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a b s t r a c t

Adversarial robustness has become a central goal in deep learning, both in the theory and the
practice. However, successful methods to improve the adversarial robustness (such as adversarial
training) greatly hurt generalization performance on the unperturbed data. This could have a major
impact on how the adversarial robustness affects real world systems (i.e. many may opt to forego
robustness if it can improve accuracy on the unperturbed data). We propose Interpolated Adversarial
Training, which employs recently proposed interpolation based training methods in the framework of
adversarial training. On CIFAR-10, adversarial training increases the standard test error ( when there
is no adversary) from 4.43% to 12.32%, whereas with our Interpolated adversarial training we retain
the adversarial robustness while achieving a standard test error of only 6.45%. With our technique,
the relative increase in the standard error for the robust model is reduced from 178.1% to just
45.5%. Moreover, we provide mathematical analysis of Interpolated Adversarial Training to confirm
its efficiencies and demonstrate its advantages in terms of robustness and generalization.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Deep neural networks have been highly successful across a
variety of tasks. This success has driven applications in the areas
where reliability and security are critical, including face recog-
nition (Sharif, Bhagavatula, Bauer, & Reiter, 2017), self-driving
cars (Bojarski et al., 2016), health care, and malware detec-
tion (LeCun, Bengio, & Hinton, 2015). Security concerns emerge
when adversaries of the system stand to benefit from a sys-
tem performing poorly. Work on Adversarial examples (Szegedy,
Zaremba, Sutskever, Bruna, Erhan, Goodfellow, & Fergus, 2013)
has shown that neural networks are vulnerable to the attacks per-
turbing the data in imperceptible ways. Many defenses have been
proposed, but most of them rely on obfuscated gradients (Athalye,
Carlini, & Wagner, 2018) to give a false illusion of defense by
lowering the quality of the gradient signal, without actually
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improving robustness (Athalye et al., 2018). Of these defenses,
only adversarial training (Kurakin, Goodfellow, & Bengio, 2016b)
was still effective after addressing the problem of obfuscated
gradients.

However, adversarial training has a major disadvantage: it
drastically reduces the generalization performance of the net-
works on unperturbed data samples, especially for small net-
works. For example, Madry, Makelov, Schmidt, Tsipras, and Vladu
(2017) report that adding adversarial training to a specific model
increases the standard test error from 6.3% to 21.6% on CIFAR-10.
This phenomenon makes adversarial training difficult to use in
practice. If the tension between the performance and the security
turns out to be irreconcilable, then many systems would either
need to perform poorly or accept vulnerability, a situation leading
to great negative impact.

Our contribution: We propose to augment the adversarial
training with the interpolation based training, as a solution to the
above problem.

• We demonstrate that our approach substantially improves
standard test error while still achieving adversarial robust-
ness, using benchmark datasets (CIFAR10, CIFAR100 and
SHVN) and benchmark architectures (Wide-ResNet and
ResNet): Section 5.1.
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• We demonstrate that our approach does not suffer from ob-
fuscated gradient problem by performing black-box attacks
on the models trained with our approach: Section 5.2.
• We perform PGD attack of higher number of steps (up to

1000 steps) and higher value of maximum allowed pertur-
bation/distortion epsilon, to demonstrate that the adversarial
robustness of our approach remains at the same level as that
of the adversarial training : Section 5.3.
• We demonstrate that the networks trained with our ap-

proach have lower complexity, hence resulting in improved
standard test error : Section 6.
• We mathematically analyze the benefit of the proposed

method in terms of robustness and generalization. For ro-
bustness, we show that Interpolated Adversarial Training
corresponds to approximately minimizing an upper bound
of the adversarial loss with additional adversarial perturba-
tions. This explains why models obtained by the proposed
method preserve the adversarial robustness and can some-
times further improve the robustness when compared to
standard adversarial training. For generalization, we prove
a new generalization bound for Interpolated Adversarial
Training and analyze the benefits of the proposed method.

2. Related work

The trade-off between standard test error and adversarial
robustness has been studied in Madry et al. (2017), Raghunathan,
Xie, Yang, Duchi, and Liang (2019), Tsipras, Santurkar, Engstrom,
Turner, and Madry (2018) and Zhang, Yu, Jiao, Xing, Ghaoui, and
Jordan (2019a). While Madry et al. (2017), Tsipras et al. (2018)
and Zhang et al. (2019a) empirically demonstrate this trade-
off, Tsipras et al. (2018) and Zhang et al. (2019a) demonstrate this
trade-off theoretically as well on the constructed learning prob-
lems. Furthermore, Raghunathan et al. (2019) study this trade-off
from the point-of-view of the statistical properties of the robust
objective (Ben-Tal, El Ghaoui, & Nemirovski, 2009) and the dy-
namics of optimizing a robust objective on a neural network, and
suggest that adversarial training requires more data to obtain a
lower standard test error. Our results on SVHN, CIFAR-10, and
CIFAR-100 datasets (Section 5.1) also consistently show higher
standard test error with PGD adversarial training.

While Tsipras et al. (2018) presented data dependent proofs
showing that on certain artificially constructed distributions — it
is impossible for a robust classifier to generalize as good as a non-
robust classifier. How this relates to our results is an intriguing
question. Our results suggest that the generalization gap between
adversarial training and non-robust models can be substantially
reduced through better algorithms, but it remains possible that
closing this gap entirely on some datasets is impossible. An im-
portant question for future work is how much this generalization
gap can be explained in terms of inherent data properties and
how much this gap can be addressed through better models.

Neural Architecture Search (Zoph & Le, 2016) was used to find
architectures which achieve high robustness to PGD attacks as
well as better test error on the unperturbed data (Cubuk, Zoph,
Schoenholz, & Le, 2018). This improved test error on the unper-
turbed data and a direct comparison to our method is in Table 2.
However, the method of Cubuk et al. (2018) is computationally
very expensive as each experiment requires training thousands
of models to search for optimal architectures (9360 child models
each trained for 10 epochs in Cubuk et al., 2018), whereas our
method involves no significant additional computation.

In our work we primarily concern ourselves with adversarial
training, but techniques in the research area of the provable
defenses have also shown a trade-off between robustness and

generalization on unperturbed data. For example, the dual net-
work defense of Kolter and Wong (2017) reported 20.38% stan-
dard test error on SVHN for their provably robust convolutional
network (most non-robust models are well under 5% test error
on SVHN). Wong, Schmidt, Metzen, and Kolter (2018) reported
a best standard test accuracy of 29.23% using a convolutional
ResNet on CIFAR-10 (most non-robust ResNets have accuracy of
well over 90%). Our goal here is not to criticize this work, as
developing provable defenses is a challenging and important area
of work, but rather to show that this problem that we explore
with Interpolated Adversarial Training(on adversarial training type
defenses of Madry et al., 2017) is just as severe with provable
defenses, and understanding if the insights developed here carry
over to provable defenses, could be an interesting area for future
work.

Adversarially robust generalization: Another line of research
concerns adversarially robust generalization: the performance of
adversarially trained networks on adversarial test examples.
Schmidt, Santurkar, Tsipras, Talwar, and Madry (2018) observe
that a higher sample complexity is needed for better adversari-
ally robust generalization. Yin, Ramchandran, and Bartlett (2018)
demonstrate that adversarial training results in higher complexity
models and hence poorer adversarially robust generalization. Fur-
thermore, Schmidt et al. (2018) suggest that adversarially robust
generalization requires more data and Carmon, Raghunathan,
Schmidt, Liang, and Duchi (2019), Zhai et al. (2019) demonstrate
that unlabeled data can be used to improve adversarially robust
generalization. In contrast to their work, in this work we focus
on improving the generalization performance on unperturbed
samples (standard test error), while maintaining robustness on
unseen adversarial examples at the same level.

Interpolation based training techniques: Yet another line
of research (Berthelot, Carlini, Goodfellow, Papernot, Oliver, &
Raffel, 2019; Jeong, Verma, Hyun, Kannala, & Kwak, 2021; Verma
et al., 2019; Verma, Lamb, Kannala, Bengio, & Lopez-Paz, 2019;
Verma, Qu, Lamb, Bengio, Kannala, & Tang, 2019; Zhang, Cissé,
Dauphin, & Lopez-Paz, 2017) shows that simple interpolation
based training techniques are able to substantially decrease stan-
dard test error in fully-supervised and semi-supervised learn-
ing paradigms. Along these lines, Zhang, Hsieh, and Tao (2018)
study the theoretical properties of interpolation based training
techniques such as Mixup (Zhang et al., 2017)

3. Background

3.1. The empirical risk minimization framework

Let us consider a general classification task with an underlying
data distribution D which consists of examples x ∈ X and
corresponding labels y ∈ Y. The task is to learn a function f :
X → Y such that for a given x, f outputs corresponding y. It
can be done by minimizing the risk E(x,y)∼D[L(x, y, θ )], where
L(θ, x, y) is a suitable loss function for instance the cross-entropy
loss and θ ∈ Rp is the set of parameters of function f . Since this
expectation cannot be computed, therefore a common approach
is to minimize the empirical risk 1/N

∑N
i=1 L(xi, yi, θ ) taking into

account only a finite number of examples drawn from the data
distribution D, namely (x1, y1), . . . ..., (xN , yN ).

3.2. Adversarial attacks and robustness

While the empirical risk minimization framework has been
very successful and often leads to excellent generalization on
the unperturbed test examples, it has the significant limitation
that it does not guarantee good performance on examples which
are carefully perturbed to fool the model (Goodfellow, Shlens,
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& Szegedy, 2014; Szegedy et al., 2013). That is, the empirical
risk minimization framework suffers from a lack of robustness to
adversarial attacks.

Madry et al. (2017) proposed an optimization view of ad-
versarial robustness, in which the adversarial robustness of a
model is defined as a min–max problem. Using this view, the
parameters θ of a function f are learned by minimizing ρ(θ ) as
described in Eq. (1). S defines a region of points around each
example, which is typically selected so that it only contains
visually imperceptible perturbations.

min
θ
ρ(θ ), where ρ(θ ) = E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)
]

(1)

Adversarial attacks can be broadly categorized into two cate-
gories: Single-step attacks and Multi-step attacks. We evaluated
the performance of our model as a defense against the most pop-
ular and well-studied adversarial attack from each of these cate-
gories. Firstly, we consider the Fast Gradient Sign Method (Good-
fellow et al., 2014) which is a single step and can still be effective
against many networks. Secondly, we consider the projected gra-
dient descent attack (Kurakin et al., 2016b) which is a multi-step
attack. It is slower than FGSM as it requires many iterations, but
has been shown to be a much stronger attack (Madry et al., 2017).
We briefly describe these two attacks as follows:

Fast Gradient Sign Method (FGSM). The Fast Gradient Sign
Method (Goodfellow et al., 2014) produces ℓ∞ bounded adver-
saries by the following the sign of the gradient based pertur-
bation. This attack is cheap since it only relies on computing
the gradient once and is often an effective attack against deep
networks (Goodfellow et al., 2014; Madry et al., 2017), especially
when no adversarial defenses are employed.

x̃ = x+ ε sgn(∇xL(θ, x, y)). (2)

Projected Gradient Descent (PGD). The projected gradient
descent attack (Madry et al., 2017), sometimes referred to as
FGSMk, is a multi-step extension of the FGSM attack characterized
as follows:

xt+1 = Πx+S
(
xt + α sgn(∇xL(θ, x, y))

)
. (3)

initialized with x0 as the clean input x. S formalizes the manipu-
lative power of the adversary.Π refers to the projection operator,
which in this context means projecting the adversarial example
back onto the region within an S radius of the original data point,
after each step of size α in the adversarial attack.

3.3. Gradient obfuscation by adversarial defenses

Many approaches have been proposed as a defense against
adversarial attacks. A significant challenge with evaluating de-
fenses against adversarial attacks is that many attacks rely upon
a network’s gradient. The defense methods which reduce the
quality of this gradient, either by making it flatter or noisier can
lead to methods which lower the effectiveness of gradient-based
attacks, but which are not actually robust to adversarial exam-
ples (Athalye, Engstrom, Ilyas, & Kwok, 2017; Papernot, McDaniel,
Sinha, & Wellman, 2016). This process, which has been referred
to as gradient masking or gradient obfuscation, must be analyzed
when studying the strength of an adversarial defense.

One method for examining the extent to which an adversarial
defense gives deceptively good results as a result of gradient
obfuscation relies on the observation that black-box attacks are
a strict subset of white-box attacks, so white-box attacks should
always be at least as strong as black-box attacks. If a method
reports much better defense against white-box attacks than the
black-box attack, it suggests that the selected white-box attack
is underpowered as a result of the gradient obfuscation. Another

test for gradient obfuscation is to run an iterative search, such
as projected gradient descent (PGD) with an unlimited range for
a large number of iterations. If such an attack is not completely
successful, it indicates that the model’s gradients are not an
effective method for searching for adversarial images, and that
gradient obfuscation is occurring. We demonstrate successful re-
sults with Interpolated Adversarial Trainingon these sanity checks
in Section 5.2. Still another test is to confirm that iterative attacks
with small step sizes always outperform single-step attacks with
larger step sizes (such as FGSM). If this is not the case, it may
suggest that the iterative attack becomes stuck in regions where
optimization using gradients is poor due to gradient masking.
In all of our experiments for Interpolated Adversarial Training,
we found that the iterative PGD attacks with smaller step sizes
and more iterations were always stronger than the FGSM attacks
(which take a single large step) against our models, as shown
in Tables 2–7.

3.4. Adversarial training

Adversarial training (Goodfellow et al., 2014) encompasses
crafting adversarial examples and using them during training
to increase robustness against unseen adversarial examples. To
scale adversarial training to large datasets and large models, often
the adversarial examples are crafted using the fast single step
methods such as FGSM. However, adversarial training with fast
single step methods remains vulnerable to adversarial attacks
from a stronger multi-step attack such as PGD. Thus, in this work,
we consider adversarial training with PGD.

4. Interpolated adversarial training

We propose Interpolated Adversarial Training(IAT), which trains
on interpolations of adversarial examples along with interpola-
tions of unperturbed examples. We use the techniques of Mixup
(Zhang et al., 2017) and Manifold Mixup (Verma et al., 2019)
as ways of interpolating examples. Learning is performed in the
following four steps when training a network with Interpolated
Adversarial Training. In the first step, we compute the loss from an
unperturbed (non-adversarial) batch (with interpolations based
on either Mixup or Manifold Mixup). In the second step, we gen-
erate a batch of adversarial examples using an adversarial attack
(such as Projected Gradient Descent (PGD) (Madry et al., 2017) or
Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014)). In
the third step, we train against these adversarial examples with
the original labels, with interpolations based on either Mixup or
Manifold Mixup. In the fourth step, we obtain the average of
the loss from the unperturbed batch and the adversarial batch
and update the network parameters using this loss. Note that
following Kurakin, Goodfellow, and Bengio (2016a), Tsipras et al.
(2018), we use both the unperturbed and adversarial samples
to train the model Interpolated Adversarial Trainingand we use it
in our baseline adversarial training models as well. The detailed
algorithm is described in Algorithm Block 1.

As Interpolated Adversarial Trainingcombines adversarial train-
ing with either Mixup (Zhang et al., 2017) or Manifold Mixup
(Verma et al., 2019), we summarize these supporting methods
in more detail. The Mixup method (Zhang et al., 2017) consists
of drawing a pair of samples from the dataset (xi, yi) ∼ pD and
(xj, yj) ∼ pD and then taking a random linear interpolation in the
input space x̃ = λxi+(1−λ)xj. This λ is sampled randomly on each
update (typically from a Beta distribution). Then the network fθ
is run forward on the interpolated input x̃ and trained using the
same linear interpolation of the losses L = λL(fθ (x̃), yi) + (1 −
λ)L(fθ (x̃), yj). Here L refers to a loss function such as cross entropy.
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Algorithm 1 The Interpolated Adversarial Training Algorithm

Require: fθ : Neural Network
Require: Mix: A way of combining examples (Mixup or Manifold Mixup )
Require: D: Data samples
Require: N: Total number of updates
Require: Loss: A function which runs the neural network with Mix applied

for k = 1, . . . ,N do
Sample (xi, yi) ∼ D ▷ Sample batch
Lc = Loss(fθ ,Mix, xi, yi) ▷ Compute loss on unperturbed data

using Mixup (or Manifold Mixup)
x̃i = attack(xi, yi) ▷ Run attack (e.g. PGD as in Madry et al., 2017)
La = Loss(fθ ,Mix, x̃i, yi) ▷ Compute adversarial loss on adversarial

samples using Mixup (or Manifold Mixup)
L = (Lc + La)/2 ▷ Combined loss
g ← ∇θL ▷ Gradients of the combined Loss
θ ← Step(θ, gθ ) ▷ Update parameters using gradients g (e.g. SGD )

end for

The Manifold Mixup method (Verma et al., 2019) is closely re-
lated to Mixup from a computational perspective, except that the
layer at which interpolation is performed, is selected randomly
on each training update.

Adversarial training consists of generating adversarial exam-
ples and training the model to give these points the original
label. For generating these adversarial examples during training,
we used the Projected Gradient Descent (PGD) attack, which is
also known as iterative FGSM. This attack consists of repeatedly
updating an adversarial perturbation by moving in the direction
of the sign of the gradient multiplied by some step size, while
projecting back to an L∞ ball by clipping the perturbation to
maximum ϵ. Both ϵ, the step size to move on each iteration, and
the number of iterations are hyperparameters for the attack.

Why Interpolated Adversarial Traininghelps to improve the
standard test accuracy: We present two arguments for why
Interpolated Adversarial Trainingcan improve standard test accu-
racy:

Increasing the training set size: Raghunathan et al. (2019)
have shown that adversarial training could require more training
samples to attain a higher standard test accuracy. Mixup (Zhang
et al., 2017) and Manifold Mixup (Verma et al., 2019) can be seen
as the techniques that increase the effective size of the training
set by creating novel training samples. Hence these techniques
can be useful in improving standard test accuracy.

Information compression: Shwartz-Ziv and Tishby (2017)
and Tishby and Zaslavsky (2015) have shown a relationship be-
tween compression of information in the features learned by deep
networks and generalization. This relates the degree to which
deep networks compress the information in their hidden states to
bounds on generalization, with a stronger bound when the deep
networks have stronger compression.

To evaluate the effect of adversarial training on compression
of the information in the features, we performed an experiment
where we take the representations learned after training, and
study how well these frozen representations are able to success-
fully predict fixed random labels. If the model compresses the
representations well, then it will be harder to fit random labels.
In particular, we ran a small 2-layer MLP on top of the learned
representations to fit random binary labels. In all cases we trained
the model with the random labels for 200 epochs with the same
hyperparameters. For fitting 10000 randomly labeled examples,

Table 1
Soft Rank (sum of singular values divided by largest singular value)
of the representations (following first layer) from models trained
with various methods. We report separately per MNIST class. FGSM
and PGD refer to models trained with adversarial training. We note
that FGSM slightly increases the numerical rank, but PGD (a much
stronger attack) often dramatically increases it.
Class Baseline Manifold mixup FGSM PGD

0 2.87 2.14 3.34 3.91
1 2.90 1.91 2.92 4.15
2 3.74 2.64 4.29 6.51
3 3.27 2.66 4.29 5.48
4 3.18 2.41 3.58 4.70
5 3.72 2.74 4.82 6.75
6 3.22 2.26 3.66 5.90
7 3.43 2.39 3.66 4.42
8 3.09 2.78 4.50 6.84
9 3.20 2.46 3.71 5.19

we achieved accuracy of: 92.08% (Baseline) and 97.00% (PGD
Adversarial Training): showing that adversarial training made the
representations much less compressed.

Manifold Mixup (Verma et al., 2019) has shown to learn more
compressed features. Hence, employing Manifold Mixup with
the adversarial training might mitigate the adverse effect of the
adversarial training. Using the same experimental setup as above,
we achieved accuracy of : 64.17% (Manifold Mixup) and 71.00%
(IAT using Manifold Mixup).

These results suggest that adversarial training causes the
learned representations to be less compressed which may be the
reason for poor standard test accuracy. At the same time, IAT with
Manifold Mixup significantly reduces the ability of the model to
learn less compressed features, which may potentially improve
standard test accuracy.

To provide further evidence for a difference in the compres-
sion characteristics, we trained 5-layer fully-connected models on
MNIST and considered a bottleneck layer of 30 units directly fol-
lowing the first hidden layer. We then performed singular value
decomposition on the per-class representations and looked at the
spectrum of singular values (Fig. 1 and Table 1). We found that
PGD dramatically increased the number of singular values with
large values relative to a baseline model (FGSM was somewhere
in-between baseline and PGD).
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Fig. 1. Adversarial Training (especially with PGD) training makes representations have substantially more directions of significant variability (both when measured
in an absolute sense and when measured relative to the largest singular value).

5. Experiments

5.1. Adversarial robustness

The goal of our experiments is to provide empirical support
for our two major assertions: that adversarial training hurts per-
formance on unperturbed data (which is consistent with what
has been previously observed in Madry et al., 2017; Tsipras et al.,
2018; Zhang et al., 2019a) and to show that this difference can
be reduced with our Interpolated Adversarial Trainingmethod. Fi-
nally, we want to show that Interpolated Adversarial Trainingis
adversarially robust and does not suffer from gradient obfusca-
tion (Athalye et al., 2018).

In our experiments we always perform adversarial training
using a 7-step PGD attack but we evaluate on a variety of attacks:
FGSM, PGD (with a varying number of steps and hyperparame-
ters), the Carlini–Wagner attack (Carlini & Wagner, 2016), and the
AutoAttack (Croce & Hein, 2020).

Architecture and Datasets: We conducted experiments on
competitive networks to demonstrate that Interpolated Adversar-
ial Trainingcan improve generalization performance without sac-
rificing adversarial robustness. We used two architectures : First,
the WideResNet architecture proposed in He, Zhang, Ren, and
Sun (2015), Zagoruyko and Komodakis (2016) and used in Madry
et al. (2017) for adversarial training2. Second, the PreActResnet18
architecture which is a variant of the residual architecture of He
et al. (2015). We used SGD with momentum optimizer in our
experiments. We ran the experiments for 200 epochs with initial
learning rate is 0.1 and it is annealed by a factor of 0.1 at epoch
100 and 150. We use the batch-size of 64 for all the experiments.

We used three benchmark datasets (CIFAR10, CIFAR100 and
SVHN), which are commonly used in the adversarial robustness

2 While Madry et al. (2017) use WRN32-10 architecture, we use the standard
WRN28-10 architecture, so our results are not directly comparable to their
results.

literature (Croce & Hein, 2020; Madry et al., 2017). Both CIFAR-
10 and CIFAR-100 datasets consist of 60000 color images each of
size 32 × 32, split between 50K training and 10K test images.
The CIFAR-10 dataset has ten classes, which include pictures of
cars, horses, airplanes and deer. The CIFAR-100 dataset has one
hundred classes grouped into 20 superclasses such as people,
trees, vehicles, etc. The SVHN dataset consists of 73257 training
samples and 26032 test samples each of size 32 × 32. Each
example is a close-up image of a house number (the ten classes
are the digits from 0–9).

Data Pre-Processing and Hyperparameters: The data aug-
mentation and pre-processing is exactly the same as in Madry
et al. (2017). Namely, we use random cropping and horizontal flip
for CIFAR10 and CIFAR100. For SVHN, we use random cropping.
We use the per-image standardization for pre-processing. For
adversarial training, we generated the adversarial examples using
a PGD adversary using a ℓ∞ projected gradient descent with 7
steps of size 2, and ϵ = 8. For the adversarial attack, we used an
FGSM adversary with ϵ = 8 and a PGD adversary with 7 steps
and 20 steps of size 2 and ϵ = 8.

In the Interpolated Adversarial Trainingexperiments, for gen-
erating the adversarial examples, we used PGD with the same
hyper-parameters as described above. For performing interpola-
tion, we used either Manifold Mixup with α = 2.0 as suggested
in Verma et al. (2019) or Mixup with alpha = 1.0 as suggested
in Zhang et al. (2017). For Manifold Mixup, we performed the
interpolation at a randomly chosen layer from the input layer, the
output of the first resblock or the output of the second resblock,
as recommended in Verma et al. (2019).

Results: The results for CIFAR10, CIFAR100, SVHN datasets are
presented in Tables 2–3, 4–5, 6–7, respectively. We observe that
IAT consistently improves standard test error relative to models
using just adversarial training, while maintaining adversarial ro-
bustness at the same level. For example, in Table 2, we observe
that the baseline model (no adversarial training) has standard
test error of 4.43% whereas PGD adversarial increase the standard
test error to 12.32%: a relative increase of 178% in standard test
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Table 2
CIFAR10 results (error in %) to white-box attacks on WideResNet28-10 evaluated on the test data. The rows correspond
to the training mechanism and columns correspond to adversarial attack methods. The upper part of the Table consists of
training mechanisms that do not employ any explicit adversarial defense. The lower part of the Table consist of methods
that employ adversarial training as a defense mechanisma . For PGD, we used a ℓ∞ projected gradient descent with size
α = 2, and ϵ = 8. For FGSM, we used ϵ = 8. Our method of Interpolated Adversarial Trainingimproves standard test error in
comparison to adversarial training (refer to the first column) and maintains the adversarial robustness on the same level
as that of adversarial training. The method of Cubuk et al. (2018) is close to our method in terms of standard test error
and adversarial robustness however it needs several orders of magnitude more computation (it trains 9360 models) for its
neural architecture search.
Training Adversary

No attack FGSM PGD (7 steps) PGD (20 steps)

Baseline (Madry et al., 2017) 4.80 67.3 95.9 96.5
Baseline 4.43 ± 0.09 56.92 ± 0.79 99.83 ± 0.02 100.0 ± 0.0
Mixup 3.25 ± 0.11 32.63 ± 0.88 92.75 ± 0.61 99.27 ± 0.03
Manifold Mixup 3.15 ± 0.09 38.41 ± 2.64 89.77 ± 3.68 98.34 ± 1.03
Neural Architecture Search (Cubuk
et al., 2018)

6.80 36.4 49.9 –

PGD (7 steps) (Madry et al., 2017) 12.70 43.90 50.00 54.20
PGD (7 steps) (our code) 12.32 ± 0.14 41.87 ± 0.04 50.97 ± 0.15 54.87 ± 0.16
Interpolated Adversarial Training
(with Mixup)

6.45 ± 0.52 33.83 ± 0.86 49.88 ± 0.55 54.89 ± 1.37

Interpolated Adversarial Training
(Manifold Mixup)

6.48 ± 0.30 35.18 ± 0.30 50.08 ± 0.48 55.18 ± 0.18

aSince the objective of this work is to demonstrate the effectiveness the Interpolated Adversarial Trainingover adversarial
training for improving the standard test error as well as maintaining the adversarial robustness to the same levels, we
highlight the best results in the lower part of the Table: the methods in the upper part of the Table have better standard
test error (‘‘No-attack’’ column), but their adversarial robustness is very poor against strong adversarial attacks (PGD, 7 steps
and 20 steps).

Table 3
CIFAR10 results (error in %) to white-box attacks on PreActResnet18. Rest of the details are same as Table 2.
Training Adversary

No attack FGSM PGD (7 steps) PGD (20 steps)

Baseline 5.88 ± 0.16 78.11 ± 1.31 99.85 ± 0.18 100.0 ± 0.0
Mixup 4.42 ± 0.03 38.32 ± 0.76 97.48 ± 0.15 99.88 ± 0.02
Manifold Mixup 4.10 ± 0.09 37.57 ± 1.31 88.50 ± 3.20 97.80 ± 1.02

PGD (7 steps) 14.12 ± 0.06 48.56 ± 0.14 57.76 ± 0.19 61.00 ± 0.24
Interpolated Adversarial Training
(with Mixup)

10.12 ± 0.33 40.71 ± 0.65 55.43 ± 0.45 61.62 ± 1.01

Interpolated Adversarial Training
(Manifold Mixup)

10.30 ± 0.15 42.48 ± 0.29 55.78 ± 0.67 61.80 ± 0.51

Table 4
CIFAR100 results (error in %) to white-box attacks on WideResNet28-10 evaluated on the test data. The rows correspond to
the training mechanism and columns correspond to adversarial attack methods. For PGD, we used a ℓ∞ projected gradient
descent with size α = 2, and ϵ = 8. For FGSM, we used ϵ = 8. Our method of Interpolated Adversarial Trainingimproves
standard test error and adversarial robustness.
Training Adversary

No attack FGSM PGD (7 steps) PGD (20 steps)

Baseline 22.23 ± 0.31 67.26 ± 0.42 76.08 ± 0.35 80.03 ± 0.58
Mixup 19.37 ± 0.09 61.97 ± 0.31 88.12 ± 1.77 93.77 ± 1.64
Manifold Mixup 18.75 ± 0.13 64.76 ± 0.29 93.42 ± 2.05 97.21 ± 1.3

PGD (7 steps) 40.80 ± 0.64 71.95 ± 0.47 77.21 ± 0.43 79.36 ± 0.49
Interpolated Adversarial Training
(with Mixup)

33.43 ± 0.30 67.47 ± 0.14 74.43 ± 0.14 77.7 ± 0.1

Interpolated Adversarial Training
(Manifold Mixup)

33.27 ± 0.55 67.93 ± 0.48 76.21 ± 0.61 79.80 ± 0.59

error. With Interpolated Adversarial Training, the standard test
error is reduced to 6.45%, a relative increase of only 45% in stan-
dard test error as compared to the baseline, while the degree of
adversarial robustness remains approximately unchanged, across
varies type of adversarial attacks. We also considered using early
stopping technique (Rice, Wong, & Kolter, 2020) to prevent robust
overfitting. We found that early stopping reduced a PGD (20
steps) test error of the model trained with IAT on CIFAR-10 from
61.62% to 58.58%, albeit, with a slight increase of the standard
test error from 10.12% to 10.62%. Thus, early stopping can be
considered complementary to our method and can be used to
further improve the adversarial robustness of IAT trained models.

We additionally ran with the challenging Carlini–Wagner (Car-
lini & Wagner, 2016) attack and the ensemble-based AutoAt-
tack Croce & Hein, 2020 on CIFAR-10. With the Carlini–Wagner
attack, the IAT trained network had consistently improved ro-
bustness, with test error of 28.61% on the un-targeted attack and
29.53% on the targeted attack. By contrast, the baseline model
had higher test errors of 34.42% on the un-targeted attack and
33.37% on the targeted attack. For the L-inf version of Auto-
Attack, IAT slightly increased the test error from 62.56% to 66.35%.
For the L2 version of the attack, IAT improved the test error from
43.90% to 41.57%. We also compared IAT with Feature Scattering-
based Adversarial Training (FSAT) (Zhang & Wang, 2019) and
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Table 5
CIFAR100 results (error in %) to white-box attacks on PreActResNet18 evaluated on the test data. Rest of the details
are same as Table 4.
Training Adversary

No attack FGSM PGD (7 steps) PGD (20 steps)

Baseline 25.0 ± 0.36 89.17 ± 0.28 99.92 ± 0.03 100.0 ± 0.0
Mixup 23.4 ± 0.27 75.26 ± 0.55 99.39 ± 0.03 99.94 ± 0.01
Manifold Mixup 22.36 ± 0.26 74.46 ± 0.25 99.06 ± 0.23 99.9 ± 0.01

PGD (7 steps) 43.49 ± 0.23 77.22 ± 0.35 82.01 ± 0.23 83.57 ± 0.38
Interpolated Adversarial Training
(with Mixup)

37.82 ± 0.03 72.27 ± 0.52 79.21 ± 0.53 81.75 ± 0.57

Interpolated Adversarial Training
(Manifold Mixup)

39.48 ± 0.49 72.52 ± 0.55 79.12 ± 0.43 81.17 ± 0.49

Table 6
SVHN results (error in %) to white-box attacks on WideResNet28-10 using the 26032 test examples. The rows
correspond to the training mechanism and columns correspond to adversarial attack methods. For PGD, we used
a ℓ∞ projected gradient descent with step-size α = 2, and ϵ = 8. For FGSM, we used ϵ = 8. Our method of
Interpolated Adversarial Trainingimproves standard test error and adversarial robustness.
Training Adversary

No attack FGSM PGD (7 steps) PGD (20 steps)

Baseline 3.07 ± 0.03 39.36 ± 1.16 94.00 ± 0.65 98.59 ± 0.13
Mixup 2.59 ± 0.08 26.93 ± 1.96 90.18 ± 3.43 98.78 ± 0.79
Manifold Mixup 2.46 ± 0.01 29.74 ± 0.99 77.49 ± 3.82 94.77 ± 1.34

PGD (7 steps) 6.14 ± 0.13 29.10 ± 0.72 46.97 ± 0.49 53.47 ± 0.52
Interpolated Adversarial Training
(with Mixup)

3.47 ± 0.11 22.08 ± 0.15 45.74 ± 0.11 58.40 ± 0.46

Interpolated Adversarial Training
(Manifold Mixup)

3.38 ± 0.22 22.30 ± 1.07 42.61 ± 0.40 52.79 ± 0.22

Table 7
SVHN results (error in %) to white-box attacks on PreActResnet18. Rest of the details are same as Table 6.
Training Adversary

No attack FGSM PGD (7 steps) PGD (20 steps)

Baseline 3.47 ± 0.09 50.73 ± 0.22 96.37 ± 0.12 98.61 ± 0.06
Mixup 2.91 ± 0.06 31.91 ± 0.59 98.43 ± 0.85 99.95 ± 0.02
Manifold Mixup 2.66 ± 0.02 29.86 ± 3.60 72.47 ± 1.82 94.00 ± 0.96

PGD (7 steps) 5.27 ± 0.13 26.78 ± 0.62 47.00 ± 0.22 54.40 ± 0.42
Interpolated Adversarial Training
(with Mixup)

3.63 ± 0.05 23.57 ± 0.64 47.69 ± 0.22 54.62 ± 0.18

Interpolated Adversarial Training
(Manifold Mixup)

3.61 ± 0.22 24.95 ± 0.92 46.62 ± 0.28 54.13 ± 1.08

TRADES (Zhang, Yu, Jiao, Xing, Ghaoui, & Jordan, 2019b). We
found that FSAT and TRADES had higher standard test errors
of 10.49% and 27.5%, than IAT, which had a standard test error
of 10.12%. We also compared the robustness of IAT, FSAT and
TRADES trained models to PGD (7 steps) and AutoAttack. We
found that the IAT trained model had lower robustness to PGD
(7 steps) attack than FSAT and TRADES, with IAT having a PGD
(7 steps) error of 55.43%, FSAT having a PGD (7 steps) error
of 49.48%, and TRADES having a PGD (7 steps) error of 55.02%.
Against AutoAttack, IAT improved robustness compared to FSAT,
with IAT having a robust test error of 66.35% and FSAT having
a robust test error of 67.34%. The TRADES trained model had a
robust test error of 59.65% to AutoAttack. Overall, IAT improved
standard test error while still achieving robustness comparable to
state-of-the-art methods, such as FSAT and TRADES.

5.2. Transfer attacks

As a sanity check that Interpolated Adversarial Trainingdoes
not suffer from gradient obfuscation (Athalye et al., 2018), we
performed a transfer attack evaluation on the CIFAR-10 dataset
using the PreActResNet18 architecture. In this type of evaluation,
the model which is used to generate the adversarial examples is
different from the model used to evaluate the attack. As these
transfer attacks do not use the target model’s parameters to

compute the adversarial example, they are considered black-box
attacks. In our evaluation (Table 8) we found that black-box trans-
fer were always substantially weaker than white-box attacks,
hence Interpolated Adversarial Trainingdoes not suffer from gradi-
ent obfuscation (Athalye et al., 2018). Additionally, in Table 9, we
observe that increasing ϵ results in 100% success of attack, pro-
viding added evidence that Interpolated Adversarial Trainingdoes
not suffer from gradient obfuscation (Athalye et al., 2018).

5.3. Varying the number of iterations and ϵ for iterative attacks

To further study the robustness of Interpolated Adversarial
Training, we studied the effect of changing the number of attack
iterations and the range of the adversarial attack ϵ. Some ad-
versarial defenses (Engstrom, Ilyas, & Athalye, 2018) have been
found to have increasing vulnerability when exposed to attacks
with a large number of iterations. We studied this (Table 10) and
found that both adversarial training and Interpolated Adversarial
Traininghave robustness which declines only slightly with an
increasing number of steps, with almost no difference between
the 100 step attack and the 1000 step attack. Additionally we
varied the ϵ to study if Interpolated Adversarial Trainingwas more
or less vulnerable to attacks with ϵ different from what the model
was trained on. We found that Interpolated Adversarial Trainingis
somewhat more robust when using smaller ϵ and slightly less
robust when using larger ϵ (Table 9).
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Table 8
Transfer Attack evaluation of Interpolated Adversarial Trainingon CIFAR-10 reported in terms of error rate (%). Here
we consider three trained models, using normal adversarial training (Adv), IAT with mixup (IAT-M), and IAT with
manifold mixup (IAT-MM). On each experiment, we generate adversarial examples only using the model listed in
the column and then evaluate these adversarial examples on the target model listed in the row. Note that in all
of our experiments white box attacks (where the attacking model and target models are the same) led to stronger
attacks than black box attacks, which is the evidence that our approach does not suffer from gradient obfuscation
(Athalye et al., 2018).
ϵ 2 5 10

Target Attack

Adv. Train IAT M IAT MM Adv. Train IAT M IAT MM Adv. Train IAT M IAT MM

Adv. Train 28.54 21.11 21.87 43.68 28.10 29.21 74.66 44.39 48.14
IAT-M 17.14 25.57 18.07 25.02 45.03 28.85 48.74 78.49 51.35
IAT-MM 18.57 18.74 25.71 26.84 26.7 43.23 50.43 48.11 77.05

Table 9
Robustness on CIFAR-10 PreActResNet18 (Error %) with increasing ϵ and a fixed number of iterations (20).
Interpolated Adversarial Trainingand adversarial training both have similar degradation in robustness with
increasing ϵ, but Interpolated Adversarial Trainingtends to be slightly better for smaller ϵ and adversarial
training is slightly better for larger ϵ.
Model Attack ϵ

1 2 10 15 20 25 50

Adversarial Training 21.44 28.54 74.66 92.43 98.53 99.77 100.0
IAT (Mixup) 17.90 25.57 78.49 93.73 98.54 99.72 100.0
IAT (Manifold Mixup) 18.24 25.71 77.05 93.31 98.67 99.85 100.0

Table 10
Robustness on CIFAR-10 PreActResNet-18 (Error %) with fixed ϵ = 5 and a
variable number of iterations used for the adversarial attack.
Model Num. iterations

5 10 20 50 100 1000

Adversarial Training 42.35 43.44 43.68 43.76 43.80 43.83
IAT (Mixup) 41.29 44.23 45.03 45.31 45.42 45.56
IAT (Manifold Mixup) 40.74 42.72 43.23 43.43 43.51 43.60

Table 11
Clean and Adversarial Test Errors on CIFAR-10 test data as a function of
weighting of clean and adversarial losses during IAT training. For PGD, we used
a ℓ∞ projected gradient descent with 7 steps, step size α = 2, and ϵ = 8.
Weighting Model

Vanilla (No
attack)

IAT (No
attack)

Vanilla
(PGD)

IAT
(PGD)

20% Lc , 80% La 15.78% 11.24% 57.92% 55.41%
40% Lc , 60% La 14.79% 10.63% 58.02% 55.44%
50% Lc , 50% La 14.12% 10.12% 57.76% 55.43%
60% Lc , 40% La 14.15% 9.89% 58.42% 56.48%
80% Lc , 20% La 12.2% 10.30% 58.56% 64.42%

5.4. Analysis of weighting of loss terms

IAT introduces a hyperparameter for the weighting of the clean
loss and the adversarial loss, which by default can be set to an
even weighting of both terms. We found that when we weighted
the clean loss more, we had improved clean test accuracy and
when we weighted the adversarial loss more, we had improved
adversarial robustness. These results are shown in Table 11.

6. Theoretical analysis

In this section, we establish mathematical properties of IAT
with Mixup. We begin in Section 6.1 with additional notation
and then analyze the effect of IAT on adversarial robustness in

Section 6.2. Moreover, we discuss the effects of IAT on generaliza-
tion in Section 6.3 by showing how ICT can reduce overfitting and
lead to better generalization behaviors. The proofs of all theorems
and propositions are presented in Appendix B using a key lemma
proven in Appendix A.

6.1. Notation

In order to present our analysis succinctly, we introduce ad-
ditional notation as follows. The standard mixup loss Lc can be
written as

Lc =
1
n2

n∑
i,j=1

Eλ∼Dλ
ℓ(fθ (x̃i,j(λ)), ỹi,j(λ)), (4)

where x̃i,j(λ) = λxi + (1 − λ)xj, ỹi,j(λ) = λyi + (1 − λ)yj, and
λ ∈ [0, 1]. Here, Dλ represents the Beta distribution Beta(α, β)
with some hyper-parameters α, β > 0. Similarly, the adversarial-
mixup loss La used in IAT can be defined by

La =
1
n2

n∑
i,j=1

Eλ∼Dλ
ℓ(fθ (x̌i,j(λ)), ỹi,j(λ)), (5)

where δ̂i = argmaxδi:∥δi∥ρ≤ϵ ℓ(fθ (xi + δi), yi), x̂i = xi + δ̂i, and
x̌i,j(λ) = λx̂i+(1−λ)x̂j. Using these two types of losses, the whole
IAT loss is defined by

L =
Lc + La

2
. (6)

In this section, we focus on the following family of loss functions:
ℓ(q, y) = h(q)− yq, for some twice differentiable function h. This
family of loss functions ℓ includes many commonly used losses,
including the logistic loss and the cross-entropy loss.

Given a set F of functions x ↦→ f (x), the Rademacher com-
plexity (Bartlett & Mendelson, 2002; Mohri, Rostamizadeh, &
Talwalkar, 2012) of the set ℓ◦F = {(x, y) ↦→ ℓ(f (x; θ ), y) : f ∈ F}
can be defined by

Rn(ℓ ◦ F) := ES,σ

[
sup
f∈F

1
n

n∑
i=1

σiℓ(f (xi), yi)

]
,
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Fig. 2. The comparison of the distribution Dλ of the Mixup coefficient λ and the distribution D̃λ of λ̃ in the error term E.

where S = ((xi, yi))ni=1. Here, σ1, . . . , σn are independent uniform
random variables taking values in {−1, 1}. We denote by D̃λ the
uniform mixture of two Beta distributions, α

α+β
Beta(α + 1, β) +

β

α+β
Beta(β + 1, α). We let Dx̂ be the empirical distribution of

the perturbed training samples (x̂1, . . . , x̂n), and define Dx to be
the empirical distribution of the training samples (x1, . . . , xn). Let
cos(a, b) be the cosine similarity of two vector a and b.

6.2. The effect of IAT on robustness

In this subsection, we study how adding Mixup to adversarial
training affects the robustness of the model by analyzing the
adversarial-mixup loss La used in IAT. This subsection focuses on
the binary cross-entropy loss ℓ by setting h(z) = log(1+ ez) and
y ∈ {0, 1}, whereas the next section considers a more general
setting. We define a set Θ of parameter vectors by

Θ =

{
θ ∈ Rd

: yi(fθ (xi + δ̂i))+ (yi − 1)(fθ (xi + δ̂i)) ≥ 0

for all i = 1, . . . , n
}
.

Note that this setΘ contains the set of all parameter vectors with
correct classifications of training points (before Mixup) as

Θ ⊇ {θ ∈ Rd
: 1{fθ (xi + δ̂i) ≥ 0} = yi for all i = 1, . . . , n}.

Therefore, the condition of θ ∈ Θ is satisfied when the deep
neural network classifies all labels correctly for the training data
with perturbations before Mixup. As the training error (although
not training loss) becomes zero in finite time in many practical
cases, the condition of θ ∈ Θ is satisfied in finite time in
many practical cases. Accordingly, we study the effect of IAT on
robustness in the regime of θ ∈ Θ .

Theorem 1 shows that the adversarial-mixup loss La is ap-
proximately an upper bound of the adversarial loss with the
adversarial perturbations of xi ↦→ xi+ δ̂i+δmix

i where ∥δi∥ρ ≤ ϵ is
the standard adversarial perturbation and ∥δi∥2 ≤ ϵmix

i is the non-
standard additional perturbation due to IAT. In other words, IAT
is approximately minimizing the upper bound of the adversarial
loss with additional adversarial perturbation ∥δi∥2 ≤ ϵmix

i with
data-dependent radius ϵmix

i for each i ∈ {1, . . . , n}. Therefore,
adding Mixup to adversarial training (i.e., IAT) does not decrease
the effect of the original adversarial training on the robustness
approximately (where the approximation error is in the order of
(1− λ̃)3 as discussed below). This is non-trivial because, without
Theorem 1, it is uncertain whether or not adding Mixup reduces

the effect of adversarial training in terms of the robustness. More-
over, Theorem 1 shows that IAT further improves the robustness
depending on the values of data-dependent radius ϵmix

i when
compared to standard adversarial training without Mixup. These
are consistent with our experimental observations.

Theorem 1. Let θ ∈ Θ be a point such that ∇fθ (xi + δ̂i) and
∇

2fθ (xi + δ̂i) exist for all i = 1, . . . , n. Assume that fθ (xi + δ̂i) =
∇fθ (xi + δ̂i)⊤(xi + δ̂i) and ∇2fθ (xi + δ̂i) = 0 for all i ∈ {1, . . . , n}.
Suppose that Er∼Dx̂ [r] = 0 and ∥xi + δ̂i∥2 ≥ cx

√
d for all i ∈

{1, . . . , n}. Then, there exists a pair (ϕ, ϕ̄) such that limz→0 ϕ(z),
limz→0 ϕ̄(z) = 0, and

La ≥
1
n

n∑
i=1

max
∥δmix

i ∥2≤ϵ
mix
i

ℓ(fθ (xi + δ̂i + δmix
i ), yi)+ E1 + E2,

where ϵmix
i := RicxEλ[(1− λ)]

√
d, Ri := | cos(∇fθ (xi + δ̂i), xi + δ̂i)|,

E1 := Eλ̃∼D̃λ
[(1 − λ̃)2ϕ(1 − λ̃)], and E2 := Eλ̃∼D̃λ

[(1 − λ̃)]2ϕ̄
(Eλ̃∼D̃λ

[(1− λ̃)]).

The assumption of fθ (z) = ∇fθ (z)⊤z and ∇2fθ (z) = 0 in
Theorem 1 is satisfied, for example, by linear models as well as
deep neural networks with ReLU activation function and max-
pooling. In Theorem 1, the approximation error terms E1 and E2
are in the order of (1 − λ̃)3 (since limz→0 ϕ(z), limz→0 ϕ̄(z) = 0),
and λ̃ tends to be close to one since λ̃ ∼ D̃λ where D̃λ is the
uniform mixture of two Beta distributions, α

α+β
Beta(α + 1, β) +

β

α+β
Beta(β + 1, α), given the distribution of Dλ = Beta(α, β) for

Mixup coefficient λ. For example, if the IAT algorithm uses the
Beta distribution Dλ = Beta(0.5, 0.5) for Mixup, then we have
D̃λ = Beta(1.5, 0.5), for which λ̃ ∼ D̃λ tends to be close to one as
illustrated in Fig. 2. Therefore, the approximation error terms E1
and E2 tend to be close to zero.

6.3. The effect of IAT on generalization

In this subsection, we mathematically analyze the effect of IAT
on generalization properties. We start in Section 6.3.1 with th
general setting with arbitrary h and fθ , and prove a generalization
bound for IAT loss. In Section 6.3.2, we then make assumptions
on h and fθ and study the regularization effects of IAT.

6.3.1. Generalization bounds
The following theorem presents a generalization bound for the

IAT loss Lc+La
2 — the upper bound on the difference between the
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expected error on unseen data and the IAT loss, Ex,y[ℓ(f (x), y)] −
Lc+La

2 :

Theorem 2. Let ρ ≥ 1 be a real number and F be a set of maps
x ↦→ f (x). Assume that the function |ℓ(q, y)− ℓ(q′, y)| ≤ τ for any
q, q′ ∈ {f (x+δ) : f ∈ F, x ∈ X , ∥δ∥ρ ≤ ϵ} and y ∈ Y . Then, for any
δ > 0, with probability at least 1 − δ over an i.i.d. draw of n i.i.d.
samples ((xi, yi))ni=1, the following holds: for all maps f ∈ F , there
exists a function ϕ : R→ R such that

Ex,y[ℓ(f (x), y)] −
Lc + La

2
(7)

≤ 2Rn(ℓ ◦ F)+ 2τ

√
ln(1/δ)

2n
−

Q (f )
2

− EX

[
3∑

k=1

Gk(X̂,Dx̂)+ Gk(X,Dx)
2

]
− E1,

where limq→0 ϕ(q) = 0, X := (x1, . . . , xn), X̂ := (x̂1, . . . , x̂n),

Q (f ) :=
1
n
ES

[
n∑

i=1

(
max

δi:∥δi∥ρ≤ϵ
ℓ(f (xi + δi), yi)− ℓ(f (xi), yi)

)]
≥ 0,

G1(X̂,Dx̂) :=
Eλ∼D̃λ

[1− λ]
n

n∑
i=1

(h′(f (x̂i))−yi)∇f (x̂i)⊤Er∼Dx̂ [r− x̂i],

G2(X̂,Dx̂) :=
Eλ∼D̃λ

[(1− λ)2]
2n

n∑
i=1

h′′(f (x̂i))∇f (x̂i)⊤Er∼Dx̂

[(r − x̂i)(r − x̂i)⊤]∇f (x̂i),

G3(X̂,Dx̂) :=
Eλ∼D̃λ

[(1− λ)2]
2n

n∑
i=1

(h′(f (x̂i))− yi)Er∼Dx̂

[(r − x̂i)∇2f (x̂i)(r − x̂i)⊤].

To understand this generalization bound further, we now com-
pare it with a generalization bound for IAT without using Mixup
on terms Lc and La. IAT without Mixup is the adversarial training
along with the standard training, which minimizes the loss of

L′ =
L′c + L′a

2
,

where

L′c =
1
n

n∑
i=1

ℓ(fθ (xi), yi), and (8)

L′a =
1
n

n∑
i=1

ℓ(fθ (xi + δ̂i), yi). (9)

The following theorem presents a generalization bound for IAT
without Mixup on terms Lc and La:

Theorem 3. Let ρ ≥ 1 be a real number and F be a set of maps
x ↦→ f (x). Assume that the function |ℓ(q, y)− ℓ(q′, y)| ≤ τ for any
q, q′ ∈ {f (x + δ) : f ∈ F, x ∈ X , ∥δ∥ρ ≤ ϵ} and y ∈ Y . Then, for
any δ > 0, with probability at least 1 − δ over an i.i.d. draw of n
i.i.d. samples ((xi, yi))ni=1, the following holds: for all maps f ∈ F ,

Ex,y[ℓ(f (x), y)]−
L′c + L′a

2
≤ 2Rn(ℓ◦F)+2τ

√
ln(1/δ)

2n
−

Q (f )
2
. (10)

By comparing Theorems 2 and 3, we can see that the benefit
of IAT with Mixup comes from the two mechanisms in terms
of generalization. The first mechanism is based on the term of
EX

[∑3
k=1

Gk(X̂,Dx̂)+Gk(X,Dx)
2

]
+ E1. If this term is positive, then IAT

with Mixup has a better generalization bound than that of IAT
without Mixup (if we suppose that the Rademacher complexity
term Rn(ℓ ◦ F) is the same for both methods). The second
mechanism is based on the model complexity term Rn(ℓ ◦F). As
the model complexity term is bounded by the norms of trained
weights (e.g., Bartlett, Foster, & Telgarsky, 2017), this term differs
for different training schemes — IAT with Mixup and IAT without
Mixup. Accordingly, we study the regularization effects of IAT on
the norms of weights in the next subsection.

6.3.2. Regularization effects
The generalization bounds in the previous subsection contain

the model complexity term, which are controlled by the norms
of the weights in the previous studies (e.g., Bartlett et al., 2017).
Accordingly, we now discuss the regularization effects of IAT
on the norms of weights. This subsection considers the models
where fθ (xi + δ̂i) = ∇fθ (xi + δ̂i)⊤(xi + δ̂i) and ∇2fθ (xi + δ̂i) = 0
for i = 1, . . . , n. This is satisfied by linear models as well as deep
neural networks with ReLU activation functions and max-pooling.
We let y ∈ {0, 1} and h(z) = log(1 + ez), which makes the loss
function ℓ to represent the binary cross-entropy loss. Define g to
be the logic function as g(z) = ez

1+ez . This definition implies that
g(z) ∈ (0, 1) for z ∈ R.

The following theorem shows that the IAT term has the ad-
ditional regularization effect on ∥∇fθ (x̂i)∥2and ∥∇fθ (x̂i)∥2Er [(r−x̂i)(r−x̂i)⊤]

.
This theorem explains the additional regularization effects of the
IAT term on the norm of weights, since ∇fθ (x̂i) = w for linear
models and ∇fθ (x̂i) = ∥WH σ̇HWH−1σ̇H−1 . . . σ̇ 1W 1

∥ for deep
neural networks with ReLU and max-pooling.

Theorem 4. Assume that fθ (xi + δ̂i) = ∇fθ (xi + δ̂i)⊤(xi + δ̂i) and
∇

2fθ (xi+ δ̂i) = 0. Then, there exists a function ϕ : R→ R such that

La =
1
n

n∑
i=1

ℓ(fθ (x̂i), yi)+C1∥∇fθ (x̂i)∥2+C2∥∇fθ (x̂i)∥2Er [(r−x̂i)(r−x̂i)⊤]
+E1,

(11)

where limq→0 ϕ(q) = 0 and

C1 =
Eλ[(1− λ)]

n

n∑
i=1

(yi − g(fθ (x̂i)))∥Er∼Dx̂ [r − x̂i]∥2

cos(∇fθ (x̂i),Er∼Dx̂ [r − x̂i]),

C2 =
Eλ[(1− λ)2]

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|.

In Theorem 4, C2 is always strictly positive since g(z) ∈ (0, 1)
for all z ∈ R. While C1 can be negative in general, the following
proposition shows that C1 will be also non-negative in the later
phase of IAT training:

Proposition 1. If θ ∈ Θ ′, then C1 ≥ 0 where Θ ′ = {θ ∈ Rd
:

yi(fθ (xi + δi(θ )) − ζi) + (yi − 1)(fθ (xi + δi(θ )) − ζi) ≥ 0 for all i =
1, . . . , n}, and ζi = ∇fθ (xi + δi(θ ))⊤Er∼Dx̂ [r].

Here, we have that

Θ ′ ⊇ {θ ∈ Rd
: 1̂{fθ (xi + δ̂i)− ζi ≥ 0} = yi for all i = 1, . . . , n}.

Therefore, the condition of θ ∈ Θ ′ is satisfied when the model
classifies all labels correctly with margin ζi for adversarial pertur-
bations. As the training error (although not training loss) becomes
zero in finite time in many practical cases and margin increases
via implicit bias of gradient descent after that Lyu and Li (2020),
the condition of θ ∈ Θ ′ is satisfied in finite time in many prac-
tical cases. Theorem 4 and Proposition 1 together show that IAT
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Fig. 3. We analyzed the Frobenius and spectral norms of the weight matrices on a 6-layer network. Generally Adversarial Training makes these norms larger, whereas
Interpolated Adversarial Trainingbrings these norms closer to their values when doing normal training.

can reduce the norms of weights when compared to adversarial
training.

Zhang, Deng, and Kawaguchi (2021) showed that the stan-
dard mixup loss Lc also has the regularization effect on the
norm of weights and thus contribute to reduce the model com-
plexity. Therefore, our result together with that of the previous
study (Zhang et al., 2021) shows the benefit of IAT in terms of
reducing the norm of weights to control the model complexity.
As the recent study only considers the standard Mixup without
adversarial training, our result complements the recent study to
understand IAT.

To validate this theoretical prediction, we computed the norms
of weights for a 6-layer fully-connected network with 512 hidden
units trained on Fashion-MNIST and report the results in Fig. 3. On
the one hand, adversarial training increased the Frobenius norms
across all the layers and increased the spectral norm of the ma-
jority of the layers. On the other hand, IAT avoided or mitigated
these increases in the norms of weights. This is consistent with
our theoretical predictions and suggests that IAT learns lower
complexity classifiers than normal adversarial training.

To further understand why adversarial training tends to in-
crease the norms, consider the case of linear regression:

L(θ ) =
1
2
∥Xw − Y∥2F .

Then, we have

∇L(θ ) = X⊤(Xw − Y ).

Therefore, each step of (stochastic) gradient descent only adds
some vector in the column space of X⊤ to w as

wt+1 = wt + vt where vt ∈ Col(X⊤).

Here, the solutions of the linear regression are any w such that

w = X†Y + v⊥ where v⊥ ∈ Null(X).

Thus, (stochastic) gradient descent does not add any unnecessary
element to w, implicitly minimizing the norm of the weights.
Accordingly, if we initialize w as w0 ∈ Col(X⊤), then we achieve
the minimum norm solution implicitly via (stochastic) gradient
descent.

In this context, we can easily see that by conducting ad-
versarial training, we add vectors v⊥ ∈ Null(X), breaking the
implicit bias and increasing the norm of w. Similarly, in the
case of deep neural networks, (stochastic) gradient descent has
the implicit bias that restricts the search space of w and hence
tend to minimize the norm without unnecessary elements (Lyu
& Li, 2020; Moroshko, Gunasekar, Woodworth, Lee, Srebro, &
Soudry, 2020; Woodworth et al., 2020). Thus, similarly to the
case of linear models, adversarial training adds extra elements
via the perturbation and tends to increase the norm of weights.
Our results show that we can minimize this effect via the addi-
tional regularization effects of IAT to reduce overfitting for better
generalization behaviors.

7. Conclusion

Robustness to the adversarial examples is essential for en-
suring that machine learning systems are secure and reliable.
However the most effective defense, adversarial training, has the
effect of harming performance on the unperturbed data. This has
both the theoretical and the practical significance. As adversarial
perturbations are imperceptible (or barely perceptible) to hu-
mans and humans are able to generalize extremely well, it is
surprising that adversarial training reduces the model’s ability
to perform well on unperturbed test data. This degradation in
the generalization is critically urgent to the practitioners whose
systems are threatened by the adversarial attacks. With current
techniques those wishing to deploy machine learning systems
need to consider a severe trade-off between performance on the
unperturbed data and the robustness to the adversarial examples,
which may mean that security and reliability will suffer in impor-
tant applications. Our work has addressed both of these issues.
We proposed to address this by augmenting adversarial training
with interpolation based training (Verma et al., 2019; Zhang et al.,
2017). We found that this substantially improves generalization
on unperturbed data while preserving adversarial robustness.
Our analysis showed why and how the proposed method can
improve generalization and preserve adversarial robustness when
compared to standard adversarial training.
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Appendix A. Lemma on adversarial-mixup loss

This appendix provides the key lemma, Lemma 1, which is
used to prove theorems in Appendix B.

Lemma 1. For any fθ , there exists a function ϕ : R→ R such that

La =
1
n

n∑
i=1

ℓ(fθ (x̂i), yi)+
3∑

i=1

Gi + Eλ∼D̃λ
[(1− λ)2ϕ(1− λ)],

where limq→0 ϕ(q) = 0 and

G1 =
Eλ∼D̃λ

[1− λ]
n

n∑
i=1

(h′(fθ (x̂i))− yi)∇fθ (x̂i)⊤Er∼Dx̂ [r − x̂i],

G2 =
Eλ∼D̃λ [(1− λ)

2
]

2n

n∑
i=1

h′′(fθ (x̂i))∇fθ (x̂i)⊤Er∼Dx̂
[(r− x̂i)(r− x̂i)⊤]∇fθ (x̂i),

G3 =
Eλ∼D̃λ

[(1− λ)2]
2n

n∑
i=1

(h′(fθ (x̂i))−yi)Er∼Dx̂ [(r−x̂i)∇2fθ (x̂i)(r−x̂i)⊤].

Proof. Since ℓ(q, y) = h(q)− yq, we have that

1
n

n∑
i=1

ℓ(fθ (x̂i), yi) =
1
n

n∑
i=1

[h(fθ (x̂i))− yifθ (x̂i)],

and

La =
1
n2Eλ∼Beta(α,β)

n∑
i,j=1

[h(fθ (x̌i,j(λ)))− (λyi + (1− λ)yj)fθ (x̌i,j(λ))].

By expanding (λyi + (1− λ)yj)fθ (x̌i,j(λ)) and using h(fθ (x̌i,j(λ))) =
λh(fθ (x̌i,j(λ)))+ (1− λ)h(fθ (x̌i,j(λ))),

La =
1
n2Eλ∼Beta(α,β)

n∑
i,j=1

{
λ[h(fθ (x̌i,j(λ)))− yifθ (x̌i,j(λ))]

+ (1− λ)[h(fθ (x̌i,j(λ)))− yjfθ (x̌i,j(λ))]
}
.

Using the fact that EB∼Bern(λ)[B] = λ, we have

La =
1
n2Eλ∼Beta(α,β)EB∼Bern(λ)

n∑
i,j=1

{
B[h(fθ (x̌i,j(λ)))− yifθ (x̌i,j(λ))]

+ (1− B)[h(fθ (x̌i,j(λ)))− yjfθ (x̌i,j(λ))]
}
.

Since λ ∼ Beta(α, β), B|λ ∼ Bern(λ), by conjugacy, we can
exchange them to have

B ∼ Bern(
α

α + β
), λ | B ∼ Beta(α + B, β + 1− B).

Thus,

La =
1
n2

n∑
i,j=1

{ α

α + β
Eλ∼Beta(α+1,β)[h(fθ (x̌i,j(λ)))− yifθ (x̌i,j(λ))]

+
β

α + β
Eλ∼Beta(α,β+1)[h(fθ (x̌i,j(λ)))− yjfθ (x̌i,j(λ))]

}
.

Since 1 − Beta(α, β + 1) and Beta(β + 1, α) represent the same
distribution and x̌ij(1− λ) = x̌ji(λ), we have∑
i,j

Eλ∼Beta(α,β+1)[h(fθ (x̌i,j(λ)))− yjfθ (x̌i,j(λ))]

=

∑
i,j

Eλ∼Beta(β+1,α)[h(fθ (x̌i,j(λ)))− yifθ (x̌i,j(λ))].

By defining D̃λ = α
α+β

Beta(α + 1, β)+ β

α+β
Beta(β + 1, α),

La =
1
n2

n∑
i,j=1

Eλ∼D̃λ
[h(fθ (x̌i,j(λ)))− yifθ (x̌i,j(λ))]

=
1
n2

n∑
i,j=1

Eλ∼D̃λ
ℓ(fθ (λx̂i + (1− λ)x̂j), yi)

By defining Dx̂ to be the empirical distribution induced by per-
turbed training samples (x̂j)nj=1,

La =
1
n

n∑
i=1

Eλ∼D̃λ
Er∼Dx̂ℓ(fθ (λx̂i + (1− λ)r), yi)

Let x̌i = λx̂i + (1− λ)r , α = 1− λ, and ψi(α) = ℓ(fθ (x̌i), yi). Then,
using the definition of the twice-differentiability of function ψi,

ℓ(fθ (x̌i), yi) = ψi(α) = ψi(0)+ ψ ′i (0)α +
1
2
ψ ′′i (0)α

2
+ α2ϕi(α),

where limz→0 ϕi(z) = 0. Therefore,

La =
1
n
Eλ∼D̃λ

Er∼Dx̂

n∑
i=1

[ψi(0)+ ψ ′i (0)α +
1
2
ψ ′′i (0)α

2
]

+ Eλ∼D̃λ
[(1− λ)2ϕ(1− λ)], (A.1)

where ϕ(α) = 1
n

∑n
i=1 ϕi(α). By linearity and chain rule,

ψ ′i (α) = h′(fθ (x̌i))
∂ fθ (x̌i)
∂ x̌i

∂ x̌i
∂α
− yi

∂ fθ (x̌i)
∂ x̌i

∂ x̌i
∂α

= h′(fθ (x̌i))
∂ fθ (x̌i)
∂ x̌i

(r − x̂i)− yi
∂ fθ (x̌i)
∂ x̌i

(r − x̂i)

where we used ∂ x̌i
∂α
= (r − x̂i). Moreover,

∂

∂α

∂ fθ (x̌i)
∂ x̌i

(r − x̂i) =
∂

∂α
(r − x̂i)⊤

[
∂ fθ (x̌i)
∂ x̌i

]
⊤

= (r − x̂i)⊤∇2fθ (x̌i)
∂ x̌i
∂α

= (r − x̂i)⊤∇2fθ (x̌i)(r − x̂i).

Therefore,

ψ ′′i (α) =h
′(fθ (x̌i))(r − x̂i)⊤∇2fθ (x̌i)(r − x̂i)

+ h′′(fθ (x̌i))[
∂ fθ (x̌i)
∂ x̌i

(r − x̂i)]2 − yi(r − x̂i)⊤∇2fθ (x̌i)(r − x̂i).

By setting α = 0,

ψ ′i (0) = h′(fθ (x̂i))∇fθ (x̂i)⊤(r − x̂i)− yi∇fθ (x̂i)⊤(r − x̂i)

= (h′(fθ (x̂i))− yi)∇fθ (x̂i)⊤(r − x̂i),

229



A. Lamb, V. Verma, K. Kawaguchi et al. Neural Networks 154 (2022) 218–233

and

ψ ′′i (0) =h
′(fθ (x̂i))(r − x̂i)⊤∇2fθ (x̂i)(r − x̂i)

+ h′′(fθ (x̂i))[∇fθ (x̂i)⊤(r − x̂i)]2

− yi(r − x̂i)⊤∇2fθ (x̂i)(r − x̂i)

=h′′(fθ (x̂i))∇fθ (x̂i)⊤(r − x̂i)(r − x̂i)⊤∇fθ (x̂i)

+ (h′(fθ (x̂i))− yi)(r − x̂i)⊤∇2fθ (x̂i)(r − x̂i).

By substituting these into (A.1), we obtain the statement of this
lemma. □

Appendix B. Proofs

Using Lemmas 1 proven in Appendix A, this appendix provides
the complete proofs of Theorems 1, 2, 3, 4, and Proposition 1.

Proof of Theorem 1. Let x̂i = xi + δ̂i. From the assumption, we
have fθ (x̂i) = ∇fθ (x̂i)⊤x̂i and ∇2fθ (x̂i) = 0. Since h(z) = log(1+ez),
we have h′(z) = ez

1+ez = g(z) ≥ 0 and h′′(z) = ez

(1+ez )2
=

g(z)(1 − g(z)) ≥ 0. By substituting these into the equation of
Lemma 1 with Er∼Dx̂ [r] = 0,

La =
1
n

n∑
i=1

ℓ(fθ (x̂i), yi)+ G1 + G2 + E1, (B.1)

where

G1 =
Eλ[(1− λ)]

n

n∑
i=1

(yi − g(fθ (x̂i)))fθ (x̂i)

G2 =
Eλ[(1− λ)2]

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|∇fθ (x̂i)⊤

Er [(r − x̂i)(r − x̂i)⊤]∇fθ (x̂i)

≥
Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|∇fθ (x̂i)⊤

Er [(r − x̂i)(r − x̂i)⊤]∇fθ (x̂i)

where we used E[z2] = E[z]2+Var(z) ≥ E[z]2 and∇fθ (x̂i)⊤Er [(r−
x̂i)(r − x̂i)⊤]∇fθ (x̂i) ≥ 0. Since Er [(r − x̂i)(r − x̂i)⊤] = Er [rr⊤ −
rx̂i⊤ − x̂ir⊤ + x̂ix̂i⊤] = Er [rr⊤] + x̂ix̂i⊤ where Er [rr⊤] is positive
semidefinite,

G2 ≥
Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|∇fθ (x̂i)⊤

(Er [rr⊤] + x̂ix̂i⊤)∇fθ (x̂i).

≥
Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|(∇fθ (x̂i)⊤x̂i)2

=
Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|∥∇fθ (x̂i)∥22∥x̂i∥
2
2

(cos(∇fθ (x̂i), x̂i))2

≥
1
2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|∥∇fθ (x̂i)∥22R
2
i c

2
xEλ[(1− λ)]

2d

Now we bound G1 =
Eλ[(1−λ)]

n

∑n
i=1(yi − g(fθ (x̂i)))fθ (x̂i) by using

θ ∈ Θ . Since θ ∈ Θ , we have yifθ (x̂i) + (yi − 1)fθ (x̂i) ≥ 0, which
implies that fθ (x̂i) ≥ 0 if yi = 1 and fθ (x̂i) ≤ 0 if yi = 0. Thus, if
yi = 1,

(yi − g(fθ (x̂i)))(fθ (x̂i)) = (1− g(fθ (x̂i)))(fθ (x̂i)) ≥ 0,

since (fθ (x̂i)) ≥ 0 and (1 − g(fθ (x̂i))) ≥ 0 due to g(fθ (x̂i)) ∈ (0, 1).
If yi = 0,

(yi − g(fθ (x̂i)))(fθ (x̂i)) = −g(fθ (x̂i))(fθ (x̂i)) ≥ 0,

since (fθ (x̂i)) ≤ 0 and −g(fθ (x̂i)) < 0. Therefore, for all i =
1, . . . , n,

(yi − g(fθ (x̂i)))(fθ (x̂i)) ≥ 0,

which implies that, since Eλ[(1− λ)] ≥ 0,

G1 =
Eλ[(1− λ)]

n

n∑
i=1

|yi − g(fθ (x̂i))||fθ (x̂i)|

=
Eλ[(1− λ)]

n

n∑
i=1

|g(fθ (x̂i))− yi|∥∇fθ (x̂i)∥2∥x̂i∥2| cos(∇fθ (x̂i), x̂i)|

≥
1
n

n∑
i=1

|g(fθ (x̂i))− yi|∥∇fθ (x̂i)∥2RicxEλ[(1− λ)]
√
d

By substituting these lower bounds of G1 and G2 into (B.1), we
obtain

La −
1
n

n∑
i=1

ℓ(fθ (x̂i), yi) (B.2)

≥
1
n

n∑
i=1

|g(fθ (x̂i))− yi|∥∇fθ (x̂i)∥2ϵmix
i

+
1
2n

n∑
i=1

|h′′(fθ (x̂i))|∥∇fθ (x̂i)∥22(ϵ
mix
i )2 + E1

On the other hand, for any z1, . . . , zn, there exist functions ϕ′i such
that limz→0 ϕ

′

i (z) = 0, and

1
n

n∑
i=1

max
∥δi∥2≤ϵi

ℓ(fθ (zi + δi), yi)−
1
n

n∑
i=1

ℓ(fθ (zi), yi)

≤
1
n

n∑
i=1

|g(fθ (zi))− yi|∥∇fθ (zi)∥2ϵi

+
1
2n

n∑
i=1

|h′′(fθ (zi))|∥∇fθ (zi)∥22ϵ
2
i +

1
n

n∑
i=1

max
∥δi∥2≤ϵi

∥δi∥
2
2ϕ
′

i (δi)

≤
1
n

n∑
i=1

|g(fθ (zi))− yi|∥∇fθ (zi)∥2ϵi

+
1
2n

n∑
i=1

|h′′(fθ (zi))|∥∇fθ (zi)∥22ϵ
2
i +

1
n

n∑
i=1

ϵ2i ϕ
′′

i (ϵi) (B.3)

where ϕ′′i (ϵi) = max∥δi∥2≤ϵi ϕ
′

i (δi). Note that limq→0 ϕ
′′

i (q) = 0. By
combining (B.2) and (B.3),

La ≥
1
n

n∑
i=1

max
∥δmix

i ∥2≤ϵ
mix
i

ℓ(fθ (xi + δ̂i + δmix
i ), yi)

+ Eλ[(1− λ)2ϕ(1− λ)] −
1
n

n∑
i=1

(ϵmix
i )2ϕ′′(ϵmix

i ),

where ϵmix
i = RicxEλ[(1−λ)]

√
d. Define ϕ̄(q) = − 1

n

∑n
i=1(Ricx

√
d)2

ϕ′′i (Ricx
√
dq). Note that limq→0 ϕ̄(q) = 0. Then, since 1

n

∑n
i=1(ϵ

mix
i )2

ϕ′′(ϵmix
i ) = −E2,

La ≥
1
n

n∑
i=1

max
∥δmix

i ∥2≤ϵ
mix
i

ℓ(fθ (xi + δ̂i + δmix
i ), yi)+ E1 + E2.

where limz→0 ϕ̄(z) = 0 and limz→0 ϕ(z) = 0. □
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Proof of Theorem 2. Let S = ((xi, yi))ni=1 and S ′ = ((x′i, y
′

i))
n
i=1.

Define

ϕ(S) = sup
f∈F

Ex,y[ℓ(f (x), y)] −
Lc + La

2
. (B.4)

To apply McDiarmid’s inequality to ϕ(S), we compute an upper
bound on |ϕ(S)− ϕ(S ′)| where S and S ′ be two test datasets
differing by exactly one point of an arbitrary index i0; i.e., Si = S ′i
for all i ̸= i0 and Si0 ̸= S ′i0 . Then,

ϕ(S ′)− ϕ(S) ≤
τ (2n− 1)

n2 ≤
2τ
n
, (B.5)

where we use the fact that both Lc and La have n2 terms and
2n− 1 terms differ for S and S ′, each of which is bounded by the
constant τ . Similarly, ϕ(S) − ϕ(S ′) ≤ 2τ

n . Thus, by McDiarmid’s
inequality, for any δ > 0, with probability at least 1− δ,

ϕ(S) ≤ ES[ϕ(S)] + 2τ

√
ln(1/δ)

2n
. (B.6)

Moreover, by using Lemma 1, there exist functions ϕ′ and ϕ′′ such
that

La =
1
n

n∑
i=1

ℓ(fθ (x̂i), yi)+
3∑

i=1

Gi+Eλ∼D̃λ
[(1− λ)2ϕ′(1− λ)], (B.7)

and

Lc =
1
n

n∑
i=1

ℓ(fθ (xi), yi)+
3∑

i=1

Ri+Eλ∼D̃λ
[(1−λ)2ϕ′′(1−λ)], (B.8)

where limq→0 ϕ
′(q) = 0 and limq→0 ϕ

′′(q) = 0. Thus, by defining

Q (f ) =
1
n
ES

[
n∑

i=1

(
max

δi:∥δi∥ρ≤ϵ
ℓ(f (xi + δi), yi)− ℓ(f (xi), yi)

)]
,

(B.9)

and

V (f ) = ES

[
3∑

i=1

Gi + Ri

2

]
− Eλ∼D̃λ

[(1− λ)2ϕ(1− λ)], (B.10)

we have that

ES [ϕ(S)] (B.11)

= ES

[
sup
f∈F

ES′

[
1
n

n∑
i=1

ℓ(f(x′i), y
′

i)

]
−

Lc + La

2

]
(B.12)

= ES

[
sup
f∈F

ES′

[
1
n

n∑
i=1

ℓ(f(x′i), y
′

i)

]
−

1
n

n∑
i=1

ℓ(f (xi), yi)

]
−

Q (f )
2
− V (f )

(B.13)

≤ ES,S′

[
sup
f∈F

1
n

n∑
i=1

(ℓ(f(x′i), y
′

i)− ℓ(f (xi), yi)

]
−

Q (f )
2
− V (f ) (B.14)

≤ Eξ,S,S′

[
sup
f∈F

1
n

n∑
i=1

ξi(ℓ(f(x′i), y
′

i)− ℓ(f (xi), yi))

]
−

Q (f )
2
− V (f ) (B.15)

≤ 2Eξ,S

[
sup
f∈F

1
n

n∑
i=1

ξiℓ(f (xi), yi))

]
−

Q (f )
2
− V (f ) (B.16)

= 2Rn(ℓ ◦ F)−
Q (f )
2
− V (f ) (B.17)

where the second line follows the definitions of each term, the
third line uses ± 1

n

∑n
i=1 ℓ(f (xi), yi) inside the expectation and

the linearity of expectation, the fourth line uses the Jensen’s
inequality and the convexity of the supremum, and the fifth line
follows that for each ξi ∈ {−1,+1}, the distribution of each

term ξi(ℓ(f(x′i), y
′

i)−ℓ(f (xi), yi)) is the distribution of (ℓ(f(x′i), y
′

i)−
ℓ(f (xi), yi)) since S and S ′ are drawn iid with the same distribu-
tion. The sixth line uses the subadditivity of supremum.

Finally, by noticing that Q (f ) ≥ 0 from the definition of
Q (f ) ≥ 0 (since maxδi:∥δi∥ρ≤ϵ ℓ(f (xi + δi), yi) − ℓ(f (xi), yi) ≥ 0)
and by combining Eqs. (B.6) and (B.17), we have the desired
statement. □

Proof of Theorem 3. Let S = ((xi, yi))ni=1 and S ′ = ((x′i, y
′

i))
n
i=1.

Define

ϕ(S) = sup
f∈F

Ex,y[ℓ(f (x), y)] −
L′c + L′a

2
. (B.18)

To apply McDiarmid’s inequality to ϕ(S), we compute an upper
bound on |ϕ(S)− ϕ(S ′)| where S and S ′ be two test datasets
differing by exactly one point of an arbitrary index i0; i.e., Si = S ′i
for all i ̸= i0 and Si0 ̸= S ′i0 . Then,

ϕ(S ′)− ϕ(S) ≤
2τ
n
, (B.19)

since supf∈F
maxδi0 :∥δi0 ∥ρ≤ϵ

ℓ(f (xi0+δi0 ),yi0 )−maxδi0 :∥δi0 ∥ρ≤ϵ
ℓ(f(x′i0

+δi0 ),y
′
i0
)

2n ≤
τ
n . Similarly, ϕ(S)− ϕ(S ′) ≤ 2τ

n . Thus, by McDiarmid’s inequality,
for any δ > 0, with probability at least 1− δ,

ϕ(S) ≤ ES[ϕ(S)] + 2τ

√
ln(1/δ)

2n
. (B.20)

Moreover, by defining

Q (f ) =
1
n
ES

[
n∑

i=1

(
max

δi:∥δi∥ρ≤ϵ
ℓ(f (xi + δi), yi)− ℓ(f (xi), yi)

)]
,

(B.21)

we have that

ES[ϕ(S)] (B.22)

= ES

[
sup
f∈F

ES′

[
1
n

n∑
i=1

ℓ(f(x′i), y
′

i)

]
−

L′c + L′a
2

]
(B.23)

= ES

[
sup
f∈F

ES′

[
1
n

n∑
i=1

ℓ(f(x′i), y
′

i)

]
−

1
n

n∑
i=1

ℓ(f (xi), yi)

]
−

Q (f )
2

(B.24)

≤ ES,S′

[
sup
f∈F

1
n

n∑
i=1

(ℓ(f(x′i), y
′

i)− ℓ(f (xi), yi)

]
−

Q (f )
2

(B.25)

≤ Eξ,S,S′

[
sup
f∈F

1
n

n∑
i=1

ξi(ℓ(f(x′i), y
′

i)− ℓ(f (xi), yi))

]
−

Q (f )
2

(B.26)

≤ 2Eξ,S

[
sup
f∈F

1
n

n∑
i=1

ξiℓ(f (xi), yi))

]
−

Q (f )
2
= 2Rn(ℓ ◦ F)−

Q (f )
2

(B.27)

where the second line follows the definitions of each term, the
third line uses ± 1

n

∑n
i=1 ℓ(f (xi), yi) inside the expectation and

the linearity of expectation, the fourth line uses the Jensen’s
inequality and the convexity of the supremum, and the fifth line
follows that for each ξi ∈ {−1,+1}, the distribution of each
term ξi(ℓ(f(x′i), y

′

i)−ℓ(f (xi), yi)) is the distribution of (ℓ(f(x′i), y
′

i)−
ℓ(f (xi), yi)) since S and S ′ are drawn iid with the same distribu-
tion. The sixth line uses the subadditivity of supremum.

Finally, by noticing that Q (f ) ≥ 0 from the definition of
Q (f ) ≥ 0 (since maxδi:∥δi∥ρ≤ϵ ℓ(f (xi + δi), yi) − ℓ(f (xi), yi) ≥ 0)
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and by combining Eqs. (B.20) and (B.27), we have the desired
statement. □

Proof of Theorem 4. From the assumption, we have fθ (x̂i) =
∇fθ (x̂i)⊤x̂i and ∇2fθ (x̂i) = 0. Since h(z) = log(1 + ez), we have
h′(z) = ez

1+ez = g(z) ≥ 0 and h′′(z) = ez

(1+ez )2
= g(z)(1− g(z)) ≥ 0.

By substituting these into the equation of Lemma 1,

La =
1
n

n∑
i=1

ℓ(fθ (x̂i), yi)+ G1 + G2 + Eλ[(1− λ)2ϕ(1− λ)], (B.28)

where

G1 =
Eλ[(1− λ)]

n

n∑
i=1

(yi − g(fθ (x̂i)))∥Er∼Dx̂ [r − x̂i]∥2

cos(∇fθ (x̂i),Er∼Dx̂ [r − x̂i])∥∇fθ (x̂i)∥2,

G2 =
Eλ[(1− λ)2]

2n

n∑
i=1

|g(fθ (x̂i))(1− g(fθ (x̂i)))|∥∇fθ (x̂i)∥2Er [(r−x̂i)(r−x̂i)⊤]
. □

Proof of Proposition 1. Since θ ∈ Θ ′, we have yi(fθ (x̂i) − ζi) +
(yi−1)(fθ (x̂i)− ζi) ≥ 0, which implies that fθ (x̂i)− ζi ≥ 0 if yi = 1
and fθ (x̂i)− ζi ≤ 0 if yi = 0. Thus, if yi = 1,

(yi − g(fθ (x̂i)))(fθ (x̂i)− ζi) = (1− g(fθ (x̂i)))(fθ (x̂i)− ζi) ≥ 0,

since (fθ (x̂i) − ζi) ≥ 0 and (1 − g(fθ (x̂i))) ≥ 0 due to g(fθ (x̂i)) ∈
(0, 1). If yi = 0,

(yi − g(fθ (x̂i)))(fθ (x̂i)− ζi) = −g(fθ (x̂i))(fθ (x̂i)− ζi) ≥ 0,

since (fθ (x̂i) − ζi) ≤ 0 and −g(fθ (x̂i)) < 0. Therefore, for all
i = 1, . . . , n,

(yi − g(fθ (x̂i)))(fθ (x̂i)− ζi) ≥ 0.

This implies that, since Eλ[(1− λ)] ≥ 0 and fθ (x̂i) = ∇fθ (x̂i)⊤x̂i,

G1 =
Eλ[(1− λ)]

n

n∑
i=1

(yi − g(fθ (x̂i)))(fθ (x̂i)− ζi) ≥ 0.

Thus, we have that 0 ≤ G1 = C1∥∇fθ (x̂i)∥2 where ∥∇fθ (x̂i)∥2 ≥ 0,
which implies that C1 ≥ 0. □
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