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A B S T R A C T   

The maritime industry is currently ongoing into a digital transformation to develop cleaner, safer and smarter 
transport services. Establishing such services requires identifying and assessing new emerging risks such as 
software and design flaws. Thus, suitable hazard identification and risk analysis methods must be developed and 
implemented for these complex services. This study aims to develop a novel risk analysis methodology by 
integrating Systems Theoretic Process Analysis, Bayesian Network, Noisy-OR gates, Parent divorcing technique 
and Sub-modelling. The effectiveness of the proposed methodology is demonstrated through a case study of 
Remote pilotage operation. The results show that the methodology can be applied to complex operations to 
assess the propagation of risks from a single fault or failure in a system to the hazards, accidents and incidents, 
and ultimately the losses. Furthermore, it is demonstrated how the remote pilotage risk model can support pilots 
and pilotage companies in real-time decision-making by estimating the likelihood of losses in case of a single 
fault or failure.   

1. Introduction 

Maritime stakeholders are exploring the viability of operational 
transformation using increased automation and digitalisation. One of 
them is the Remote pilotage operation (RPO), which is currently at the 
development stage in Europe in several countries (Hadley and Pour-
zanjani, 2003; Lahtinen et al., 2020; Salonen et al., 2020). In addition to 
the potential cost reduction (Danish Maritime Authority, 2014), RPO 
may improve maritime safety by reducing human errors and risks 
related to pilot embarkation and disembarkation (Lahtinen et al., 2020). 
However, the increased automation and digitalisation can propagate 
unrecognised risks due to software flaws, design flaws, and ineffective 
communication and condition monitoring during pilotage (Bolbot et al., 
2019; Hoem et al., 2019; Leveson, 2011; Utne et al., 2017). Thus, it is 
essential to identify the hazards and analyse these potential emergent 
risks in RPO. 

Given that RPO is in its infancy stage, risk-based design can be 

considered an appropriate methodology for safe and cost-efficient sys-
tem design (Leveson, 2011; Utne et al., 2017). However, only a few 
studies have focused on the risk management of RPO up to this date. 
Lahtinen et al. (2020) researched remote pilotage configurations and 
critical risks related to RPO in an intelligent fairway. The authors used 
expert surveys, interviews and remote pilotage simulation to identify 
risk-influencing factors associated with RPO, such as situational 
awareness, human behaviour, ergonomics, data transmission, naviga-
tional aids, operational conditions, and cyberattacks. Similarly, Hadley 
& Pourzanjani (2003) provided vital risk factors related to RPO, 
including navigational aids, language barrier, operational conditions, 
crew capabilities, and crew fatigue. Other additional crucial factors have 
been highlighted in other studies, such as feedback systems for remote 
pilots (Bruno and Lützhöft, 2009), standardised procedures and 
communication (Bruno and Lützhöft, 2009), and trust between crew and 
pilot (Bruno and Lützhöft, 2010). Although these studies provide risk 
influencing factors in RPO, none of them has applied any hazard 

Abbreviations: BN, Bayesian Network; CPT, Conditional Probability Table; E, Event; FMEA, Failure Mode and Effects Analysis; FTA, Fault Tree Analysis; PDT, 
Parent-Divorcing Technique; UCA, Unsafe Control Action; RP, Remote Pilot; RPO, Remote Pilot Operation; SCF, Scenario Causal Factor; SIA, Safety Investigation 
Authority; STPA, Systems-Theoretic Process Analysis; VC, Vessel Crew. 

* Corresponding author. 
E-mail addresses: sunil.basnet@aalto.fi (S. Basnet), ahmad.bahootoroody@aalto.fi (A. BahooToroody), meriam.chaal@aalto.fi (M. Chaal), janne.p.lahtinen@ 

aalto.fi (J. Lahtinen), victor.bolbot@aalto.fi (V. Bolbot), osiris.valdez.banda@aalto.fi (O.A. Valdez Banda).  

Contents lists available at ScienceDirect 

Ocean Engineering 

journal homepage: www.elsevier.com/locate/oceaneng 

https://doi.org/10.1016/j.oceaneng.2022.113569 
Received 22 June 2022; Received in revised form 6 December 2022; Accepted 26 December 2022   

mailto:sunil.basnet@aalto.fi
mailto:ahmad.bahootoroody@aalto.fi
mailto:meriam.chaal@aalto.fi
mailto:janne.p.lahtinen@aalto.fi
mailto:janne.p.lahtinen@aalto.fi
mailto:victor.bolbot@aalto.fi
mailto:osiris.valdez.banda@aalto.fi
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2022.113569
https://doi.org/10.1016/j.oceaneng.2022.113569
https://doi.org/10.1016/j.oceaneng.2022.113569
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2022.113569&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ocean Engineering 270 (2023) 113569

2

identification and risk analysis techniques. On the other hand, risk 
analysis is essential for enabling new maritime services from the mari-
time authority’s perspective (IMO, 2018). For example, the Finnish 
pilotage act, (LVM, 2019), specifies that the pilotage service provider 
needs to present a detailed risk management strategy for RPO to obtain 
the permit. Hence, the industry’s lack of risk management studies and 
the explicit requirements from the maritime authorities require a 
comprehensive hazards identification and risk analysis of RPO. 

For identifying hazards in complex socio-technical systems, several 
studies (Bolbot et al., 2019; Fan et al., 2022; Thieme et al., 2018; Ven-
tikos et al., 2020; Yamada et al., 2022; Zhou et al., 2020) recommended 
a method based on system theory known as System Theoretic Process 
Analysis (STPA). Zhou et al. (2020) concluded that the STPA is the most 
promising hazard identification method for software-intensive systems 
compared to traditional methods such as Fault Trees Analysis (FTA) and 
Failure Modes and Effects Analysis (FMEA). While FTA and FMEA focus 
on component-level failures by dividing the system into components, 
STPA analyses unsafe scenarios due to system interactions at the 
component-level as well as the systemic level. However, STPA is limited 
to hazard identification and does not attempt to estimate and assess the 
risk levels (Zhou et al., 2020). As a result, some studies have proposed 
STPA extensions by combining it with risk analysis methods such as FTA 
(Bensaci et al., 2020; Bolbot et al., 2020), Bow-Tie (Bensaci et al., 2020), 
Success Likelihood Index method (Ahn et al., 2022) and Bayesian Net-
works (BN) (Chaal et al., 2022; Johansen and Utne, 2022; Rekabi, 2018; 
Utne et al., 2020). Among these different options, the BN has been 
recommended for the risk analysis of complex systems in various studies 
such as by BahooToroody et al. (2016); Khalaj et al. (2020); Kontovas 
and Psaraftis (2009); Montewka et al. (2022); Parviainen et al. (2021); 
Thieme et al. (2018); Ventikos et al. (2022); Zhang and Thai (2016). The 
advantage of BN compared to FTA include the ability to handle common 
cause failures and multistate components concisely (Mahboob and 
Straub, 2011). Hence, the combination of STPA and BN can be consid-
ered an adequate method for the hazard identification and risk analysis 
of remote operation systems due to its novelty and ability to handle 
complex operations. 

The novel combinations of STPA and BN have been explored recently 
in different studies such as Rekabi (2018), Utne et al. (2020), Johansen 
and Utne (2022), Xu et al. (2022) and Chaal et al. (2022). The most 
recent study by Chaal et al. (2022) provided an STPA-BN method for the 
risk-based design of autonomous ship systems, where BN were used for 
the identification of critical risk control options. Similarly, Utne et al. 
(2020), and Johansen and Utne (2022) implemented STPA-BN for online 
risk modelling for autonomous ships for better decision-making. The 
authors mentioned that BNs effectively present causal relationships and 
combine expert knowledge and empirical data as often needed in risk 
analysis. However, Utne et al. (2020) mentioned that the combination of 
states grows exponentially with an increased number of parent nodes 
when developing the BN further, resulting in a necessary trade-off be-
tween available resources, model accuracy, and model complexity. Xu 
et al. (2022) integrated Dempster-Shafer evidence theory into the 
STPA-BN methodology for improving the accuracy of prior probabilities 
of BN nodes. However, the BN model developed in the study related to 
heavy equipment airdrop consisted of only 15 nodes with maximum of 5 
parent nodes. An STPA-BN study in a railway domain by Rekabi (2018) 
also highlighted this limitation and constrained the analysis with the 
maximum number of parent nodes as 3. Although the above-mentioned 
STPA-BN studies display great potential with the novel combination, all 
of these studies are limited to a single system hazard or a specific 
number of parent nodes. 

To address all identified challenges/gaps in implementing the STPA- 
BN model, this study aims to develop a risk analysis methodology for 
complex systems and apply it to assess risks in RPO. To this end, an 
approach that enhances the STPA-BN methods and incorporates Noisy- 
OR gates, Parent-Divorcing Technique (PDT), and sub-models tech-
niques into the BN development is proposed. For large-scale BN, 

canonical probabilistic nodes can reduce BN’s modelling complexity and 
computation caused by the high number of parent nodes (BayesFusion, 
2020; Pearl, 1988). One of the most popular canonical nodes, 
Noisy-OR/MAX, has been used in several BN studies (Abaei et al., 2019; 
Feng et al., 2020; Ji et al., 2022; Sarwar et al., 2018), where the ad-
vantages of using the node in BN have been highlighted. Similarly, the 
Parent-Divorcing Technique (PDT) can also be applied to reduce the 
number of entries in CPT without reducing the accuracy of the models 
(Lindley and Blackburn, 2017). As a result, it can improve the model 
development and simulation time (Barber, 2012; Fenton and Neil, 2019; 
von Waldow and Röhrbein, 2015). PDT has been demonstrated and 
recommended for the development of large-scale BN by various studies 
such as Barber (2012), Fenton and Neil (2019), Lindley and Blackburn 
(2017), and Neil et al. (2000). In addition to the modelling complexity, 
large-scale BNs also pose a challenge to the graphical representation of 
variable dependencies due to the high number of nodes (Neil et al., 
2000). The structure and presentation of large-scale BNs can be 
improved by introducing sub-models (BayesFusion, 2020). Further-
more, the sub-models also facilitate the modularity in large-scale BN and 
enable the reusability of BN fragments. The usage of the sub-model has 
been demonstrated by several studies such as Domeh et al. (2021), 
Barton et al. (2020), Lu et al. (2019), and Valdez Banda et al. (2016). 
Therefore, the improvement of STPA-BN methodology by integrating 
these techniques should be explored. 

The rest of the article is structured as follows. In Section 2, the 
related methods are presented. Then in Section 3, an overview of the 
hazard identification and risk analysis methodology and its steps is 
provided in detail. Next in Section 4, the results of applying the proposed 
methodology to the RPO are depicted. The discussions related to the 
methodology and the results are then provided in Section 4. Finally, in 
Section 5, the conclusions of this study are presented. 

2. Related methods 

2.1. System Theoretic Process Analysis (STPA) 

STPA is a hazard analysis method based on the System-Theoretic 
Accident Model and Processes (STAMP), which considers safety a dy-
namic control problem rather than a failure prevention problem. In 
addition to component failures, STPA assumes that hazards can also 
occur due to unsafe interactions of even non-failing components. Hence, 
the interactions among components are assessed to identify the unsafe 
scenarios for the system. The STPA methodology consists of the 
following steps (Leveson and Thomas, 2018):  

Step 1 Define the purpose of the analysis:  
Step 1.1 The losses that are unacceptable for the stakeholders, 

which should be mitigated through the analysis are 
defined first.  

Step 1.2 Then, the hazards at the system level that can lead to 
losses are identified.  

Step 1.3 For each system-level hazard, the constraints that need 
to be satisfied to prevent these hazards are specified.  

Step 2 Model the control structure: Next, the control structure of the 
system under assessment is developed. The control structure is a 
hierarchical model that shows control actions and feedback 
loops between system components.  

Step 3 Identify Unsafe Control Actions (UCA): Once the control actions 
of the system components are identified with the control struc-
ture, these control actions are then analysed with guidewords to 
determine the UCA.  

Step 4 Identify loss scenarios: In the last step, the causal factors that can 
lead to each UCA are then identified. 
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2.2. Bayesian Networks 

Pearl (1988) has provided a detailed description of BN. In brief, BNs 
are Directed Acyclic Graphs (DAG) used for probabilistic reasoning 
based on the Bayes theorem. In BN, each node represents a variable with 
several states, and each arc represents the dependency between the 
variables (Abaei et al., 2019; BahooToroody et al., 2019; Leoni et al., 
2019). The BN graph is directed with an arrow pointing from a parent 
variable to the child variable. The BN is a distribution with the following 
form (Neapolitan, 2004): 

p(x1, …., xD) =
∏D

i=1
p(xi|pa(xi)) (1)  

where p(x1, …., xD) is a joint probability distribution and pa(xi) is the 
parent set of the variable. 

For example, the joint probability distribution of the variables in 
Fig. 1 is given by p(L1, A1, A2, I1) = p(L1 |A1, A2, I1) p(A1) p(A2) p(I1), 
where L1 is dependent on A1, A2, and I1. 

2.3. Parent-Divorcing Technique 

In a Bayesian Network, if a child node has n parent nodes and all 
nodes have k states, then the number of CPT entries for the child node 
increases exponentially with kn+1 (Gerssen and Rothkrantz, 2006). A 
PDT, proposed by Olesen et al. (2007), can be applied to reduce the 
effects of the combinatorial explosion in CPT entries due to a high 
number of parent nodes. Several parent nodes are combined in PDT with 
additional intermediate nodes using suitable idioms. To preserve the 
accuracy of the model, the PDT should be applied only if the effects of 

the divorced nodes on child nodes are independent of other 
non-divorced parent nodes (Cain, 2001). Furthermore, the CPT for the 
intermediate node should not be specified with uncertainty (the child 
states should have 100% probability for every combination of parent 
states) (Cain, 2001). 

2.4. Noisy-OR gates 

The Noisy-OR gates, proposed by Pearl (1988), can be applied in BNs 
to reduce the CPT entries. It is a method to determine the conditional 
probability of Boolean variables, assuming that (i) there is a cause and 
effect relation between parameters, (ii) parameters are mutually exclu-
sive, and (iii) accountability means that an event can happen if, and only 
if, at least one cause has occurred (Abaei et al., 2019; Neapolitan, 2004). 
Once these conditions are satisfied, the CPT can be defined with only n 
parameters (p1, p2, p3…, pn). The parameter pi denotes the probability 
that the Y occurs if the cause Xi is present (T), and all other causes are 
absent (F), which can be denoted as following (Onísko et al., 2001): 

pi = Pr( Y = T | x1 = F, x2 = F…xi = T…, x{n−1} = F, xn = F
)

(2) 

The formula to derive the complete CPT of Y given a subset Xp of the 
Xis that is present is then provided by the following (Onísko et al., 2001): 

Pr
(
y

⃒
⃒Xp

)
= 1 −

∏

i:XiεXp

(1 − pi) (3) 

In risk analysis, there can be unidentified causes of effects, i.e., re-
sidual risk. To cover the residual risk, a leak factor XL can be added to the 
CPT, which denotes the probability that the Y occurs if all the identified 
causes are absent. The leak probability p0 can be denoted as following 
(Onísko et al., 2001): 

Fig. 1. An example of CPT in Bayesian Network (a) without Noisy-OR gate - 16 CPT entries (b) with Noisy-OR gate - 8 CPT entries.  
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p0 = Pr( Y = T | x1 = F, x2 = F…xi = F…, x{n−1} = F, xn = F
)

(4) 

Fig. 1 shows an example of the usage of a Noisy-OR gate in a BN 
network, where the number of CPT entries of a BN is reduced from 16 
(Fig. 1a) to 8 CPT entries (Fig. 1b). 

2.5. Sub-models 

The development and presentation of large-scale BN networks can be 
improved further by implementing sub-models. Sub-models are nodes or 
BN fragments that host a section of a BN to improve the BN structure. In 
addition to the visual improvements, the sub-models facilitate modu-
larity, which enables the reusability of the modules (sub-models) in 
different BNs if suitable (BayesFusion, 2020). 

3. Methodology 

Fig. 2 shows the proposed STPA-BN methodology. In Step 1, the 
STPA is applied to the system. The results of STPA are then used to 
develop a Bayesian network in Step 2. Next, in Steps 3, 4, and 5, the BN 
complexity reduction techniques, i.e., PDT, Noisy-OR gate, and sub- 
models, are implemented, respectively. In Step 6, the resulting BN is 
then updated by adding the prior probabilities of the root nodes and 
filling the CPT for the remaining nodes. Finally, the resulting BN model 
is analysed, and results are inferred in Step 7. 

3.1. Step 1: apply STPA to a target system and execute additional steps 

The first step is to apply STPA (see Section 2.1) to the investigated 
system. This study proposes three changes to the standard process 
defined in the STPA handbook (Leveson and Thomas, 2018). The first 
change is to add a sub-step to Step 1 of STPA. Instead of identifying 
system-level hazards directly from the losses (as in the default STPA 
process), the accidents and incidents that can lead to the losses should be 
first identified. The definitions of accidents and incidents provided by 
the Finnish Transport Safety Agency (2014) based on the Maritime Code 
(674/1994) have been used in this study. The addition of this step can 
cover the gap between the losses and the further analysis of STPA 
(Glomsrud and Xie, 2019). Furthermore, this may also ease the process 
of system-level hazard identification and data gathering for the BN 
model. Fig. 3 highlights the proposed change in Step 1 of STPA. 

The second change is to extend the statements for the Unsafe Control 

Actions in Step 3 of STPA. In the STPA handbook, the authors recom-
mend including five parts, i.e., Source, Type, Control action, Context, 
and Link to hazards. In this framework, a modification is proposed to 
integrate additional parts i.e., the controlled process in the UCA state-
ment. This change may add further clarity to the UCA as the Target 
(controlled process) is also explicitly specified in the statement. This 
may ease the generation of scenarios related to the controlled process. 
Furthermore, it may also simplify the traceability between STPA steps as 
all of the scenarios can then be linked to the UCA, whereas previously, 
the scenarios related to the controlled process had to be linked to the 
hazards instead. 

The third and final change is to add another step to STPA, where the 
identified scenarios should be grouped based on common causal factors. 
This will reduce the number of nodes in BN as instead of creating a 
unique node for each STPA scenario in BN, a node for a scenario group 
will be developed. This is one of the significant advantages of BN 
compared with counterparts such as FTA, as the common causes in BN 
can be represented with one node instead of several nodes (events) in 
FTA (Mahboob and Straub, 2011). The dependencies between nodes in 
BN are then addressed with links and corresponding Conditional Prob-
ability Tables (CPTs) (Mahboob and Straub, 2011). 

The steps of STPA in this study with the above-mentioned changes 
are as follows: 

Fig. 2. The steps of the proposed STPA-BN risk management method.  

Fig. 3. Addition of a sub-step (Accidents and Incidents) in Step 1 of STPA.  
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Step 1 Define the purpose of the analysis:  
Sub-step 1 Identify losses.  
Sub-step 2 Identify accidents and incidents (1st change)  
Sub-step 3 Identify system-level hazards  
Sub-step 4 Identify system-level safety constraints  

Step 2 Model the control structure.  
Step 3 Identify UCAs using the extended statement (2nd change)  
Step 4 Identify scenarios leading to UCAs  
Step 5 Group scenarios based on common causal factors (3rd change) 

3.2. Step 2: qualitative Bayesian Network modelling 

Next, the BN model should be developed using most of the outputs 
from the STPA. Table 1 shows the comparison of outputs from Step 1 and 
the inputs for BN development. Step 1.2 and Step 5 in Table 2 represent 
the additional steps to the standard STPA as explained in the previous 
section. As the table shows, all the outputs except the system-level 
constraints and control structure diagram are used for the BN 
development. 

For each event identified with STPA such as losses, system-level 
hazards and UCAs, a BN node must then be created, and the states 
should be defined. The states of the variable are mainly dependent on 
the node’s type, the scope of the analysis, and data availability. For 
example, loss of life may have Binary states such as YES and NO, or more 
than two states such as Single, Multiple, and No fatality. After the var-
iable states are defined, the structure of the BN with variable 

dependency should be created. Fig. 4 shows the general BN structure of 
this study. As shown in the figure, the developed BN will have a hier-
archy with five layers based on the cause-effect relationship between the 
STPA outputs. Each layer in the hierarchy corresponds to the type of 
Output from STPA as specified in Table 1. 

3.3. Step 3: updating the BN model with the Parent-Divorcing Technique 

The nodes that satisfy the conditions of PDT specified previously in 
Section 0 should be identified and updated with the PDT by adding in-
termediate nodes. The nodes in the UCA layer in Fig. 4, can be updated 
with PDT as they satisfy the conditions and usually consist of numerous 
parent nodes for complex systems. 

3.4. Step 4: updating the BN model with Noisy-OR gate 

The nodes that satisfy the conditions outlined previously in Section 
2.4 should be identified and changed into the Noisy-OR gates. The UCA 
and the system-level hazards layer in Fig. 4, can be transformed into 
Noisy-OR gates as these nodes satisfy the conditions and significantly 
reduce the number of CPT entries. The leak probability of the Noisy-OR 
gates can then be defined and added to the BN using data or expert 
opinion (Jianxing et al., 2021; Onísko et al., 2001). 

3.5. Step 5: updating the BN model with sub-models 

The BN model should be divided into sub-models as suitable 
depending on the BN’s complexity. First, the nodes that can be grouped 
should be identified. Then depending on the number of groups, the sub- 
model nodes should be added. Next, each group of nodes should be 
placed into a sub-model node. 

3.6. Step 6: quantitative Bayesian network modelling 

The CPT of BN variables should be updated with the available data. 
The accident and incident database, simulation studies, or experts’ 
opinions can be used for obtaining the data. This is an iterative process, 
which means that the model should be updated and assessed accordingly 
as soon as new data are available. When multiple types of data sources 
are used, the measure denoted by the data should be made consistent 
between the sources. This is explained and demonstrated further in the 
case study in Section 4.2. In the resulting BN model, OR logic can be 
applied for the propagation of failure from the SCF layer to the UCA 
layer, and from the UCA layer to the System-level hazard layer. This is 
because the statements of UCA and hazards in STPA are formulated in 
such a way that the occurrence of any of the parent nodes in the 
mentioned layers is certain to trigger the occurrence of the child node. 

3.7. Step 7: exploiting the model for risk analysis 

The posterior probabilities for the variables can be calculated using 
the developed model. The model can show the probability of a child 
node in a particular state from the combination of parent nodes using 
forward propagation. Since the BN model consists of layers depicting a 
hierarchy, as shown in Fig. 4, the propagation of risks from one layer to 
another can also be examined from the model. The analyst can also 
simulate the potential risk propagation by adding hard evidence to the 
model. Hard evidence refers to the condition where it is inevitable that a 
variable is in a specific state (Fenton and Neil, 2019). For example, one 
can assess the probability of losses or accidents during pilotage when it 
is certain that one of the ship systems has failed. Thus, the model can be 
exploited to obtain several inferences depending on the purpose of the 
analysis. 

It is crucial to assess the uncertainty of the BN models. For this 
purpose, several studies such as Flage and Aven (2009); Marcot (2012); 
Sahlin et al. (2021) have proposed assessment procedures, metrics and 

Table 1 
Comparison of outputs from STPA and inputs for BN development.  

Outputs of executing STPA steps Inputs used for BN 

Step 1: – 
Sub-step 1.1 List of losses List of losses 
Sub-step 1.2 List of accidents and incidents List of accidents and incidents 
Sub-step 1.3 List of system-level hazards List of system-level hazards 
Sub-step 1.4 List of system-level constraints – 
Step 2: Control structure diagram – 
Step 3: List of UCAs List of UCAs 
Step 4: List of scenarios leading to UCAs – 
Step 5: List of SCF leading to UCAs List of SCF leading to UCAs  

Table 2 
RPO components and functions.  

Component Functions 

Applications and Websites (Marine Traffic, 
Meteorological Institute website, Portnet, 
etc.) 

Provide data related to traffic, 
weather, ship, etc. 

A communication device (PC, tablet, 
cellphone, VHF, etc.) 

Transmit text, audio, and video. 

Pilot Plug Unit Gather and transmit real-time ship 
data 

Ship navigation unit (ECDIS, RADAR, GYRO, 
GPS, etc.) 

Measure and report the ship 
dynamics data (heading, position, 
speed, etc.) 

Server Store data 
Machine Vision Camera Detect and Identify objects 
Network (4G/5G connectivity) Enable sharing of data between 

clients and servers 
Display Screens Display the data 
Power unit Supply necessary power to the 

hardware 
Ship Propulsion Unit (Engine, thrusters, 

rudders, etc.) 
Provide necessary means to propel 
the ship 

Ship control station Enable controlling and monitoring 
of propulsion and auxiliary 
machinery. 

Global Maritime Distress and Safety System Transmit emergency signals to a 
global network 

Ship and fairway safety equipment (Tufone, 
navigation lights, navigation marks, etc.) 

Support safer navigation through 
visual and audio means.  
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schemes. Depending on the scope and required accuracy of the model, 
one of these schemes should be adopted and used for uncertainty 
assessment. Furthermore, a sensitivity analysis of the model should be 
conducted to investigate how sensitive a child node is to the changes in 
the probability in parent nodes (BayesFusion, 2020). This allows ana-
lysts to identify highly sensitive parameters in the models, which is 
critical in assessing the accuracy of the model (BayesFusion, 2020). The 
sensitivity level of BN nodes can be visualised and evaluated using a 
widely known “tornado diagram”. Borgonovo and Plischke (2016) 
provided detailed information about the tornado diagram. 

For studies using expert data, the degree of agreement between the 
experts needs to be demonstrated (IMO, 2018). The level of agreement 
between experts can be shown by calculating the concordance coeffi-
cient (W) as follows (IMO, 2018): 

W =

12
∑i=I

i=1

[
∑j=J

j=1
xij − 1

2 J(I + 1)

]2

J2
(
I3 − I

) (5)  

Where i is the number of scenarios, j is the number of experts and xij is 
the rating provided by the jth expert for the ith scenario. 

The level of agreement between experts is considered good if W is 
above 0.7, medium if W is between the range of 0.5–0.7, and poor if W is 
below 0.5 (IMO, 2018). 

4. Case study 

This section presents the results of applying the proposed method-
ology to the Remote pilotage operation. The BN shown in this section 
was developed using the GeNie Modeler tool. 

4.1. Remote pilotage operation description 

Remote pilotage Operation (RPO), also known as Shore-Based 
Pilotage Operation, is defined by International Standard for Maritime 

Pilot Organizations as “an act of pilotage carried out in a designated area 
by a maritime pilot licensed for that area to conduct the safe navigation 
of the vessel from a position other than on board the vessel concerned” 
(ISPO, 2021). In conventional pilotage, the pilot boards the ship to assist 
the crew in safely navigating the ship in congested areas. However, in 
RPO, all the relevant information (data and visuals) from the ship and 
fairway are transferred to the pilot at the shore. Thus, the pilot can assist 
the crew remotely without boarding the ship. 

This case study then aims to identify the hazards and analyse RPO 
risks in Finnish fairways using the proposed methodology. While RPO 
involves different components and stakeholders, this analysis focuses on 
the tasks of the remote pilot, VTS, and Vessel crew. 

4.2. Case study data 

Table 2 shows the components of RPO and their functions deter-
mined through brainstorming sessions with pilots and technology pro-
viders. The components list includes (i) hardware/software used by the 
vessel crew during ship navigation, (ii) the sensors installed on the 
fairway and ship that generates and transfers data to the remote pilot, 
and (iii) the hardware/software that the remote pilot may use to develop 
the situational awareness and to provide navigational advice. The list 
has been developed using the basis of conventional pilotage and the 
assumptions from end-users on the required changes to enable remote 
pilotage. The participants, i.e., end-users of the brainstorming sessions 
conducted for the case study were pilots, pilotage management staff, 
researchers, and technology providers. The pilots and the management 
staff have an experience in pilotage of more than five years. Further-
more, all participants are currently part of an RPO development project 
in Finland and have demonstrated the RPO recently (ESL Shipping, 
2022). The presented components in Table 2 are consistent with the 
component used during the RPO demonstration. 

No operational data is available for RPO yet since it is under devel-
opment. However, RPO has several similarities with conventional 
pilotage regarding components used and end-user interactions. 

Fig. 4. The hierarchical structure of STPA-based BN in this study.  
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Furthermore, the probability of losses if an accident occurs and the 
probability of accidents if a hazard occurs will be similar regardless of 
the type of pilotage. Therefore, in this case study, the aforementioned 
statistics have been extracted from conventional pilotage and have been 
assumed to be the same for remote pilotage. As a result, the variables 
used in the RPO BN can be categorised into two categories i) the com-
mon variables in conventional pilotage and RPO, and ii) the variables 
addressing the new factors in RPO. For the first category, the data from 
the conventional pilotage was used in the BN and for the second cate-
gory, the expert’s opinion was used in this study. As both statistical data 
and expert opinion are used in this study, all of the data has been 
formulated so that the probability of occurrence of the unsafe event i.e., 
the frequentist probability is extracted and used regardless of the data 
source. For example for root causes using statistics, 
Number of occurrence of the failure events

Total number of piltoages is used and for the expert opinion, a fre-
quency level of 2 refers to an occurrence of a failure event per 100 pi-
lotages i.e., 1

100 , and therefore both denote the probability of occurrence 
and are dimensionless. 

The data about the conventional pilotage was extracted from several 
sources. The first database used was the incidents and accidents reported 
during a year (from June 10, 2020 to June 10, 2021) of pilotage in 
Finnish fairways. The data was provided by Finnpilot Pilotage Ltd, a 
Finnish state-owned company that provides pilotage service in Finnish 
fairways. This dataset consists of the following information: a) Proba-
bility of equipment failure (see Table A2 in Appendix A) b) Probability of 
hazards leading to accidents (see Table A3 in Appendix A). Secondly, the 
statistics about the probability of losses occurring due to accidents and 
incidents were extracted from the reports provided by the Safety 
Investigation Authority (SIA) of Finland in 13 years (2009–2021). From 
the extracted statistics from SIA, the pilotage non-relevant data, such as 
events involving leisure boats, were excluded. Table A4 in Appendix A 
shows the data extracted from the SIA reports used in the BN model. 

To address the new variables due to remote pilotage, the data were 
collected from the experts i.e. case study participants. An example scale 
for the probability of frequency provided by the IMO (2018) was 
modified with suggestions from the experts and was used for the data 
gathering. Sánchez-Beaskoetxea et al. (2021) reported that around 25% 
of accidents due to human errors in cargo and passenger ships occurred 
due to pilot-only errors, which was used in this study to distinguish the 
error between pilots and vessel crew. Table 3 presents the scale used to 
collect the expert opinion on this study. Table A5 in Appendix A presents 
the probability of events occurring in RPO as estimated using expert 
opinion. 

4.3. Application of methodology 

4.3.1. Step 1: applying STPA to a target system with additional steps 
A total of seven losses to be covered in the RPO risk analysis were 

identified (see Table 4). Next, two accidents that could lead to all the 
losses and one incident potentially leading to one of the losses, i.e., loss 
of customer satisfaction were determined (see Table 5). Then in the 
context of RPO, three system-level hazards potentially leading to all 
accidents and incidents and the safety constraints to prevent these 
system-level hazards were identified (see Table 6 and Table 7, 
respectively). 

The control structure of the RPO was then developed using the sys-
tem information specified in section 4.2 with the inputs from the par-
ticipants. The control structure includes information about the 
components (human and equipment) of RPO and interactions between 
them. Fig. 5 shows the control structure of the RPO. The scope and focus 
of the analysis are the Remote Pilot (RP), Vessel Crew (VC), and related 
equipment, as denoted with green boxes in the figure. The control 
structure shows that the role of the RP in RPO is mostly to monitor the 
ship dynamics, fairway traffic, weather, etc., and provide navigation 
suggestions to the Master. The data required by the RPO is gathered and 

Table 3 
The scale used to collect the expert opinion on estimating the frequency of 
failures related to RPO.  

Frequency level Definition Corresponding 
probability [-] 

1. Extremely 
remote 

Likely to occur once in 500 
remotely piloted ships 

0.002 

2. Remote Likely to occur once every 100 
remotely piloted ships 

0.01 

3. Reasonably 
probable 

Likely to occur once every 50 
remotely piloted ships 

0.02 

4. Frequent Likely to occur once every 10 
remotely piloted ships 

0.1  

Table 4 
The losses to be covered in the STPA of RPO.  

Loss ID Losses 

L1 Loss of life 
L2 Injury to people 
L3 Loss of ship 
L4 Damage to ship 
L5 Loss of cargo 
L6 Damage to environment 
L7 Loss of customer satisfaction  

Table 5 
The Accidents and Incidents leading to the losses in RPO.  

ID Accidents and Incidents Related losses 

A1 Collision and contact L1, L2, L3, L4, L5, L6, L7 
A2 Grounding L1, L2, L3, L4, L5, L6, L7 
I1 Pilotage delay without accidents L7  

Table 6 
Lists of System-level hazards leading to Accidents and Incidents in RPO.  

ID System-level hazards Related A/ 
I 

H1 Ship Violates minimum separation standards or under keel 
clearance in route 

A1, A2, I1 

H2 Disruption or loss of ship manoeuvrability during RPO A1, A2, I1 
H3 Lack of requisites for conducting RPO A1, A2, I1  

Table 7 
Lists of safety constraints for preventing the system-level hazards in RPO.  

ID System-level safety constraints Related 
hazards 

SC1 The ship must satisfy the minimum separation standards and 
the under-keel clearance along the route. 

H1 

SC2 The manoeuvrability of the ship must not be disrupted or lost 
throughout the RPO. 

H2 

SC3 The requisites for conducting pilotage should be available 
throughout the RPO. 

H3  
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transmitted from the Intelligent fairway and ship. 
Table 8 presents an example of the identified Unsafe Control Actions 

(UCAs) related to the control action - Send pilotage plan and MPX 
document. In this step, a total of 23 UCAs were identified (see Table A1 
in Appendix A). Next, the scenarios (SC) leading to each UCA were 
identified. For example, Table 9 presents the scenarios leading to UCA 1. 
A total of 279 scenarios leading to the UCAs in RPO were identified and 
grouped into 33 Scenario Causal Factors (SCF) based on the common 
causes (see Table 10). 

4.3.2. Step 2: qualitative Bayesian Network modelling 
At first, the variables were defined for the STPA outputs. Next for 

each type of variables, the states were determined. For simplicity, the 
state’s TRUE/FALSE were assigned to all variables. For example, the 
TRUE state in the Loss of life variable will contain the probability of an 
accident leading to the loss of life and the FALSE state will hold the 
probability of an accident not leading to the loss of life. Once the 

variables and states were defined, the BN was developed with nodes 
(representing variables) and arcs (denoting the connection between 
variables). Figure B1, in Appendix B, presents the resulting Bayesian 
network for RPO. 

4.3.3. Step 3: updating the BN model with the parent-divorcing technique 
Five intermediate nodes were added to the network in the SCF layer 

as it consists of numerous nodes and satisfies the PDT conditions spec-
ified in Section 0. Table 11 presents the lists of SCFs and corresponding 
intermediate nodes with PDT. The application of PDT in this BN network 
reduced the CPT entries of SCF nodes from 2892088 to 2400. Figure B2, 
in Appendix B, shows the BN with the addition of intermediate nodes 
through PDT. 

4.3.4. Step 4: updating the BN model with Noisy-OR gates 
The Noisy-OR gates were applied to all nodes in the BN as they all 

satisfied the Noisy-OR conditions highlighted in Section 2.4. With this 

Fig. 5. The control structure of RPO.  

Table 8 
UCAs and consequences (hazards) related to the control action - Send pilotage plan and MPX document.  

Controller Control actions UCA 

Not providing Providing causing hazard Providing too early, late, or out of 
order 

Send too soon 
or applied too 
long 

RP Send pilotage 
plan and MPX 
document 

UCA-1 The Pilotage plan and 
MPX document are not sent from 
the RP to the master before 
pilotage (H3). 

UCA-2 Wrong, incomplete or unclear pilotage plan 
and MPX document are sent from the RP to the 
master and is followed during pilotage in shallow or 
congested waters (H1) 

UCA-3 The pilotage plan and MPX 
document are sent too late from 
the RP to the master before 
pilotage (H3) 

NA  
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change, the CPT entries of the BN reduced drastically from 4197444 to 
354. For simplicity, the leak probability i.e., residual risk as specified in 
Section 2.4 wasn’t considered for the Noisy-OR gates in this case study 
and was set to 0. 

4.3.5. Step 5: updating the BN model with sub-models 
A sub-model was then created for each of the intermediate nodes 

added during the PDT. Hence five sub-models were added to the 
network, where each sub-model includes an intermediate node and all 
its parent nodes. Figure B3 and Figure B4, in Appendix B, show the 
resulting BN with the addition of the sub-models and the details of each 
sub-model respectively. 

4.3.6. Step 6: quantitative Bayesian Network modelling 
Next, the quantitative information related to the variables was pro-

vided to the BN model. A combination of data from SIA reports, the 
Pilotage incident database and expert opinions were added to the BN as 
explained in Section 4.2. Table A6, in Appendix A, shows an example of 
CPT of the variable “A1- Collision and contact”, where the table corre-
sponds to the variable A1 being True when the Hazards H1, H2 and H3 
are true respectively. As mentioned in Section 3, the OR logic was 
applied for the probability propagation from the SCF layer to the UCA 
layer, and then from the UCA layer to the System-level hazards layer in 
the model. Hence, the CPT of all of the variables in the BN was filled and 
was ready for the inference of results. 

4.3.7. Step 7: exploiting the model for risk analysis  

A Calculating Posterior Probabilities based on observations 

After updating the model with the data, the posterior probabilities of 
nodes were calculated. With this result, the propagation of risks from the 
lower layers, i.e., SCF and UCA, to the higher layers, i.e., hazards, ac-
cidents, and losses, in the model were assessed. Figure B5 in Appendix B, 

Table 9 
List of scenarios leading to UCA 1 in RPO.  

Scenario 
ID 

Scenarios leading to UCA 1 

SC1 The RP doesn’t send the pilotage plan and MPX document as he lacks 
the necessary skills. 

SC2 The RP doesn’t send the pilotage plan and MPX document due to stress. 
SC3 The RP doesn’t send the pilotage plan and MPX document due to poor 

situational awareness. 
SC4 The RP doesn’t send the pilotage plan and MPX document due to 

fatigue 
SC5 The RP doesn’t send the pilotage plan and MPX document due to 

distraction 
SC6 The RP doesn’t send the pilotage plan and MPX document due to a lack 

of professionalism 
SC7 The RP doesn’t send the pilotage plan and MPX document due to a lack 

of procedures or checklists 
SC8 The RP doesn’t send the pilotage plan and MPX document due to a lack 

of traffic data 
SC9 The RP doesn’t send the pilotage plan and MPX document due to a lack 

of weather data 
SC10 The RP doesn’t send the pilotage plan and MPX document due to a lack 

of dynamics data 
SC11 The RP doesn’t send the pilotage plan and MPX document due to a lack 

of ship systems data 
SC12 The RP doesn’t send the pilotage plan and MPX document due to a 

communication device failure at the remote pilotage centre 
SC13 The RP doesn’t send the pilotage plan and MPX document due to 

network failure at the remote pilotage centre 
SC14 The RP doesn’t send the pilotage plan and MPX document due to 

displays failure at the remote pilotage centre 
SC15 Master doesn’t receive the pilotage plan and MPX document due to 

communication device failure onboard the ship 
SC16 Master doesn’t receive the pilotage plan and MPX document due to 

network failure at the fairway/ship 
SC17 Master doesn’t receive the pilotage plan and MPX document due to 

display failure onboard the ship  

Table 10 
List of Scenario Causal Factors related to RPO.  

SCF ID Scenario Causal Factors ID Scenario causal factors 

SCF1 Lack of skills (RP) SCF18 Lack of professionalism (VC) 
SCF2 Stress (RP) SCF19 Communication device 

failure 
SCF3 Poor situational awareness 

(RP) 
SCF20 Network failure 

SCF4 Fatigue (RP) SCF21 Displays failure 
SCF5 Distraction (RP) SCF22 Language issues 
SCF6 Lack of professionalism (RP) SCF23 Lack of trust 
SCF7 Lack of procedures or 

checklists 
SCF24 Thruster unit failure 

SCF8 Lack of standard phrases SCF25 Rudder and helm failure 
SCF9 Issues with traffic data SCF26 Autopilot device failure 
SCF10 Issues with weather data SCF27 ECDIS failure 
SCF11 Issues with ship dynamics data SCF28 GYRO failure 
SCF12 Issues with ship systems data SCF29 RADAR failure 
SCF13 Lack of skills (VC) SCF30 AIS failure 
SCF14 Stress (VC) SCF31 GPS failure 
SCF15 Poor situational awareness 

(VC) 
SCF32 Engines failure 

SCF16 Fatigue (VC) SCF33 Control station failure 
SCF17 Distraction (VC)    

Table 11 
The list of causal factors and corresponding intermediate nodes with parent 
divorcing.  

SCF ID Causal factors Corresponding Intermediate 
node 

INT Node 
ID 

SCF1 Lack of skills (RP) Human errors related to RP INT1 
SCF2 Stress (RP) 
SCF3 Poor situational awareness 

(RP) 
SCF4 Fatigue (RP) 
SCF5 Distraction (RP) 
SCF6 Lack of professionalism 

(RP) 
SCF9 Issues with traffic data Issues with RPO data INT2 
SCF10 Issues with weather data 
SCF11 Issues with ship dynamics 

data 
SCF12 Issues with ship systems 

data 
SCF13 Lack of skills (VC) Human errors related to VC INT3 
SCF14 Stress (VC) 
SCF15 Poor situational awareness 

(VC) 
SCF16 Fatigue (VC) 
SCF17 Distraction (VC) 
SCF18 Lack of professionalism 

(VC) 
SCF24 Thruster unit failure Steering and propulsion unit 

failure 
INT4 

SCF25 Rudder and helm failure 
SCF26 Autopilot device failure 
SCF32 Engine failure 
SCF33 Control station failure 
SCF27 ECDIS failure Navigation unit failure INT5 
SCF28 GYRO failure 
SCF29 RADAR failure 
SCF30 AIS failure 
SCF31 GPS failure  
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presents the posterior probabilities of nodes in the upper layers of BN i. 
e., losses, accidents/incidents, and hazards. Furthermore, Table 12 
shows the posterior occurrence probabilities (TRUE state) of all the child 
nodes in the model. These values indicate the posterior probability that 

these events may occur based on the model and prior observations. 
The ranking of events based on occurrence probability in each layer 

is demonstrated in Table 12 using colours, where the high, medium and 
low-ranked events are denoted with red, yellow, and green, respectively. 
For the first layer (losses), the model shows that the most likely losses 
are loss of customer satisfaction (L7), damage to the ship (L4), injury to 
people (L2), and damage to the environment (L6) with the posterior 
probability of 0.327, 0.172, 0.055, and 0.045, respectively. Then for the 
second layer (accidents and incidents), the contact and collision (A1) 
and pilotage delay without accidents (I1) are the most likely with a 
probability of 0.221 and 0.218, respectively than grounding (A2) with a 
probability of 0.031. Next, in the third layer (hazards), the model in-
dicates that the hazard related to violation of ship separation standards 
and under keel clearance (H1) has the highest probability of 0.407. 
Whereas the other hazards, i.e., the lack of requisites for conducting RPO 
(H3) and the disruption/loss of ship manoeuvrability during RPO, have 
a probability of 0.207 and 0.004, respectively. In the fourth layer 
(UCAs), the model shows that the UCAs related to the navigational 
suggestions from pilot to master, i.e., UCA4, UCA5, and UCA6, are most 
likely with the occurrence probability of 0.276, 0.284, and 0.284, 
respectively. This is followed by the UCA11, which is related to navi-
gational commands from master to deck officers and has a probability of 
0.255.  

B Posterior probabilities analysis based on hard evidence 

Next, the probability propagation from lower to upper levels was 
checked by providing hard evidence in the model. Fig. 6 shows the 
posterior probabilities of child nodes of H2 when the H2 is provided with 
hard evidence as p(H2 = True / ..) is 1. This shows the probability of 
accidents and losses occurring when assumed that the “H2- Ship Violates 
minimum separation standards or under keel clearance in route” has 
occurred. For example, the model shows that if the H2 occurs, the 
probability that the A1 “Collision and contact” occurs increases from 
0.221 to 0.544. Similarly, the occurrence probability of L1 increases 
from 0.014 to 0.034. 

CAssessing the sensitivity and uncertainty of the BN model 

Fig. 7 presents a tornado diagram of one of the top layer nodes, “L1- 
Loss of life”. The figure demonstrates the ten most sensitive parameters 
to the posterior probability of L1. Furthermore, the level of sensitivity is 
illustrated with the bars in the diagram. For example, the figure shows 
that the “SCF11- Issues with ship dynamics data” is the most sensitive 
node, followed by “SCF 22- Language issues” and “SCF 13- Lack of skills 
of vessel crew”. The analysis indicates that the 10% increase in the most 
sensitive parameter (SCF11) can increase the posterior probability of L1 
from 0.0138 to 0.0141, which is about a 2% increase. Similarly, the 10% 

Table 12 
The posterior occurrence probability of the events (TRUE state) 
and their ranking with red denoting the critical events. 

Fig. 6. Posterior probabilities of nodes when H2 (in yellow) is provided with hard evidence as p (H2 = True/.) is 1.  
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decrease in the SCF11 parameter can decrease the posterior probability 
of L1 from 0.0138 to 0.0136, which is about a 1.5% decrease. 

Similarly, Fig. 8 presents a tornado diagram for a second layer node, 
“I1- Pilotage delay without accidents”. The figure shows that the three 
most sensitive parameters for I1 are “SCF11- Issues with ship dynamics 
data”, “SCF1- Lack of skills of a remote pilot”, and “SCF9- Issues with 
traffic data”. The analysis indicates that the change in the most sensitive 
parameter SCF 11 can alter the posterior probability of I1 from 0.218 to 
0.210 with a 10% decrease and to 0.226 with a 10% increase, which is 
within a ±3.7% variation. 

In order to assess the overall uncertainty of the BN results in this 
study, the scale proposed by Flage and Aven (2009) was used (see 
Table 13). This scale has been commonly used to assess uncertainty in 
several risk assessment studies such as Khan et al. (2020); Valdez Banda 
et al. (2015), and Montewka et al. (2017). As remote pilotage is still 
under development, many reliable data are not available for the model, 
which reduces the accuracy of the estimations. However, there are 
similarities in system components and procedures between conventional 
pilotage and remote pilotage. Furthermore, the data related to accidents 

Fig. 7. A tornado diagram presenting the ten most sensitive input parameters (±10% change in probability of occurrence) of the node “L1- Loss of life”.  

Fig. 8. A tornado diagram presenting the ten most sensitive input parameters (±10% change in probability of occurrence) of the node “L1- Loss of life”.  

Table 13 
Classification scale for assessing the model uncertainty, based on Flage and Aven 
(2009); Goerlandt and Montewka (2015).  

Uncertainty level Conditions 

High uncertainty One or more of the following conditions are met:  
- The phenomena involved are not well understood; models are 

non-existent or known/believed to give poor predictions.  
- The assumptions made represent strong simplifications  
- Data are not available or are unreliable  
- There is a lack of agreement/consensus among experts 

Medium 
uncertainty 

Conditions between those characterising high and low 
uncertainty, e.g.:  
- The phenomena are well understood, but the models used are 

considered simple/crude.  
- Some reliable data are used 

Low uncertainty All the following conditions are met:  
- The phenomena involved are well understood; the models 

used are known to give predictions with the required accuracy  
- The assumptions made are seen as very reasonable  
- Much reliable data is available  
- There is broad agreement among experts  
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and incidents leading to losses does not vary with the type of pilotage 
used. Thus, a part of the data used in the model is reliable and accurate. 
The level of knowledge and experience of the involved experts is 
considered high as they all have a good understanding and familiarity 
with conventional pilotage development and operation. Therefore, the 
assumptions made based on their perception of the remote pilotage 
operation represent a mixture of strong and reasonable simplifications. 
Furthermore, the successful demonstration of remote pilotage recently 
in Finland (ESL Shipping, 2022) shows the level of expertise of the 
involved participants. Next, the agreement between experts was 
assessed by calculating the Kendall coefficient of concordance (W) using 
the DescTools R package (Signorell et al., 2018). The coefficient value of 
0.956 was obtained with the calculation. Figure A1 in Appendix A 
presents the R code and the obtained result used to calculate the W in 
this study. As the obtained value is above 0.7, it shows that the experts 
had a good agreement when providing inputs to the BN model (IMO, 
2018). Hence, considering all of these conditions and comparing them 
with the scale in Table 13, the results of the current remote pilotage BN 
model was considered to have an overall medium uncertainty level. 

5. Discussion 

5.1. STPA-BN integration 

The STPA method used in the proposed framework identified the 
losses and their causal factors/sub-factors, such as accidents, hazards, 
and unsafe scenarios. Moreover, STPA was able to provide vast results as 
the analysis starts at an abstract level and progresses towards a detailed 
level covering all system-level hazards and component-level hazards, 
which is critical in managing the safety of modern complex systems. 
Then, mapping STPA outputs in BN addressed the gaps in STPA i.e. 
quantitative risk analysis. The integration process was also resource- 
efficient as the outputs of STPA were used directly to structure the BN. 
Using prior observations, the BN model was able to estimate the pos-
terior probability of occurrence of the child nodes i.e. the unsafe events 
such as hazards, accidents and losses. As the structure of the BN consists 
of hierarchies, the forward probability propagation from the root causes 
to the upper layers could be observed from the model. 

The additions/modifications proposed in this framework improved 
the general STPA-BN methodology suggested by previous studies 
(Rekabi (2018); Utne et al. (2020)). First, adding a sub-step, i.e., iden-
tifying the accidents/incidents leading to the losses, filled the gap of a 
cause-effect relationship between the identification of losses and the 
identification of hazards. The benefit of this change was realised in the 
case study as the data about hazards leading to losses were rare 
compared to the data about hazards leading to accidents/incidents and 
the accidents/incidents leading to losses. The second upgrade, which is 
about grouping the loss scenarios based on causal factors, lowered the 
number of nodes from 279 to 33 in the BN without affecting the result. 
The viability and benefit of this approach have also been discussed by 
Utne et al. (2020). The third and final modification of changing the way 
of formulating the UCA statement added clarity to the UCA itself since it 
also included the controlled process (Target). Furthermore, the results 
show that this change allowed the BN structure to have a precise hier-
archical level. 

5.2. Large-scale BN development techniques 

The techniques i.e., Parent-divorcing, Noisy-OR, and Sub-model, 
integrated into the framework reduced the complexity of developing 
large-scale BN. The Parent-divorcing and Noisy-OR gate technique 
reduced the challenges with several parent nodes and corresponding 
CPT requirements, which were faced by other STPA-BN studies such as 
Rekabi (2018), Utne et al. (2020) and Chaal et al. (2022). As a result, the 
compromise of limiting the maximum number of parent nodes or the 
number of hazards, which limits the size of the BN model is eliminated. 

The effects of applying these techniques were demonstrated in the case 
study, where the application of the PDT and Noisy-OR gate reduced the 
CPT entries significantly. This reduction is substantial for the analysts in 
developing the large-scale BN as it reduces the required resources. Thus, 
it increases the feasibility of risk analysis using STPA and BN. 

While the sub-model doesn’t reduce the CPT entries, it was still 
beneficial and is highly recommended as it reduced the burden of having 
one large single BN compared to one main BN accompanied by several 
sub-models. As the resulting BN from STPA inputs can be huge and 
disrupted (see Figure B2 in Appendix B), the usage of sub-models 
improved the visualisation of the BN without changing the results (see 
Figure B3 in Appendix B). These sub-models can then be used in other 
similar risk analysis applications. The reusability of sub-models was a 
benefit previously highlighted by Koller and Pfeffer (1997). 

5.3. Case-study: remote pilotage 

The case study results show that the proposed framework can be 
applied to assess the risks in complex socio-technical ecosystems such as 
RPO. First, the usage of STPA showed that it could identify numerous 
unsafe scenarios that can lead to hazards, accidents, and ultimately 
losses. Although the scope of the STPA analysis was limited to the op-
erators (RP and Vessel crew) and related equipment, the scenarios 
covered numerous factors related to human error, equipment failure, 
and lack of information (data). 

The BN of RPO was able to calculate the posterior probability of all 
the events identified with STPA i.e., losses, accidents and incidents, 
hazards, etc. However, it should be noted that modelling risk control 
options in RPO is not within the scope of this study. The analysis results 
will then allow the RPO stakeholders to define suitable Risk Control 
Options (RCOs) to prevent or mitigate the risks to an acceptable level in 
a future study. Furthermore, if the resources for RPO development are 
limited, the stakeholders will know the critical scenarios requiring more 
RCOs. For example, the results showed that the losses such as loss of 
customer satisfaction, damage to the ship, and injury to people have a 
higher probability of occurrence than the other losses in RPO. Thus, the 
stakeholders can invest more resources in these critical losses. However, 
this doesn’t mean that the events with low probability should be ignored 
as all of the events need to be reduced to an acceptable level. The BN 
model showed an anomaly with loss of ship where the probability of 
occurrence is 0. This anomaly is because the data collected and used in 
the model didn’t have a single event where a loss of the ship was 
observed due to accidents/incidents in Finnish Waters. Regarding the 
accidents and incidents, the model showed that collision and contact, 
and pilotage delay have higher occurrences than grounding. Hence, the 
decision-makers in Finland should prioritise the prevention or mitiga-
tion of collision and contact, and pilotage delay. 

The BN model also allowed the calculation of the posterior proba-
bilities assuming that an event has occurred using hard evidence. It was 
observed in the pilotage reports that often when a failure occurs during 
pilotage, the pilots and crew need to decide to either to continue, halt or 
abort the pilotage. The usage of hard evidence in the model can support 
the decision-making for the operators as it can show the change in the 
probability of occurrence of hazards, accidents and incidents, and losses 
due to the failure. While a single fault or failure may have been ignored 
by the operators previously, this model can provide the overall effects at 
a systemic level which may support operators in making real-time 
decisions. 

The sensitivity analysis of the BN showed that the five most sensitive 
nodes in the current RPO model are a) SCF11- Issues with ship dynamics 
data, b) SCF22- Language issues, c) SCF13- Lack of skills of vessel crew, 
d) Lack of skills of remote pilot e) Issues with traffic data. The results 
show that the ±10% change in the probability of these nodes can reach a 
±3.7% variation in posterior probabilities of accidents and incidents, 
and losses. To improve the overall model’s accuracy, the decision- 
makers should focus on improving the accuracy of the gathered 
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observations for these sensitive nodes. 

5.4. Limitations and future work 

The usage of the Noisy-OR gate may slightly reduce the accuracy of 
the model as specified by Onísko et al. (2001) and Ji et al. (2022), where 
a difference of less than ± 3% on the posterior probabilities was re-
ported. Therefore, it should not be used if the accuracy of the model is of 
uttermost importance. In future, the risk analysis of RPO can be 
improved further by replacing expert opinions with RPO operational 
data once available. Furthermore, the methodology should be extended 
from risk analysis to risk management by introducing risk control op-
tions and cost-benefit analysis. 

6. Conclusion 

The complexity of novel systems requires a systematic and 
straightforward risk analysis methodology to identify unsafe scenarios, 
the risk causal factors and to estimate the current risk level. For this 
purpose, this study presented a novel risk analysis methodology by 
integrating modified STPA with the BN. The proposed methodology also 
integrates Noisy-OR gates, Parent-divorcing, and Sub-models to cover 
the gaps related to limitations with the high number of CPT entries as 
highlighted by other STPA-BN studies. 

The changes proposed to the STPA in this study improved the inte-
gration of STPA and BN. The changes improved the data extraction 
required for the BN model, reduced the number of nodes in the BN, and 
added clarity to the UCA statements generated during the STPA., The 
usage of PDT and Noisy-OR then addressed the limitation of STPA-BN 
methodology resulting from a combinatorial explosion of parent nodes 
as it reduced the CPT entries in BN from 2892088 to 2400 and from 
4197444 to 354, respectively. As a result, it allowed assessing risks in 
novel operations such as RPO, which suffer from limited data. 
Furthermore, the usage of sub-models added modularity to the BN and 
thus improved its visual aspect. The BN model shows that the losses in 
RPO requiring attention are the loss of customer satisfaction, damage to 
the ship, injury to people and damage to the environment. The model 

also shows that the collision and contact and pilotage delay are more 
likely than grounding in Finnish fairways. These results are critical for 
decision-makers in determining potential risk control measures for RPO 
in future. Furthermore, the study shows that the proposed methodology 
can constitute a valuable tool in the hands of safety engineers as it can be 
applied to other complex operations in future research. 
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Appendix A  

Table A1 
UCAs and related consequences (hazards) in RPO.  

Controller Control actions UCA 

Not providing Providing causing hazard Providing too early, late, or out of 
order 

Sed too soon or applied too long 

RP Send pilotage 
plan and MPX 
document 

UCA-1 The Pilotage plan and 
MPX document are not sent from 
the RP to the master before 
pilotage (H3). 

UCA-2 Wrong, incomplete or 
unclear pilotage plan and MPX 
document are sent from the RP to 
the master and is followed during 
pilotage in shallow or congested 
waters (H1) 

UCA-3 The pilotage plan and 
MPX document are sent too late 
from the RP to the master before 
pilotage (H3) 

NA 

RP Send navigation 
suggestions 

UCA-4 Navigation suggestions 
are not sent from the RP to the 
master when required during 
pilotage in shallow or congested 
water. (H1) 

UCA-5 Wrong or unclear 
navigation suggestions are sent 
from the RP to the master during 
pilotage in shallow or congested 
water. (H1) 

UCA-6 Navigational suggestions 
are sent too late from the RP to 
the master when required during 
pilotage in shallow or congested 
water. (H1) 

NA 

RP Send traffic 
updates 

UCA-7 Traffic updates are not 
sent from the RP to the master 
when required during pilotage in 
congested water (H1) 

UCA-8 Wrong or unclear traffic 
updates are sent from the RP to 
the master during pilotage in 
congested water. (H1) 

UCA-9 Traffic updates are sent 
too late from the RP to the master 
when required during pilotage in 
congested water (H1)  

Master Send navigation 
commands 

UCA -10 Navigational 
instructions are not sent from the 
master to the deck officers when 
required during pilotage in 
congested or shallow water. (H1) 

UCA-11 Wrong or unclear 
navigational instructions are sent 
from the master to the deck 
officers during congested or 
shallow water pilotage. (H1) 

UCA-12 Navigational 
instructions are sent too late from 
the master to the deck officers 
when required during pilotage in 
congested or shallow water. (H1) 

NA 

NA 

(continued on next page) 
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Table A1 (continued ) 

Controller Control actions UCA 

Not providing Providing causing hazard Providing too early, late, or out of 
order 

Sed too soon or applied too long 

Deck 
officers 

Execute 
navigation 
commands 

UCA-13 Navigation Commands 
from the master are not executed 
by the deck officers with the 
control station during pilotage in 
congested or shallow water. (H1) 

UCA-14 Wrong navigation 
commands are executed by the 
deck officers with the control 
station during pilotage in 
congested or shallow water. (H1) 

UCA-15 Navigation commands 
from the master are executed too 
early or too late by the deck 
officers with the control station 
during congested or shallow 
water pilotage. (H1) 

Control 
station 

Turn On/Off UCA-16 Turn On/Off command 
is not sent from the control 
station to the main propulsion 
unit or side thrusters when 
requested by the deck officers 
during RPO. (H1, H2, H3) 

UCA-17 The main propulsion unit 
or side thrusters are turned on 
without any request from deck 
officers during maneuvring with 
tugs in congested or shallow 
water (H1) 
UCA-18 The main propulsion unit 
or side thrusters are turned off 
without any request from deck 
officers during critical pilotage 
manoeuvres in congested or 
shallow water (H1, H2, H3) 

UCA-19 The main propulsion 
unit or side thrusters are turned 
On/Off too early or too late when 
requested by the vessel crew 
during RPO. (H1, H2, H3) 

NA 

Control 
station 

Change 
propulsion 
parameters 
(Power, Pitch, 
Rudder angle etc) 

UCA-20 The command to change 
propulsion parameter is not 
executed when requested by the 
deck officers during pilotage in 
congested or shallow water (H1, 
H2, H3) 

UCA-21 Control station changes 
to wrong propulsion parameters 
when requested by the deck 
officers during pilotage in 
congested or shallow water. (H1) 

UCA-22 Control station changes 
the propulsion parameters too 
late or too early than requested 
by the deck officers during 
pilotage in congested or shallow 
water (H1, H2, H3) 

UCA-23 Control station changes 
the propulsion parameters for 
too long or too short than 
requested by the deck officers 
during pilotage in congested or 
shallow water (H1, H3)   

Table A2 
Observations related to the ship equipment failure during conven-
tional pilotage in Finish fairways (from June 10, 2020 to June 10, 
2021).  

Components Probability [-] 

Propulsion and thruster unit failure 0.00098 
Rudder and helm failure 0.00028 
Autopilot device failure 0.00023 
ECDIS failure 0.00023 
GYRO failure 0.00093 
RADAR failure 0.00047 
AIS failure 0.00009 
GPS failure 0.00047 
Engines failure 0.00219 
Control station failure 0.00009   

Table A3 
Observations on the occurrence of accidents and incidents due to hazards p (A/H) during conventional pilotage in Finish fairways (from June 10, 2020 to June 10, 
2021).  

Hazards Accidents and Incidents 

Collision and Contact Grounding Delay without accidents 

Lack of requisites for conducting pilotage 0.0227 0 0.8864 
Violation of minimum separation standards or under keel clearance in route 0.5385 0.0769 0.1538 
Disruption or loss of ship maneuverability 0.0076 0 0.3740   

Table A4 
Observations related to accidents in Finnish waters leading to losses (p (L/A)) as reported by the Safety Investigation Authority of Finland.  

Accidents Losses 

Loss of life Injury to people Loss of ship Damage to ship Loss of cargo Damage to environment 

Collision and contact 0.0625 0.25 0 0.6875 0.125 0.1875 
Grounding 0 0 0 1 0 0.1333   
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Table A5 
Probability of events occurring determined using expert opinion  

Event Probability of occurrence p (SC) 

Lack of skills (RP) 0.025 
Stress (RP) 0.005 
Poor situational awareness (RP) 0.005 
Fatigue (RP) 0.005 
Distraction (RP) 0.005 
Lack of professionalism (RP) 0.005 
Lack of procedures or checklists 0.01 
Lack of standard phrases 0.01 
Issues with traffic data 0.02 
Issues with weather data 0.01 
Issues with ship dynamics data 0.1 
Issues with ship systems data 0.01 
Lack of skills (VC) 0.075 
Stress (VC) 0.015 
Poor situational awareness (VC) 0.015 
Fatigue (VC) 0.015 
Distraction (VC) 0.015 
Lack of professionalism (VC) 0.015 
Communication device failure 0.01 
Network failure 0.002 
Displays failure 0.01 
Language issues 0.1 
Lack of trust 0.02   

Table A6 
A CPT table of a node “A1- Collision and Contact”.  

Parent H1- True H2- True H3-True 

A1- True 0.5385 0.0076 0.0227 
A1- False 0.4615 0.9924 0.9773  

Fig. A1. R code used in this study to calculate the Kendall coefficient of concordance (W) for assessing the agreement between experts.  
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Appendix B

Fig. B1. Large-scale BN of RPO before the implementation of complexity reduction techniques.  

Fig. B2. Large-scale BN of RPO after the addition of five intermediate nodes through Parent-divorcing.  

Fig. B3. Large-scale BN of RPO with the addition of five sub-models.   

S. Basnet et al.                                                                                                                                                                                                                                  



Ocean Engineering 270 (2023) 113569

17

Fig. B4. The five sub-models of the BN - (a) Human errors (RP) (b) Issues with remote pilotage essential data. (c) Human errors (VC) (d) Steering and propulsion unit 
failure (e) Navigations aid failure. 

Fig. B5. Large-scale BN of RPO showing the posterior probabilities of nodes in the upper hierarchical level.  

References 

Abaei, M.M., Abbassi, R., Garaniya, V., Arzaghi, E., Bahoo Toroody, A., 2019. A dynamic 
human reliability model for marine and offshore operations in harsh environments. 
Ocean Eng. 173, 90–97. https://doi.org/10.1016/j.oceaneng.2018.12.032. 

Ahn, S.I., Kurt, R.E., Turan, O., 2022. The hybrid method combined STPA and SLIM to 
assess the reliability of the human interaction system to the emergency shutdown 
system of LNG ship-to-ship bunkering. Ocean Eng. 265, 112643 https://doi.org/ 
10.1016/j.oceaneng.2022.112643. 

BahooToroody, A., Abaiee, M.M., Gholamnia, R., Ketabdari, M.J., 2016. Epistemic-based 
investigation of the probability of hazard scenarios using Bayesian network for the 
lifting operation of floating objects. J. Mar. Sci. Appl. 15 (3), 250–259. https://doi. 
org/10.1007/s11804-016-1361-y. 

BahooToroody, A., Abaei, M.M., Arzaghi, E., BahooToroody, F., De Carlo, F., Abbassi, R., 
2019. Multi-level optimization of maintenance plan for natural gas system exposed 
to deterioration process. J. Hazard Mater. 362, 412–423. https://doi.org/10.1016/j. 
jhazmat.2018.09.044. 

Barber, D., 2012. Bayesian Reasoning and Machine Learning. Cambridge University 
Press. 

Barton, D.N., Sundt, H., Bustos, A.A., Fjeldstad, H.-P., Hedger, R., Forseth, T., Berit, K., 
Aas, Ø., Alfredsen, K., Madsen, A.L., 2020. Multi-criteria decision analysis in 
Bayesian networks - diagnosing ecosystem service trade-offs in a hydropower 
regulated river. Environ. Model. Software 124. https://doi.org/10.1016/j. 
envsoft.2019.104604. 

BayesFusion, L.L.C., 2020. GeNIe Modeler. https://support.bayesfusion.com/docs/Q 
GeNIe.pdf. 

Bensaci, C., Zennir, Y., Pomorski, D., 2020a. A New Approach to System Safety of 
Human-Multi-Robot Mobile System Control with STPA and FTA. https://hal.archives 
-ouvertes.fr/hal-03508526/document. 

Bensaci, C., Zennir, Y., Pomorski, D., Innal, F., Liu, Y.L., Tolba, C., 2020b. STPA and 
Bowtie risk analysis study for centralized and hierarchical control architectures 
comparison. Alex. Eng. J. 59 (5), 3799–3816. https://doi.org/10.1016/j. 
aej.2020.06.036. 

Bolbot, V., Theotokatos, G., Bujorianu, L.M., Boulougouris, E., Vassalos, D., 2019. 
Vulnerabilities and safety assurance methods in Cyber-Physical Systems: a 
comprehensive review. Reliab. Eng. Syst. Saf. 182, 179–193. https://doi.org/ 
10.1016/j.ress.2018.09.004. 

Bolbot, V., Theotokatos, G., Boulougouris, E., Psarros, G., Hamann, R., 2020. A novel 
method for safety analysis of cyber-physical systems-application to a ship exhaust 
gas scrubber system. Saf. Now. 6 (2) https://doi.org/10.3390/safety6020026. 

Borgonovo, E., Plischke, E., 2016. Sensitivity analysis: a review of recent advances. Eur. 
J. Oper. Res. 248 (3), 869–887. https://doi.org/10.1016/j.ejor.2015.06.032. 
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