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Abstract
Neighbor embedding (NE) aims to preserve pairwise similarities between data items and has been shown to yield an effective
principle for data visualization. However, even the best existing NE methods such as stochastic neighbor embedding (SNE)
may leave large-scale patterns hidden, for example clusters, despite strong signals being present in the data. To address this, we
propose a new cluster visualization method based on the Neighbor Embedding principle.We first present a family of Neighbor
Embedding methods that generalizes SNE by using non-normalized Kullback–Leibler divergence with a scale parameter. In
this family, much better cluster visualizations often appear with a parameter value different from the one corresponding
to SNE. We also develop an efficient software that employs asynchronous stochastic block coordinate descent to optimize
the new family of objective functions. Our experimental results demonstrate that the method consistently and substantially
improves the visualization of data clusters compared with the state-of-the-art NE approaches. The code of our method is
publicly available at https://github.com/rozyangno/sce.

Keywords Clustering · Information divergence · Neighbor embedding · Nonlinear dimensionality reduction · Stochastic
optimization · Visualization

1 Introduction

The rapid growth in the amount of data processed by analysts
demands more efficient information digestion and com-
munication methods. Data visualization by dimensionality
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reduction facilitates a viewer to digest information in mas-
sive data sets quickly. Therefore, it is increasingly applied as
a critical component in scientific research, digital libraries,
data mining, financial data analysis, market studies, manu-
facturing production control, drug discovery, etc.

StochasticNeighborEmbedding (SNE;Hinton andRoweis
2003) is a widely used nonlinear dimensionality reduc-
tion (NLDR) method, which approximately preserves the
pairwise probabilities of being neighbors (neighboring prob-
abilities for short) in the input space. In particular, the
Student t-Distributed Stochastic Neighbor Embedding (t-
SNE; van der Maaten and Hinton 2008) has become one of
the most popular nonlinear dimensionality reduction meth-
ods for data visualization. The t-SNE method employs a
heavy-tailed distribution for the neighboring probabilities in
the embedding and minimizes their Kullback–Leibler diver-
gence against precomputed input probabilities.

Discovery of large-scale patterns such as clusters is an
important task of NLDR. It is often believed that t-SNE
can show clusters for well clusterable data, with a smaller
Kullback–Leibler divergence corresponding to a better qual-
ity. However, recently we found many counter-examples
where t-SNE may not correctly visualize the clusters even
if the input neighborhoods are well clusterable (see Sect. 5
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for details). Tuning hyperparameters in t-SNE does not help
in solving this issue because a better t-SNE learning objec-
tive can correspond to a worse cluster embedding. The root
cause of the failure is that t-SNEwas designed to preserve the
neighborhood or local information, which is not necessarily
directly connected with finding large-scale patterns such as
clusters.

To address the problem, we propose a new method
called Stochastic Cluster Embedding (SCE) for better clus-
ter visualizations. We generalize SNE using a family of
I-divergences parameterized by a scaling factor s, between
the non-normalized similarities in the input and output space.
We show that SNE is a special case in the familywith s chosen
to be the normalizing factor of output similarities. However,
through a user study, we find that the best s value for cluster
visualization is often different from the one chosen by SNE.

To overcome the t-SNE drawback, SCE employs another
choice that mixes the input similarities in calculating s.
The scale factor is adaptively adjusted when optimizing the
new learning objective, and the data points are thus better
grouped. We have also developed an efficient optimiza-
tion algorithm that employs asynchronous stochastic block
coordinate descent. The new algorithm can utilize parallel
computing devices such as CPUs or GPUs and is suitable for
mega-scale problems with massive data items.

Our new method is tested on six real-world data sets and
compared with the state-of-the-art nonlinear dimensionality
reduction approaches, including t-SNE (van der Maaten and
Hinton 2008). The results show that our method consistently
performs better than t-SNE for cluster visualization. In all
tested cases where t-SNE fails, SCE can show the clusters
clearly and accurately. Among all compared methods, our
newmethod is the only one that gives good cluster visualiza-
tions for all tested data sets.

The remainder of the paper is organized as follows. The
popular visualization method SNE is briefly reviewed in
Sect. 2. In Sect. 3 we give our notations about clustering and
cluster visualization. In Sect. 4, we present the new method
based on Neighbor Embedding for cluster visualization,
including its learning objective function and optimization
algorithms. We present the experiment settings and results in
Sect. 5 and conclude the paper by presenting possible direc-
tions for future research in Sect. 6.

2 Stochastic neighbor embedding

Neighbor Embedding (NE) is a collection of methods that
seek vectorial representation of data items according to their
neighborhoods or similarities in the original space (Yang
et al. 2013, 2014). Given a set of multivariate data points
{x1, x2, . . . , xN }, where xi ∈ R

D , their pairwise similari-
ties are encoded in a nonnegative square matrix p. Neighbor

Embedding finds a mapping xi �→ yi ∈ R
d for i = 1, . . . , N

(d = 2 or d = 3 for visualization) such that the similarities
in the mapped space, encoded by qi j , approximate those in
p. The approximation is realized by minimizing a certain
divergence between p and q. For abbreviation we also write
Y = [y1, . . . , yN ].

SNE is a family of Neigbhor Embedding methods, which
minimizes the Kullback–Leibler divergence DKL(P || Q)

between the normalized input and output similarities P
and Q. The matrix P can be precomputed, for example,
Pi j = (Pi | j + Pj |i )/(2N ) with Pi | j = pi j/

∑
l pil . In this

paper we focus on thematrix-wise normalization1 of Q using
Qi j = qi j/

∑
ab qab. In SNE, the output similarities are usu-

ally given by a Gaussian kernel qi j = exp
(−‖yi − y j‖2

)
or

a Student t-kernel qi j = (1+ ‖yi − y j‖2)−1. SNE equipped
with the latter kernel is called Student t-distributed Stochas-
tic Neighbor Embedding (t-SNE; van derMaaten and Hinton
2008).

3 Cluster visualization

We focus on Neighbor Embedding for cluster visualization.
A clustering divides the data objects into a number of groups,
such that objects in the same group (called a cluster) aremore
similar to each other than to those in other groups (clusters)
(Tan et al. 2005). The pairwise similarities can be encoded
in a similarity matrix p, defined as in NE.

A similarity matrix is considered to be (well) cluster-
able if there is a clustering such that high similarities appear
(much) more probably within clusters than between clusters.
If we sort the rows and columns in such a similarity matrix
according to the cluster labels, we should observe a diagonal
blockwise pattern, where high similarities are denser within
the cluster blocks. The pattern is much clearer for a well
clusterable similarity matrix.

A good cluster visualization is a display where the user
can easily see the groups of data points. In scatter plots, there
should be clear space separating the groups such that points in
the same group are closer to each other than to those in other
groups. Besides sufficient separation, a good cluster visual-
ization should also respect the within-cluster information by
approximating the corresponding neighborhoods.

Note that cluster visualization is an unsupervised learning
task. No supervised labels are used in finding the coordi-
nates of mapped points, which is different from the super-
vised/discriminative dimensionality reduction approaches
for showing classification boundaries (e.g., Venna et al. 2010;
Schulz et al. 2020).

1 In this paper thematrixwise summation is over off-diagonal elements,

i.e.
∑

i j Ai j
def= ∑

i j :i �= j Ai j .
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It is often believed that t-SNE can achieve a good cluster
visualization (van der Maaten and Hinton 2008) and some
successful examples have been presented in the literature.
However, as any data analysis method, t-SNE may also pro-
duce false-negative results for challenging data sets. That
is, t-SNE can result in no apparent clustering for some p
matrices, despite them being well clusterable. Such errors
are demonstrated with several examples in Sect. 5. The prob-
lem cannot be solved by using better optimization algorithms
because minimizing the t-SNE objective aims at a better
matching of local information and this may not correspond
to a better large-scale pattern. A smaller t-SNE cost can in
fact correspond to a worse cluster visualization.

4 Neighbor embedding for cluster
visualization

In this section, we show in closer detail why t-SNE can fail
despite a p matrix being well clusterable and how to correct
the problem to obtain good cluster visualizations.

4.1 Generalized stochastic neighbor embedding

We begin with a variant of Kullback–Leibler divergence
(Amari 1985) which is defined over non-normalized output
similarities with a parameter s > 0:

DI(P || sq) =
∑

i j

[

Pi j ln
Pi j
sqi j

− Pi j + sqi j

]

. (1)

The divergence is called non-normalizedKL-divergence or I-
divergence, which measures the discrepancy between P and
q at a certain scale s. In this work we focus on the student
t-kernel qi j = (1 + ‖yi − y j‖2)−1.

We call the NE variant that minimizes DI(P || sq)

Generalized Stochastic Neighbor Embedding (GSNE) as it
generalizes SNE. To see this, we eliminate s by setting
∂DI(P || sq)/∂s = 0, which gives (see Yang et al. 2014
or supplemental document Sect. 1)

argmin
Y

DKL(P || Q) = argmin
Y

min
s>0

DI(P || sq), (2)

where the equality holds when

s = 1
∑

i j qi j
. (3)

That is, SNE is a special case of GSNE with s set to the
normalizing factor of q.

The SNE choice of s in Eq. 3 is not necessarily an opti-
mal choice for cluster visualization. It aims at matching two
neighboring probability matrices. Such a locality preserving

objective can prevent the discovery of large-scale patterns,
such as clusters present among the input items. Fortunately,
below we show that using another choice of s can correct the
problem.

4.2 Selecting s for better cluster visualization

The GSNE objective can be rewritten as

DI(P || sq) = Jattraction + Jrepulsion + C (4)

whereJattraction = −∑
i j Pi j ln qi j andJrepulsion = s

∑
i j qi j

respectively correspond to attractive and repulsive forces, and
C = − ln s − 1 + ∑

i j Pi j ln Pi j is a constant w.r.t. q for a
given s. Here the scale parameter s also controls the tradeoff
between the two forces.

It is known that increasing attraction, e.g., by replac-
ing P with βP (β > 1) can encourage the mapped data
points to form tighter clumps, with more empty space in
the visualization (see e.g., van der Maaten and Hinton 2008;
van derMaaten 2014; Belkina et al. 2019). The trick is called
“early exaggeration” and has been used in t-SNE initializa-
tion, where β = 4 by van der Maaten and Hinton (2008) or
β = 12 by van der Maaten (2014) in the first 250 iterations.2

The “early exaggeration” trick is equivalent to setting

s = 1

β
∑

i j qi j
(5)

during the initialization. Note that after the initialization, t-
SNE still uses β = 1, i.e. the original choice in Eq. 3. As we
will see in Sect. 5 and the supplemental document Sect. 4,
the “early-exaggeration” still cannot produce good cluster
visualizations, even if β > 1 is used throughout the iterations
(see the supplemental document Sect. 3).

In this work, we propose to choose

s = 1
∑

i j wi j qi j
, (6)

where wi j = αN (N − 1)Pi j + (1 − α) with α ∈ [0, 1]
for better cluster visualizations. When α = 0, it reduces to
the SNE choice. When α > 0, it can adaptively bring extra
repulsion to improve cluster visualization. To see this, we
rewrite the denominator in Eq. 6:

∑

i j

wi j qi j

=
∑

i j

[
αN (N − 1)Pi j + (1 − α)

]
qi j

2 Other t-SNE optimization methods (e.g. Belkina et al. 2019) may use
a different number of iterations spent in early exaggeration.
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= N (N − 1)

⎡

⎣α
∑

i j

Pi j qi j+(1 − α)
∑

i j

1

N (N − 1)
qi j

⎤

⎦

= N (N − 1) [αE1 + (1 − α)E2] , (7)

where the two summation terms in the brackets can be
expressed as expectations over different distributions

E1 =
∑

i j

Pi j qi j = E(i, j)∼Categorical(P){qi j } (8)

E2 =
∑

i j

1

N (N − 1)
qi j = E(i, j)∼Uniform([1,...,N ]2){qi j }.

(9)

The sampling form enables us to estimate s in a stochastic
manner (see details below).

Next, we explain why our choice of s can provide an adap-
tive attraction-repulsion tradeoff and often lead to a better
cluster visualization. When Y is random initially, the two
expectations E1 and E2 do not differ much, and overall the
optimization is similar to the original SNE at the beginning.
After minimizing the discrepancy DI (P || sq) for a while,
data pairs that correspond to large Pi j ’s will be mapped
closer. As a result, E1 > E2, which leads to a smaller s and
thus smaller repulsion than in SNE. In this work, we simply
set α = 0.5, and we find it already suffices for many data
sets. Because our method often produces clearer clustered
displays, we have named it Stochastic Cluster Embedding
(SCE).

It is important to notice that our work focuses on show-
ing clusters. With α > 0, our learning objective does not
aim to match the neighborhood probabilities anymore. We
intentionally sacrifice some locality-preserving quality (e.g.,
within-cluster structures) to achieve better cluster visualiza-
tions.

4.3 Optimization

The GSNE or SCE objective function is smooth over Y .
Therefore it can be optimized by any existing unconstrained
smooth optimization techniques such as gradient descent
withmomentum in t-SNE.However, the original t-SNE algo-
rithm runs in a centralized manner and is thus slow for
large-scale data sets. Moreover, the tree-based approxima-
tion (Yang et al. 2013; van der Maaten 2014; Vladymyrov
and Carreira-Perpiñán 2014) to the objective function and
gradient calculation requires rather complex programming
(see e.g., Chan et al. 2019).

Here we develop a simple tree-free parallel algorithm to
optimize SCE. It repeats the following steps until maximum
iterations or the Y change is smaller than a given tolerance:

1. update Y given the current s;
2. estimate s given the current Y ,

Because we usually initialize Y with small numbers around
zero, all qi j ’s are close to 1 at the beginning. Therefore it is
reasonable to initialize s = N (N − 1).

In both steps, the computation is distributed to a number
of computing units called workers. In Step 1, we first rewrite
DI (P || sq) in a stochastic form:

Jattraction = E(i, j)∼Categorical(P)

{
J (i, j)
attraction

}
, (10)

Jrepulsion = E(i, j)∼Uniform([1,...,N ]2)
{
J (i, j)
repulsion

}
, (11)

where J i, j
attraction = − ln qi j and J (i, j)

repulsion = sN (N − 1)qi j .
According to this form, each worker randomly draws a pair
(i, j) for attraction and another pair for repulsion, calculates
their partial stochastic gradients w.r.t. yi and y j :

∂J (i, j)
attraction

∂ yi
= −∂J (i, j)

attraction

∂ y j

= −2qi j (yi − y j ),

∂J (i, j)
repulsion

∂ yi
= −∂J (i, j)

repulsion

∂ y j
(12)

= 2sN (N − 1)q2i j (yi − y j ), (13)

and updates the corresponding mapped points by stochastic
partial gradient descent. In this way, each worker requires
only O(1) cost for updating a pair of mapped points yi and
y j .

Next we consider how to estimate s in an asynchronously
stochastic and distributedmanner. The (i, j) samples and the
corresponding qi j ’s in the denominator of Eq. 6 (i.e., s−1),
have already been obtained from Step 1. Denote by ξ and ω,
respectively, the weighted sum and count of newly calculated

qi j ’s. We get
N (N − 1)ξ

ω
as a stochastic approximation of

s−1 and mix it with the current estimate as the new one:

s−1 ← ρs−1 + (1 − ρ)
N (N − 1)ξ

ω
, (14)

where ρ ∈ (0, 1) is the forgetting rate. We find ρ =
N (N−1)

N (N−1)+ω
working well in practice.

The pseudo-code of the SCE algorithm is given in Algo-
rithm 1. Because the algorithm is almost lock-free, it is
straightforward to implement it efficiently on multi-core
CPUs and GPUs. Our algorithm belongs to the family of
stochastic block coordinate descent optimization, for which
Richtárik and Takáč (2011) gave the convergence guarantee
and convergence rate.
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Algorithm 1 Stochastic Cluster Embedding
1: Input: similarity matrix P , number of iterations T .
2: Initialize Y = {yi }Ni=1 with small numbers, e.g. yid ∼ N (0, 10−4)

for all i, d.
3: Initialize s−1 ← N (N − 1)
4: for t=0 to T do
5: ηt ← 1 − t/T
6: ξ ← 0
7: ω ← 0
8: parallel for each worker do
9: Draw (i, j) ∼Categorical(P) 	 handle attraction
10: qi j ← (1 + ‖yi − y j‖2)−1

11: ∇ ← −2qi j (yi − y j )
12: yi ← yi + ηt∇ y j ← y j − ηt∇
13: ξ ← ξ + αqi j ω ← ω + α

14: Draw (i, j) ∼Uniform([1, . . . , N ]2) 	 handle repulsion
15: qi j ← (1 + ‖yi − y j‖2)−1

16: ∇ ← 2sN (N − 1)q2i j (yi − y j )
17: yi ← yi + ηt∇ y j ← y j − ηt∇
18: ξ ← ξ + (1 − α)qi j ω ← ω + (1 − α)

19: end for
20: ρ = N (N−1)

N (N−1)+ω

21: s−1 ← ρs−1 + (1 − ρ)
N (N − 1)ξ

ω
;

22: end for
23: Output: low-dimensional representations Y

5 Experiments

We have compared our method with t-SNE, as well as two
other more recent methods called LargeVis and UMAP:

• t-SNE: We have used the implementation3 by van der
Maaten (2014), where the maximum iterations in t-SNE
was set to 10,000 (ten times as the default) to get closer
to convergence.

• LargeVis (Tang et al. 2016): we have used its official
implementation in GitHub.4

• UMAP (Uniform Manifold Approximation and Projec-
tion;McInnes et al. 2018):wehaveused theumap-learn
package in Python.

We have used six real-world data sets in our experiments:

• IJCNN: the IJCNN 2001 neural network competition
data.5 There are 126,701 samples of 22 dimensions and
from ten engines (classes).

• TOMORADAR: The data was collected via a helicopter-
borne microwave profiling radar (Chen et al. 2017)
termed FGI-Tomoradar to investigate the vertical topog-
raphy structure of forests. After preprocessing, the data

3 https://github.com/lvdmaaten/bhtsne.
4 https://github.com/lferry007/LargeVis.
5 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html.

set contains 120,024 samples of 8192 dimensions from
three classes.

• FLOW-CYTOMETRY: the single-cell biology data set col-
lected from Flow Repository.6 After preprocessing, the
data set contains 1,000,000 samples of 17 dimensions.

• HIGGS: the HIGGSData Set in the UCI repository.7 The
data was produced using Monte Carlo simulations of the
particles in a physics experiment. There are 11,000,000
data points of 28 dimensions. Previously the data were
used for classification between the bosons and the back-
ground particles, whereas there is little research on
unsupervised learning on the data. Here we compared
visualizations to discover the particle clusters.

• SHUTTLE: the Statlog (Shuttle) Data Set in the UCI
repository.8 There are 58,000 samples of 9 dimensions
in three large and four small classes.

• MNIST: the MNIST database of handwritten digits.9

There are 70,000 samples of 784 dimensions in ten digit
classes.

To our knowledge, it is a largely unsolved problem how
to convert vectorial data to a similarity matrix optimally,
and there is no universally best solution. In practice, pop-
ular choices are Entropic Affinity (EA; Hinton and Roweis
2003) and k-Nearest Neighbor (k-NN) with tuning of the
perplexity (or k) parameter.

This work focuses on cluster embedding of a given sim-
ilarity matrix P .10 We have constructed the P matrix by
using EA with perplexity 30 for SHUTTLE and IJCNN. We
have used symmetrized k-NN graph adjacency matrix as P
for MNIST, TOMORADAR, FLOW-CYTOMETRY and HIGGS
with k = 10, k = 50, k = 15 and k = 5, respectively. In
this way, the constructed similarity matrices are well cluster-
able because they comprise a diagonal blockwise pattern, as
we shall see in Fig. 8. A good cluster visualization method
should be able to show these clusters clearly.

We have performed three groups of empirical studies to
verify the advantages of the proposed SCE method. Below
we first demonstrate its visualizations compared with those
by t-SNE, LargeVis, and UMAP. Second, we compare the s
choices in SCE and t-SNE to our user study. Third, we verify
the clustering quality of the compared methods by seeing
how well they can group the input similarities.

6 https://flowrepository.org/id/FR-FCM-ZZ36.
7 https://archive.ics.uci.edu/ml/datasets/HIGGS.
8 https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle).
9 http://yann.lecun.com/exdb/mnist/.
10 Our method is unsupervised. We did not use supervised labels in
constructing the similarity matrices.
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5.1 Visualization comparison

The SCE visualizations comparedwith the other methods are
shown in Figs. 1, 2, 3, 4, 5 and 6. It is important to notice
that cluster visualizations are unsupervised. Therefore, we
should focus on the colorless scatter plots and check whether
large-scale patterns (i.e. clusters) appear or not. The colors
in the sub-figures are only used for reference to verify the
alignment between clusters and ground truth classes.

We can see that SCEworks well for all six data sets. Com-
pared with other approaches, SCE shows several typically
compact clusters with clear separation among them. There-

fore it is easy to see the major clusters in all even if color is
removed (i.e. without supervised labels).

t-SNE fails for five of the six test data sets. For SHUTTLE,
IJCNN, TOMORADAR, the t-SNE layouts overall look like a
single diamond with too many small groups, where no major
clusters can be identified. For FLOW-CYTOMETRY the t-
SNE visualization is nearly a single ball, while for HIGGS it
is just a hairball. The only barely successful case is MNIST,
but there are still many data points that scatter between the
clusters, leaving the boundaries unclear.

LargeVis is slightly better than t-SNE. It correctly shows
ten clusters for MNIST. In the LargeVis visualizations of
SHUTTLE,IJCNN,TOMORADAR and FLOW-CYTOMETRY,

Fig. 1 Visualizations of the IJCNN data set by using the compared methods. The classes are shown by colors in the small sub-figures
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Fig. 2 Visualizations of the TOMORADAR data set by using the compared methods. The classes are shown by colors in the small sub-figures

we can also see some groups of data points. However, there
are still too many small groups, and it is hard to identify the
major clusters. LargeVis fails for HIGGS, where no clear
cluster is shown.

UMAP works better than t-SNE and LargeVis for some
data sets. It also correctly shows ten clusters for MNIST.
UMAP can separate the ten engine clusters for IJCNN. We
canbarely see severalmajor clusters in itsFLOW-CYTOMETRY
visualization. The method also successfully identifies sev-
eral clusters for HIGGS. However, UMAP does not work
well for SHUTTLE because there are many small groups
without a clear separation of major clusters. UMAP fails for
TOMORADAR, where no clustering pattern is found.

5.2 User study

Since visualizations are designed for human use, we have
performed a user study about the human choice amongGSNE
visualizations corresponding to a range of s values for seeing
clusters. We can then compare the resulting s values in SCE
and t-SNE to see which is closer to the human choices.

Wehaveused the four smallest data setsIJCNN,TOMORADAR,
SHUTTLE, and MNIST. For each data set, we have ranGSNE
with s = 10t · N−2, where t ∈ [−4, 6] for TOMORADAR and
t ∈ [0, 8] for the other data sets. These ranges of s valueswere
set to be wide enough from over-attractive to over-repulsive
such that meaningful s choices should take place in between.
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Fig. 3 Visualizations of the FLOW-CYTOMETRY data set by using the compared methods

The user interface of the study can be found in http://
clres.cs.hut.fi/ClAnalysis/webpage.html. For each data set,
the series of visualizations are presented to a user (see the
supplemental document Sect. 2 for a screenshot), where he
or she uses a slider to specify the s value and inspects the
corresponding pre-computed visualization. The user selects
a preferred s value for cluster visualization and then presses
the “Next” button. The system records the user choice, and
the study proceeds to the next series of visualization.

We first performed a controlled laboratory study, where
40 users came to the test computer room and gave their
evaluations. We later conducted a crowdsourcing user study,
following the established good practices of crowdsourc-

ing for visualization research (Borgo et al. 2017). Using
the crowdsourcing platform CrowdFlower,11 we collected
empirical data from a large and diverse population made up
of 300 participants. We then combined the data of the con-
trolled and crowdsourcing studies for the analysis, leading
to 340 answers for each data set. More details about the user
study can be found in the supplemental document, Sect. 2.

The results are shown in Fig. 7. The SNE choice of s
according to Eq. 3 is shown by blue dotted-dash lines. We
can see that the s chosen by SNE is on the right of the human
median (solid green line) for all data sets, which indicates

11 https://www.crowdflower.com/, now part of Figure-eight.
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Fig. 4 Visualizations of the HIGGS data set by using the compared methods

that, in human eyes, GSNE with a smaller s is often better
than t-SNE for cluster visualization. In contrast, the SCE
choice (red dash lines) are closer to the human median for
all four data sets.

5.3 Clustering quality

Cluster visualization is an unsupervised taskwhere the super-
vised labels are not available. Even if class labels are available
in some data sets, they are not necessarily aligned with the
intrinsic data clusters, for example, inSHUTTLE andHIGGS.

Here we have used an unsupervised approach to verify
the SCE clustering quality. We first manually clustered the

mapped data points in 2D space. Because most clusters are
well separated in the SCE visualizations, the manual clus-
tering is easy with little ambiguity. After the clustering, we
reordered the rows and columns of the input P matrix accord-
ing to the cluster labels and examined the nonzero entries
(blue dots) in Fig. 8. We can see blockwise diagonal pat-
terns in all plots, where each block corresponds to a cluster
in the visualizations. Moreover, the blue dots within clusters
are denser than those between clusters, which means SCE
achieves good clustering quality.
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Fig. 5 Visualizations of the SHUTTLE data set by using the compared methods. The classes are shown by colors in the small sub-figures. (Color
figure online)

6 Conclusions

We have presented a new nonlinear dimensionality reduction
method called Stochastic Clustering Embedding for better
cluster visualization. Our method modifies t-SNE by using
an adaptive and effective attraction-repulsion tradeoff. We
have tested our method in various real-world data sets and
compared it with other modern NLDR methods. The experi-
mental results show that ourmethod can consistently identify
the intrinsic clusters. Furthermore, we have contributed a
simple and fast optimization algorithm that can easily be
implemented in modern parallel computing platforms.

In this work, we have only considered the layout algo-
rithms which produce the embedding coordinates. The visu-
alization quality is also determined by the visual elements
such as dot sizes, colors, and opacity in the display. One
promising area for further research would be to incorporate
a cognitive usermodel,which could potentially improve clus-
ter visualization to a significant degree. Suchmodels could be
fitted with Approximate Bayesian Computation as shown by
e.g., Kangasrääsiö et al. (2017); Micallef et al. (2017) using
the efficient implementation of inference algorithms avail-
able in the ELFI Python package (Lintusaari et al. 2018).
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Fig. 6 Visualizations of the MNIST data set by using the compared methods. The classes are shown by colors in the small sub-figures. (Color figure
online)
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Fig. 7 The s values for cluster visualization: (gray bars) histogram of human choices, (green solid line) median of human choices, (red dash line)
SCE choice, and (blue dash dotted line) t-SNE choice. (Color figure online)
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Fig. 8 Visualization of the similaritymatrix P of the experimented data
sets usingMatlab spy function, where the rows and columns are sorted
by the manual cluster labels. Blue dots show the 1’s in the matrix and

white dots show the 0’s. Due to limited resolution, the figures shows a
uniform subsample 10% data points. (Color figure online)

Acknowledgements This work was supported by The Research Coun-
cil of Norway, Grant Number 287284, ERC Grant Number 742158, the
Academy of Finland (Flagship programme: FinnishCenter forArtificial
Intelligence FCAI), and UKRI Turing AI World-Leading Researcher
Fellowship, EP/W002973/1.We acknowledge for using the IDUN com-
puting cluster (Själander et al. 2019) provided at Norwegian University
of Science and Technology.

Funding Open access funding provided by NTNU Norwegian Univer-
sity of Science and Technology (incl St. Olavs Hospital - Trondheim
University Hospital).

Declarations

Conflict of interest Potential conflicts of interests in the reviewing pro-
cess: ntnu.no, aalto.fi, helsinki.fi, uio.no, nsl.fi, and sanger.ac.uk. The
research involved a user study on the s-value choice in GSNE. All
participants were informed about the tasks. We collected only results
from those who consented to the tasks. No identifying information or
personal privacy was recorded in the user study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Amari, S.: Differential-Geometrical Methods in Statistics. Springer,
Berlin (1985)

Belkina, A., Ciccolella, C., Anno, R., Halpert, R., Spidlen, J., Snyder-
Cappione, J.: Automated optimized parameters for t-distributed
stochastic neighbor embedding improve visualization and analysis
of large datasets. Nat. Commun. 10(5415), 1–12 (2019)

Borgo, R., Lee, B., Bach, B., Fabrikant, S., Jianu, R., Kerren, A.,
Kobourov, S., McGee, F., Micallef, L., von Landesberger, T.,
Ballweg, K., Diehl, S., Simonetto, P., Zhou, M.: Crowdsourcing
for information visualization: Promises and pitfalls. In: Archam-
bault, D., Purchase, H., Hoßfeld, T. (Eds.) Evaluation in the
Crowd.Crowdsourcing andHuman-CenteredExperiments, Cham,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   12 Page 14 of 14 Statistics and Computing            (2023) 33:12 

Springer International Publishing. pp. 96–138 (2017). ISBN 978-
3-319-66435-4

Chan, D.M., Rao, R., Huang, F., Canny, J.F.: Gpu accelerated t-
distributed stochastic neighbor embedding. J. Parallel Distrib.
Comput. 131, 1–13 (2019)

Chen, Y., Hakala, T., Karjalainen, M., Feng, Z., Tang, J., Litkey, P.,
Kukko, A., Jaakkola, A., Hyyppä, J.: Uav-borne profiling radar
for forest research. Remote Sens. 9(1), 58 (2017)

Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: Advances
in Neural Information Processing Systems (NIPS), pp. 857–864
(2003)

Kangasrääsiö, A., Athukorala, K., Howes, A., Corander, J., Kaski, S.,
Oulasvirta, A.: Inferring cognitivemodels from data using approx-
imate Bayesian computation. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI), pp.
1295–1306 (2017)

Lintusaari, J., Vuollekoski, H., Kangasrääsiö, A., Skytén, K., Järvenpää,
M.,Marttinen, P., Gutmann,M.U., Vehtari, A., Corander, J., Kaski,
S.: Elfi: engine for likelihood-free inference. J. Mach. Learn. Res.
19(16), 1–7 (2018)

McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approx-
imation and projection for dimension reduction. arXiv e-prints
(2018)

Micallef, L., Palmas, G., Oulasvirta, A., Weinkauf, T.: Towards percep-
tual optimization of the visual design of scatterplots. IEEE Trans.
Vis. Comput. Gr. 23(6), 1588–1599 (2017)

Richtárik, P., Takáč, M.: Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function.
Math. Program. 144(1–2), 1–38 (2011)

Schulz, A., Hinder, F., Hammer, B.: Deepview: visualizing classifi-
cation boundaries of deep neural networks as scatter plots using
discriminative dimensionality reduction. In: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 2305–2311 (2020)

Själander, M., Jahre, M., Tufte, G., Reissmann, N.: EPIC: An energy-
efficient, high-performance GPGPU computing research infras-
tructure (2019)

Tan, P., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to data
mining. Addison Wesley, Boston (2005)

Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-
dimensional data. In: Proceedings of International Conference on
World Wide Web (WWW), pp. 287–297 (2016)

van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J.
Mach. Learn. Res. 15, 3221–3245 (2014)

van derMaaten, L., Hinton,G.:Visualizing high-dimensional data using
t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information
retrieval perspective to nonlinear dimensionality reduction for data
visualization. J. Mach. Learn. Res. 11, 451–490 (2010)

Vladymyrov,M., Carreira-Perpiñán,M.: Linear-time training of nonlin-
ear low-dimensional embeddings. In: Proceedings of International
Conference onArtificial Intelligence andStatistics (AISTATS), pp.
968–977 (2014)

Yang, Z., Peltonen, J., Kaski, S.: Scalable optimization of neighbor
embedding for visualization. In: Proceedings of International Con-
ference on Machine Learning (ICML), pp. 127–135 (2013)

Yang, Z., Peltonen, J., Kaski, S.: Optimization equivalence of diver-
gences improves neighbor embedding. In: Proceedings of Inter-
national Conference on Machine Learning (ICML), pp. 460–468
(2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


