are not negligible, as such. However, the
transmitted wave beam – that behind the large sphere – is basically formed in accordance to the
ray optics [16]. If the refractive index is large enough i.e. = > 1.44, the transmitted beam turns
out to be collimated [16]. At the distance nearly equal to �' (in the 3D geometry �' ≈ c'2/_,
and in the 2D case �' ≈ 2'2/_) the collimated beam starts to diverge and at the distances larger
than �' becomes nearly the spherical wave. The intensity pattern of this wave is very directional
due to two factors. First, the wave results from the beam of finite-width and at large distance
from the beam axis its intensity exponentially decays. Second, the dipole does not radiate along
the beam axis H i.e. the divergent beam keeps hollow.
If our divergent beam had exactly spherical wave front, the virtual source (VS) would have

been point-wise and the spatial resolution granted by the microsphere would have been ideal. Of



Fig. 1. Schematic illustrating to the simplistic ray-tracing concept of the virtual source
(dashed lines are normal to the wave fronts of two diverging beams created by non-
coherent point dipoles 1 and 2). If we adopt that the ultimate resolution corresponds
to the case when the gap X+ between the centers of two VSs is equal 3+ the ultimate
resolution equals to X = _/c.

course, it is impossible and full-wave simulations of [16] have shown that the phase center of
the divergent imaging beam is spread. It more spreads along the beam axis H that implies poor
spatial resolution in the longitudinal direction. However, across the beam the phase center spread
is smaller than the beam effective diameter (2'). In the simplistic model illustrated by Fig.1 the
dimensions of VS is found using the simplest variant of the ray tracing technique. Namely, taking
a wave front of the diverging beam we plot the set of perpendicular lines to it, and the domain
where they intersect determines the VS. Following to this procedure we could estimate in [16]
the effective diameter of the VS 3+ ≈ '.

Placing two point dipoles with the subwavelength gap X at the left side of the sphere we obtain
two VSs at the right side. In Fig.1 we schematically show the case when there is no intersection
between two VSs. However, they may partially overlap and still can be resolved. Assuming that
the center of the VS is distanced by �' from the center of the sphere, the distance X+ between
the centers of two VSs can be found as X+ = X�'/'. In order to estimate the spatial resolution
in work [16] we assumed that the distance X+ = 3+ /2 is the minimal one when two VSs still can
be resolved by the microscope. This approach corresponds to the Rayleigh criterion that allows
the intersection of two intensity maxima on the level 70%. It is evident, that this simplistic model
delivers the minimal spatial resolution Xmin = X+ '/�' = _/2c.
However, the applicability of the Rayleigh criterion for our VSs is disputable. This criterion

refers to the case when the wave beam has the maximum on the axis, whereas our imaging beam
is hollow. We introduce another criterion of the ultimate intersection of two VSs when they are
still resolvable. This criterion is illustrated by Fig.2(b) and (c). Let us demand that the null of the
VS1 (created by dipole 1) is not compromised by the local maximum of the VS2 (created by
dipole 2), and vice versa. In this case the minimal allowed distance X+ between the centers of
the VSs is larger than 3+ /2. Below we will find this ultimate intersection. The magnification
granted by the microsphere is defined as " = X+ /X, where X+ is the gap between the centers of



two VSs. The total magnification "C determining the image size Δ = "CX is the product of " by
the magnification of the microscope "<.
Another drawback of the geometric approach to the search of the VS is assumption that the

distance from the sphere center to the center of the VS is equal �'. In fact, it may be smaller or
larger, �' = c'2/_ (for the 2D case 2'2/_) is an accurate estimate only for a Gaussian beam,
and for our hollow beam it only gives a qualitative estimate. If we adopt our new criterion of
resolution we have to rewrite the formula X = 'X+ /�' in the form:

X = 'X+ /� (1)

where X+ ≠ ' and � (true distance from the center of the sphere to the virtual sources which is
not equal �') are parameters that we have to be find as precisely as possible.

2.2. Retrieval of virtual sources via backward propagation

A new concept of the VS is based on the idea of the equivalent free-space past of the imaging
beam. Let us take a wave front ( of the imaging beam in the region sufficiently distant from
the sphere, i.e. where the Abbe diffraction is weak and, therefore, both electric E and magnetic
H fields are strictly tangential to (. We may use the distribution of the electromagnetic field
on ( obtained in full-wave simulations as the equivalent distributed source since the Green’s
formula is the strict formulation of Huygens’ principle. This way we may calculate the further
propagation of the imaging beam – the dipole and the sphere are not needed for it. Moreover,
we may reconstruct the virtual past of this beam in which there is no dipole and sphere. For it
may invert e.g. magnetic field (H→ −H) keeping the same E. This way we invert the Poynting
vector P → −P and obtain the backward version of the imaging beam. This backward beam
converges in the same region where the imaging beam diverges. As it is schematically depicted
in Fig.2(a) the backward beam after its convergence is collimated and in the waist plane H = H,
its phase front becomes ideally flat. Of course, after this waist the backward beam diverges. The
electromagnetic field in the plane H = H, is effectively concentrated inside the disk with the
diameter 3+ . This disk can be identified with the VS.
Really, in accordance to Green’s theorem if we do the same inversion H→ −H in the waist

plane of the backward beam, we may consider this field as an equivalent source of surface
electric (H) and magnetic (E) polarization distributed in the waist plane H, . This source exactly
reproduces the field of the imaging beam at the surface ( and everywhere behind. In other words,
it reproduces the field developed by the objective lens. It is so, in spite of the fact, that the
backward beam calculated in this way does not reproduce the true field distribution in the vicinity
of the sphere. However, this difference is not an error of our method, it is its key point.

The objective lens has a finite aperture. It does not see the lateral radiation of the dipole we aim
to image. Our finite surface ( aims to capture that part of the radiation which is responsible for
the image. The sidelobes of the imaging beam which do not contribute into the imaging process
are not crossed by our (. Of course, if we modify ( so that to apply the Huygens principle in its
strict formulation i.e. make ( infinite our backward beam will reproduce the true field created
by the dipole everywhere. However, we do not need this true field, because it does not deliver
the proper size of the VS! Only the waist of the backward beam is fully self-consistent with the
concept of the virtual source as a finite effective source located in free space! The magnetic
and electric fields in the waist are equivalent electric and magnetic polarizations orthogonal to
the optical axis, which produce in the objective of a microscope the same electromagnetic field
as that developed by this objective in the original problem. So, returning back from the point
H = H( (where H( is the point where ( crosses the optical axis) we in fact determine the VS
whose effective lateral size is that seen by the microscope.

Now, let us see why the VS is namely the waist and not any other cross section of the backward
beam. This is so because only at the plane H = H, the effective diameter 3+ of the VS makes



Fig. 2. (a) Sketch of the imaging beam and its backward implication. Dashed lines
depict the wave fronts of the imaging and backward beams. Inversion of the magnetic
field in the imaging beam at the surface ( inverts the Poynting vector % and results in
the backward beam. Electromagnetic field of this beam is transverse and in-phase in
the plane of the waist. The disk of diameter 3+ can be identified with the VS. (b) Two
partially overlapping VSs are reliably distinguishable if the field nulls on their axes are
not compromised by the tails of the other VS maximum. (c) The intensity distribution
across two partially overlapping VSs in this ultimate case.

sense. In this plane and only in it the electromagnetic field of the backward beam is transverse.
In this plane and only in it the wave front coincides with the cross section plane GI. Therefore,
only for this plane we may properly define the lateral size 3+ through the intensity distribution.

As to the resolution of two parallel partially overlapping imaging beams, we adopt the concept
that two VSs are distinguished if their cross sections partially overlap as it is shown in Fig.2(b)
and (c). It is the ultimate overlapping when the null of one beam is not yet spoiled by the
maximum of another one. In Fig.2(c) the intensity distribution is depicted as a function of a
transverse coordinate. We see that in the ultimate case of the resolution the right maximum of
the left VS coincides with left maximum of the right VS. Then two nulls of two adjacent VSs are
not compromised. Assuming that the shape of the concentric maximum of our hollow imaging
beam is Gaussian, it is easy to show that the distance between the nulls of two adjacent VSs in
the ultimate case is equal 23+ /c. Here 3+ is the effective outer width of the waist shown in
Fig.2(b) that is taken on the level of 50% intensity. Thus, the ultimate distance X+ between two
resolvable VSs is not 3+ /2 as it was assumed in [16], but nearly 1.27 times larger.

In fact, this criterion of the ultimate resolution gives not a true resolution of two point sources
seen in a microscope. It is a pessimistic estimate, because it implies parallel axes of two imaging
beams created by two adjacent sources. However, two imaging beams created by two point
sources with the gap X located on the sphere and normally oriented to it have different axes H1
and H2 as it is shown in Fig.1, and the angle between these axes is equal U = X/'. Therefore,
the true resolution will be obviously finer than Xmin. Since the imaging beams produced by two
source diverge and the sources are not mutually coherent we may assume that the overlapping of
virtual sources does not worsen the resolution at all and VSs can be considered as point-wise



ones. Then an only reason for nonzero X would be the finite radius of the Airy disk in the imaging
plane of the microscope objective. With this hypothesis, our VSs are resolved if the distance
X+ between them is equal _/2 or larger. Then in (1) we may replace X+ by _/2 that gives an
optimistic estimate for ultimate spatial resolution. Below we denote this estimate X′min. The
true ultimate resolution will be definitely between Xmin and X′min. We cannot evaluate it more
accurately because we cannot calculate the image.

However, in this paper we do not aim to accurately calculate the spatial resolution. We aim to
understand which scenario of superresolution grants finer Xmin. For it we cannot use the Rayleigh
criterion because it is not applicable to hollow light beams, and have to elaborate a new criterion,
which would be physically reasonable, reliable and unique for both scenarios.

Definitely, our idea of the VS treated as the waist of the backward beam keeps valid also for
the imaging beam having the phase center in front of the sphere. In fact, we do not know in
advance where the backward beam should have the waist – behind the spatial region occupied
by the sphere in the simulations of the imaging beam, in front of this region, or even inside it.
However, if the coordinate of the waist H, is close to that of the point from which the imaging
beam seemingly diverges, it will tell us that the geometrical optics is quantitatively applicable to
the description of the imaging beam. Below we will see that it if often so.

2.3. Non-resonant microparticle: comparison of two scenarios

Full wave finite element method (FEM) is adopted in COMSOL Multiphysics which we utilized
for our simulations. For certainty, we have chosen _ = 550 nm and varied the radius of the
microparticle and its refractive index. The simulation domain is surrounded by a perfect matching
layer (PML) located at a big distance from the structure and the imaging beam and mimicking
free space. Triangular mesh of elements smaller than _/10 for all domains were used and the
electromagnetic waves frequency domain (EWFD) solver was implemented. In our simulations
we replace the 3D sphere by the 2D (cylinder) as we did in work [16]. Also, due to the problem
symmetry, perfect magnetic conductor (PMC) was located in the plane G = 0. Thus, we saved
computation resources that allowed us to follow the evolution of the imaging beam up to 1000_.
However, even this giant path is not sufficient to ensure the robust result for 3+ if ' is very large.
Really, the Rayleigh distance is proportional to '2, and if ' = 20_, �' = 800_. However, we
will see below that in order to properly find the VS we need to know the field at the distances
much larger than �'. Practically, it means that restricted computation resources restrict our
study by ' < (15 − 20)_.

In [16] it was found that for '/_ < 10− 15 the approximation of geometrical optics as a model
of the imaging beam formation is not applicable. Since the idea of the collimated imaging beam
resulted in [15] namely from the ray optics, we concentrated in [16] on the case ' > 15_. This
choice did not allow us to simulate the beam evolution at the distances much larger than �'.
The present study demands such simulations. Therefore, we searched the needed imaging regime
for microparticles with ('/_) < 11.
Our non-resonant imaging mechanism demands a quasi-continuum for the internal pattern.

It corresponds to many TM-modes around the particle perimeter with nearly equal amplitudes.
However, varying the size parameter of our microcylinder in the range 4 < ('/_) < 11 we
saw a lot of multipole Mie resonances manifesting in the standing wave patterns inside the
microparticle. At these resonances the imaging beam cannot be formed because the phase front
of the transmitted beam keeps features of the internal pattern and is far from being flat. Then
in the transmitted beam we observe strong interference effects which do not disappear even
at the distances much larger compared to �'. This implies several parasitic images i.e. the
microparticle becomes not beneficial but harmful for imaging [16]. In accordance to [10] Mie
resonances can be beneficial for superresolution, but it refers only to low-order resonances which
imply ('/_) < 1. Studying the range 4 < ('/_) < 11 we should avoid Mie resonances, which



destroy our imaging beam.
When the internal field pattern looks as a quasi-continuum, i.e. the excitation of the

microparticle is not resonant, the formation of the imaging beam occurs basically in accordance to
geometrical optics [16]. Depending on the radius ' and refractive index = there can be two regimes
– when the light beam created by a point dipole being transmitted through the microparticle
is diverging and its virtual phase center H = H�$ is located in front of the microparticle (a
conventional scenario of superresolution [8]) and when the transmitted beam is non-divergent
and keeps collimated until the point H = H�$ < 0, |H�$ | � ' that is the virtual phase center of
the imaging beam divergent part (our scenario illustrated by Fig. 2). The transition from one
scenario to another one occurs for given ' when we vary =. Therefore, we needed to find such
size parameter '/_ for which the resonances do not arise for any = in the broad interval of values
which will allow us to observe in our simulations the transition from the first scenario to the
second one and to compare the corresponding ultimate resolutions calculated with Eq. (1) where
X+ = 23+ /c is the gap between two ultimately resolved VSs and � = |H, − ' | is the distance
from the VS (waist of the backward beam) to the center of the microparticle.
We found that in the case ' = 4.3_ the non-resonant regime holds if we vary = from 1.35 to

1.6 with the step 0.01. In other words, for ' = 4.3_, = = 1.35, 1.36, . . . 1.6 all the TM-modes
excited by our dipole have the magnitudes of the same order and their interference mimics the
internal quasi-continuum. As an illustration of our method we show the results for = = 1.46. The
electric field (amplitude and phase) color map is presented in Fig.3(a). The transmitted beam
looks collimated until the plane H�$ ≈ −11 `m and diverges after this point rather sharply. Two
main lobes of the diverging part have the phase center at H = H�$. This distance is noticeably
smaller than the Rayleigh range �' ≈ 37 `m. This is not surprising since the Rayleigh theory
was developed not for hollow beams.

Starting from the distances H = 150 − 160 `m the wave front of the imaging beam becomes
circular with very high accuracy. The inset of Fig.3(a) presents the wave picture of the diverging
beam in the enlarged scale. The surface (in our 2D case – line) ( is shown in this color map and
is an arc of a circle of radius nearly equal to H( − H�$. Using the field distribution over ( we
restore the backward beam whose intensity distribution is depicted as a color map in Fig.3(b).
The waist of the backward beam in Fig.3(a) turns out to be located practically in the same

plane as the phase center of the imaging beam diverging part H = H, ≈ H�$. The geometrical
optics really works for the diverging part of the imaging beam, and the diffraction effects are
minor! The distribution of the intensity in the waist plane corresponds to 3+ ≈ 2.8 `m= 5.1_.
The ultimate resolution turns out to be Xmin = 1.46_ (pessimistic estimate) and X′min = 0.143_
(optimistic estimate). For ' = 4.3_, = = 1.41 ≤ = ≤ 1.54 we have not obtained the resolution
finer than 0.5_. However, it does not mean that the subwavelength resolution is not achievable for
this interval of = because our criterion of resolution is excessive. It only means that the intervals
= = 1.41 − 1.6 and = = 1.35 − 1.4 grant better resolution.
In order to properly find the waist coordinate H, one has to simulate the imaging beam until

very large distances, larger than �' by an order of magnitude. If we take insufficient |H( | the
waist location turns out to be dependent on H( i.e. the backward beam in the region of the waist
is calculated wrongly. Fig.4 illustrates this fact. Here we present the intensity color maps of
the backward beam calculated in the case ' = 4.3_, = = 1.6 for two choices of H( . If we take
H( = H

′
(
= −180 `m, as in Fig.4(a), the phase front in the enlarged inset looks pretty circular. We

checked that the vectors E looks pretty tangential to such ( (vectors H = z0�I are automatically
tangential in our 2D problem). It must be so at so big distances (in this case |H′

(
| ∼ 4�').

However, the distance |H | = |H′
(
| is still insufficient so that properly calculate the backward

beam. Taking the surface ( at this distance we obtain H, = −14 `m, that corresponds to the
wrong ultimate resolution X′min = 0.75_. Increasing this distance we obtain another result. Only
taking the phase front at H( = −260 `m as it is depicted in Fig.4(b) we obtain the correct result



Fig. 3. (a) Instantaneous wave picture of the imaging beam for the case ' = 4.3_,
= = 1.46. It is collimated until the plane H = H�$ where the phase center of the
diverging part is located (white dashed line). (b) Electric intensity color map of the
backward beam simulated for free space, where the microparticle is shown (by black
solid line) only for reference. In the waist plane H = H, ≈ H�$ the phase front of the
backward beam is flat and transverse.

Fig. 4. Color map of the electric intensity for the case ' = 4.3_, = = 1.6. Backward
beam above ( (H > H(), imaging beam below ( (H < H(). (a) Wrong choice of
H( = H

′
(
= −180 `m delivers wrong waist position H′

,
. (b) Correct choice H( = −260

`m delivers the correct waist position H, . On the insets the instantaneous wave
pictures of the backward beams are shown.



H, ≈ −17 `m which is robust to further increase of |H( |. The pessimistic ultimate resolution is
Xmin = 0.38_, whereas the optimistic one is Xmin = 0.044_. Note that the gradient of the field
amplitude along the phase front in the inset of Fig.4(b) is not as high as that in Fig.4(a). The low
gradient of the amplitude along the phase front points out the low impact of the Abbe diffraction
spread in the beam. This is so because we have chosen |H( | sufficiently large.

In Fig.4(a) and (b) the part of the imaging beam behind ( is shown in order to demonstrate that
the backward beam in its converging part precisely reproduces the diverging part of the imaging
beam.
Varying = in the limits = = 1.55 − 1.6 we obtained X′min � Xmin ≤ 0.5_ and Xmin decreases

monotonously versus =. The best result Xmin = 0.38_ corresponds to = = 1.6. If = = 1.45 − 1.54
Xmin > 0.5_ but the resolution also improves when = increases. In all these cases H�$ ≈ H, .

Fig. 5. Color map of the electric intensity for the backward beams in the cases = = 1.4
(a) and = = 1.35 (b). ' = 4.3_ in both cases. Planes H, ≈ H�$ are shown by dashed
white lines. Surfaces ( are shown by black arcs.

If we take = < 1.44 the known scenario of imaging predicted in [8] is implemented – the VS
is formed in front of the microparticle (at H > 0). In Fig. 5(a) we present the intensity color
map of the backward beam (and of the forward beam in the region |H | < |H( |) for = = 1.4. Then
H, = 2.7 `m, 3+ = 1.64 `m and we have Xmin = 0.89_, X′min = 0.27_. Further decrease of
= results in larger H, i.e. more distant location of the VS from the microparticle. It implies
larger magnification of the gap X and allows better resolution, as well as the increase of = if
= > 1.45 and the novel scenario is implemented. Fig. 5(b) corresponds to the case = = 1.35,
when H, = 3.0 `m, 3+ = 1.01 `m and Xmin = 0.5_, X′min = 0.25_. We made simulations also
for lower = (though these values do not correspond to any practical solid material) and saw
that the resolution slightly improves when = decreases. For = = 1.3 (water) we have obtained
Xmin = 2X′min = 0.48_.
It allows us to assert that at least for the special case ' = 4.3_ the imaging scenario revealed

in our work [16] corresponds to finer superresolution compared to the conventional scenario.
Our scenario also grants larger magnification of the VS, " = X+ /X = 23+ /cX and, therefore
larger total magnification "C = ""<. Though in this study we have obtained quite modest
pessimistic estimates for Xmin, the values of X′min leave the room for deeply subwavelength
resolution achievable in the case when ' lies in the interval ' = (4 − 5)_.



2.4. Enlarging the microparticle

Fig. 6. Electric intensity distribution inside a microcylinder and in its vicinity for
= = 1.6, (a) ' = 5.15_ and (b) ' = 5.45_. The backward beam in both cases has no
unique waist.

Aiming to improve the resolution we studied the cases when the radius of the microcylinder is
enlarged up to ' = 11_. Unfortunately, in this range of ' there is no possibility to vary = for
fixed ' keeping the quasi-continuum of the internal field (i.e. non-resonant regime). For ' = 5_
the internal distribution seems non-resonant for = = 1.3 − 1.35 and = = 1.55 − 1.6. For the
first interval of = we observe the conventional regime with the VS in front of the microparticle,
and for the second interval the transmitted imaging beam looks collimated until the distance of
the order of �'. In this meaning, the case ' = 5_ does not differ from the previous one. For
larger ' the situation is similar – for sufficiently small = the conventional scenario of imaging is
implemented and for sufficiently large = – the novel scenario. Between these intervals there is a
range of = for which the VS is located inside the microparticle. These values of = cannot allow
the superresolution even for our optimistic estimate. There are also specific combinations of
'/_ and = at which we observe the resonant pattern inside the microparticle, and in this case the
imaging beam has numerous lobes just behind the microparticle. If we fix = = 1.6 in the range
5_ < ' < 6_ this situation holds e.g. for ' = 5.15_ and ' = 5.45_. The intensity distributions
for these two cases in the region of the microparticle is shown in Figs. 6(a) and (b), respectively.
Here we may distinct few resonant modes of close orders (one of them is whispering gallery
mode). We see the strong interference pattern in the transmitted beam that results in several lobes
of nearly same intensity even at the distances larger than the Rayleigh range. The backward beam
in these cases also splits onto several lobes and has several waists i.e. the imaging is not possible.
In fact, the similar multiresonant regime exists for specific values of = even in the case ' = 4.3_
but we did not report above these exceptional cases.

However, for 5_ < ' < 6_ the resonant regime holds for many values of =. Though for ' = 5_
= = 1.3 − 1.4 and = = 1.6 − 1.7 the internal pattern looks like a quasi-continuum, the imaging
beam splits onto pronounced lobes. It clearly points out the leaky modes interference. Thus, the
quasi-continuum inside the microparticle is only seeming. The case ' = 5_ = = 1.3 is presented
in Fig. 7(a). We see several lobes in the imaging beam and it is not surprising that the backward
beam has the same amount of lobes. However, its waist is unique in spite of the lobes which
has the common coordinate H, where their phase front is almost flat. Moreover, this plane is
predicted by geometrical optics with surprising accuracy. The electric field color map is shown
in Fig. 7(b). The waist part is located in front of the microparticle. The analysis of the phase
front shows that the front is maximally flat at H, = +2.1 `m≈ H�$ = 2.2 `m. The effective
waist width is 3+ = 2.7 `m and the ultimate resolution in our definition is equal Xmin ≈ 1.9_



Fig. 7. (a) Intensity color map for the case ' = 5_, = = 1.3. (b) Instantaneous electric
field color map for the backward beam in the domain of the waist. Planes H�$ and H,
are shown by dashed lines. Black solid line in (b) shows the region of the microparticle.

(pessimistic) and X′min ≈ 0.35_ (optimistic).

Fig. 8. (a) Intensity color map for the case ' = 5_, = = 1.6. (b) Instantaneous electric
field color map for the backward beam in the domain of the waist.

The case ' = 5_, = = 1.6 in Fig. 8(a) also looks non-resonant if we inspect the internal field
pattern. The imaging beam is collimated qualitatively in accordance to the geometrical optics
and diverges having the phase center at H�$ ≈ −10 `m. However, in its diverging part we again
observe non-negligible lateral lobes. However, in spite of these lobes the backward beam has no
lobes in the region of the waist. The waist plane H = H, = −39.5 `m is uniquely determined
via the requirement of the flatness of the phase front and orthogonality of the electromagnetic
field in this plane. Note that the waist does not coincide with the plane of the maximal intensity
concentration (H = −60 `m). In the last plane the backward beam is still converging. The waist
also does not coincide with the phase center of the imaging beam diverging part, that also implies
the impact of the modal structure of the internal field though it is not detected visually. In spite
of these parasitic effects we obtain the ultimate resolution Xmin = 0.49_ and X′min = 0.15_ that
is much better than the estimates we obtained in the case when = = 1.3. This is so because
the VS is much more distant from the real source compared to the conventional regime and the



magnification " is much larger.
The same observations can be done for all size parameters '/_ in the range 5 − 11 we have

studied with the step 0.05. Besides of the resonant values of =, large = correspond to the novel
scenario of imaging and small = – to the conventional scenario. In all cases the resolution is
better in the novel regime. For example, for '/_ = 10.45 = = 1.3 the scenario of imaging is
illustrated by Fig. 9. In Fig. 9(a) we see the conventional scenario of imaging with the phase
center of the imaging beam located at H�$ = 8 `m. In Fig. 9(b) we see the backward beam
waist located at H�$ = 8.5 `m. The ultimate resolution is equal in this case Xmin = 0.97_,
X′min = 0.39_. Fig. 10 illustrated the case '/_ = 10.45 = = 1.7, when we have H�$ = −41 `m,
H, = −124 `m. In spite of quite strong magnification (" ≈ 12) the pessimistic estimate for
the ultimate resolution is modest: Xmin ≈ 0.54_ due to the rather wide waist that gives for the
VS the effective width 3+ = 5.4 `m. However, this resolution is also better than that achieved
in the conventional scenario. Moreover, in this case the optimistic estimate of the resolution is
excellent X′min ≈ 0.05_.

Fig. 9. (a) Intensity color map for the case ' = 10.45_, = = 1.3. (b) Instantaneous
electric field color map for the backward beam in the domain of the waist.

Note, that in accordance to our previous studies the qualitative applicability of the geometrical
optics to the formation of the imaging beam was confirmed only for ' > 15_. For so big
microparticles our present study is hardly feasible. It demands to simulate the optical path longer
than 1000_ in order to properly choose the value of H( i.e. to retrieve the backward beam reliably.

3. Conclusions

In this article, we have reported the result of the comparative theoretical study of two scenarios
of nanoimaging granted by a simple dielectric microparticle (glass cylinder) whose refractive
index was varied in a broad interval. In the first (known) scenario the magnified virtual source is
formed in front of the microparticle. This is so when = ∼ 1.3 − 1.4. in the second (new) scenario
it is formed far behind it. This scenario holds when = ∼ 1.5 − 1.6. We numerically studied the
far-field imaging for microparticles with size parameters in the range '/_ from 4 to 11 and found
that in all non-resonant cases the new scenario grants higher magnification and finer resolution,
and is, therefore, more promising than the known one. The method of our study is based on the
use of the backward beam propagating in free space. This method offers the virtual source – an
effective spread source creating at very large distances (much larger than the Rayleigh range) the
same imaging beam as that created by the real source and the microparticle. The resolution of
the VS and its magnification compared to the real source grants us the opportunity to simulate
the superresolution without involving the objective of a microscope and considering the optical



Fig. 10. (a) Intensity color map for the case ' = 10.45_, = = 1.7. (b) Intensity color
map for the backward beam in the domain of the waist.

paths shorter than 1000_. It allows us to use the full-wave (COMSOL) simulations.
The drawback of our study is the wide interval between the pessimistic and optimistic estimates

for the predicted resolution. Our pessimistic criterion does not take into account the nonzero
angle between the optical axes of the imaging beams created by two adjacent sources. Our
optimistic estimation simply neglects the intersection of our virtual sources approximating them
as point-wise ones. However, even our pessimistic estimate will be, hopefully, improved if we
take into account the substrate. At least, in [16] it was shown that the impact of the substrate is
favorable for superresolution. The replacement of a microcylinder by a microsphere will also
improve the resolution.
Of course, our final goal is the experimental check of our theoretical predictions. Since the

experimenters prefer to use the same techniques as were used in the cited papers on superresolution
granted by a glass microsphere we cannot rely on specific values of = and '/_, granting two
different scenarios of imaging for microcylinders. We have to carry out 3D simulations and find
corresponding values for microspheres. If we manage to do it with a supercomputer we will look
for an interested team of opticians. Experimental results for the novel scenario are not known,
and the theory predicts finer resolution namely for this regime. Therefore, we think that such the
experiment is very important and may open a new chapter in the label-free far-field nanoimaging
offered by dielectric microspheres.
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