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4DenoiseNet: Adverse Weather Denoising From
Adjacent Point Clouds

Alvari Seppénen

Abstract—Reliable point cloud data is essential for perception
tasks e.g. in robotics and autonomous driving applications. Ad-
verse weather causes a specific type of noise to light detection
and ranging (LiDAR) sensor data, which degrades the quality
of the point clouds significantly. To address this issue, this letter
presents a novel point cloud adverse weather denoising deep learn-
ing algorithm (4DenoiseNet). Our algorithm takes advantage of the
time dimension unlike deep learning adverse weather denoising
methods in the literature. It performs about 10% better in terms of
intersection over union metric compared to the previous work and
is more computationally efficient. These results are achieved on our
novel SnowyKITTI dataset, which has over 40000 adverse weather
annotated point clouds. Moreover, strong qualitative results on
the Canadian Adverse Driving Conditions dataset indicate good
generalizability to domain shifts and to different sensor intrinsics.

Index Terms—Al-based methods, computer vision for
transportation, deep learning for visual perception, intelligent
transportation systems, visual learning.

I. INTRODUCTION

DVERSE weather conditions can have a huge impact on
A light detection and ranging (LiDAR) sensor data. Airborne
particles, such as rain droplets [1], [2], [3], fog [1], [3], [4]. [5],
or snowflakes [3], [6], [7], [8], [9] cause undesired reflections,
refractions, and absorptions of the laser, which results in missing
and cluttered points. This is a major problem since point clouds
are often used for determining the open volume of the envi-
ronment, e.g. autonomous robots use point clouds for obstacle
avoidance. Moreover, the clutter also affects other downstream
perception algorithms, such as object detection [10], [11], [12],
[13], which are an essential component of autonomous road
vehicles. Thus, robust perception data in adverse weather is
crucial as fatality rates for human drivers are notably higher in
such conditions, as reported by the European Commission [14]
and the US Department of Transportation [15].

Our task is to remove points from LiDAR point clouds that are
caused by airborne particles. The motivation for this is to provide
clean point cloud data for all downstream tasks e.g. mapping,
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localization, object detection, and navigation. Previous work
uses either a classical approach [16], [17], [18], [19], [20]
or a learned approach [21]. Unlike previous work, our work
utilizes spatial-temporal data as an input to a neural network.
We do this by feeding adjacent point clouds P©) € R"*3 and
P (-1 ¢ R™<3 to a novel neural network that predicts the points
that are caused by airborne particles. Then the predictions are
used for removing these points from the point cloud, yielding
a clean point cloud P®)'. The neural network architecture can
be optimized for multiple types of adverse weather e.g. rain,
fog, and snowfall. Moreover, our algorithm is also tested with
more challenging clutter caused by light, medium, and heavy
snowfall, whereas previous work [21] was tested only in fog
and rain. We obtained better performance than WeatherNet [21]
and general-purpose state-of-the-art semantic segmentation net-
works [22], [23]. Furthermore, the experiments show that our
model generalizes better to other adverse weather conditions.

The problem of removing noise caused by adverse weather
is not trivial because of the nature of the LiDAR sensor, the
sparsity of the point cloud, occlusions caused by the noise,
and the varying density of the noise. This leads to statistical
or hard-coded filters [16], [17], [18], [19], [20] to remove valid
points and preserve the clutter. To address this problem, we use a
deep learning architecture that learns an equivariance function.
A deep learning method is also able to utilize the complex
patterns of adverse weather noise. Due to the nature of the
LiDAR sensor, the reflectance and position of solid structures
affect the pattern of the noise. Our method is trained with partly
simulated semi-synthetic data. Since labels are “free lunch” from
the simulation, the training set can be built effortlessly, and our
model can be trained in a supervised manner. However, we want
to emphasize that our model is tested quantitatively with real data
captured in adverse weather. The tests indicate that our model
generalizes to real data and also to different sensor intrinsics.

We show that the key to robust adverse weather denoising is
the efficient utilization of spatial-temporal data. Spatial infor-
mation, in metric space, is useful because clutter has a relatively
low density. Temporal information is crucial because valid points
follow predictable trajectories. Contrarily, noise points caused
by airborne particles have a chaotic nature. Our architecture
exploits these phenomena by a k-nearest neighbor convolution
kernel that captures spatial-temporal information, and with a
motion-guided attention mechanism.

Our contribution is two-fold.

® We present the first deep learning approach for LiDAR

adverse weather denoising utilizing spatial and temporal
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information. This is realized with a novel k-nearest neigh-
bors search convolution on consecutive point clouds, which
captures spatial and temporal information. We surpass
existing methods in performance by a large margin, with a
lower computational cost.

® Since point-wise annotations are laborious, we train with
semi-synthetic data generated by a highly realistic physics-
based model [12]. That is, synthetic effects of adverse
weather are added to real point clouds captured in clear
weather. We are the first to use this data to train a model
and test its performance on real data, captured in ad-
verse weather. The excellent performance indicates that
our model is robust in this domain shift. Given the ex-
cellent performance, our model will be an essential com-
ponent in outdoor LiDAR sensor applications, enabling
clean perception data for all downstream tasks. Moreover,
we present the first point-wise annotated adverse weather
dataset, i.e. SnowyKITTI, based on this simulation model
which has approximately 40000 LiDAR scans.

II. RELATED WORK

Adverse weather denoising from sparse LiDAR point clouds
is an emerging field, and only a handful of studies have been
conducted. Dense point cloud denoising is a more established
field but the methods have not been tested for denoising adverse
weather in sparse point clouds. Therefore, we do not cover that
area of research.

A. Classical Approaches

Typically, the clutter caused by adverse weather has a rela-
tively low density. Radius outlier removal (ROR) and statistical
outlier removal (SOR), presented in [24], remove outliers based
on local density. ROR removes points that do not have another
point in distance . SOR computes the mean distance to k
nearest neighbors and decides if a point is an outlier based on
the global mean distance between the points and the standard
deviation. These methods do not work well with point clouds
that have inherently varying density, e.g. LIDAR point clouds
whose density is proportional to the measured range. This leads
to the removal of distant points, and therefore these methods are
not suited for adverse weather denoising.

Charron et al. [16] proposed dynamic radius outlier removal
(DROR) which adjusts the distance r based on the range of the
point from the sensor. They achieved good results in removing
points caused by snowfall. Dynamic statistical outlier removal
(DSOR) [17] combines SOR and DROR. It removes outliers
based on a threshold that is defined by the global mean distance
between the points and the standard deviation and the measured
range of the point. Low-intensity outlier removal (LIOR) [18]
is designed to remove points caused by snowfall. The threshold
is derived from LiDAR-measured intensity, and it is a function
of the measured range. LIOR includes the ROR filter for pre-
serving points that have low intensity but high density. That is,
LIOR takes advantage of the typical low intensity and density
of airborne snowflakes. However, valid points are removed
from light-absorbent and semi-transparent surfaces. Dynamic

distance—intensity outlier removal (DDIOR) [19] fuses DSOR
and LIOR to achieve better performance. Li et al. utilized spatial-
temporal features for removing points caused by snowfall [20].
They showed that temporal information is valuable in this task
by performing well compared to other methods. Their method
thresholds points to relative distances in W-T-space where W
and T denote spatial dimensions and time, respectively.

B. Learned Approaches

Since our method is based on segmentation with a neural
network, we present related work from this area. LIDAR point
cloud semantic segmentation networks are focusing on general
segmentation, and they can be trained to segment highly abstract
shapes. Most successful approaches use voxelized [23], [25],
bird’s eye view [26], or spherical projection input [27], [28], [29],
[30]. However, raw point input approaches exist as well [31],
[32], [33], [34], [35]. [36], [37], [38] Cylinder3D [23] parts the
point cloud into cylindrical voxels. Then a 3D convolutional
neural network extracts features and produces the predictions.
PolarNet [26] uses a bird’s eye view pseudo image representation
for feature extraction. Spherical projection image input is benefi-
cial for memory usage because of the dense representation [22],
[39]. Another benefit of the projection image is that a 2D
convolutional neural network can be used for feature extraction.
However, 2D convolution kernels fail to capture local spatial
information accurately due to the nature of the projection. Work
by Xu et al. combines projection, voxel, and point inputs to
produce more accurate segmentation results [40].

The semantic segmentation networks are well-proven and
general-purpose. Thus, they can be trained for segmenting the
clutter caused by adverse weather. However, they require a lot
of labeled training data, memory, and computational power
due to the enormous amount of trainable parameters. Recent
work by Heinzler et al. [21] proposed the WeatherNet, an opti-
mized semantic segmentation network for segmenting the clutter
caused by fog and rain. Their method has a significantly lower
amount of trainable parameters while having equal or even better
performance compared to the state-of-the-art general-purpose
segmentation networks. While their work is focused on seg-
menting the clutter caused by rain and fog, our method presents
a novel spatial-temporal feature encoder and benchmarks the
performance of light, medium, and heavy snowfall, which causes
more severe clutter. Furthermore, our method has only 0.6 M
trainable parameters while theirs has 1.5 M. Therefore, our
method generally requires less labeled data and generalizes
better.

ITII. METHODS
A. Ordered Point Cloud Representation

Point coordinates from a typical LiDAR sensor ¢ = (z, v, z)
aremapped " : R"*3 — R®»*¢w*3 to spherical coordinates, and
finally to image coordinates, as defined by

1/2(1 — tan~ (yz 1) 1)sy,

U= 1
H [(1 — Gl + o) o]
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Fig. 1. A highlight of an issue of a 2D-convolution on a spherical projection
image. It fails to capture local points in metric space, whereas kNN-convolution
captures local points, which is important in our task as the clutter is not
continuous on the projection image.
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where (sp, sy are the height and width of the desired projection
image representation, f;, is the total vertical field-of-view of the
sensor, and f,p is the vertical field-of-view spanning upwards
from the horizontal origin plane. The resulting list of image
coordinates is used to construct a (z,y, z)-channel image i.e.
ordered point cloud P, € R®»*4w*(3+C1) where C; denotes
the number of feature channels, in our case, Cf = 1 for intensity.

B. Utilization of Spatial Information

Classical methods DROR [16], DSOR [17], and DDIOR [19]
show that local point density is a useful indicator for determining
if a given point is caused by an airborne particle. Therefore,
enabling the neural network to capture this information is cru-
cial. Since our method is projection-based and a traditional
convolution fails to capture local points [41], a measure has to be
taken. We define the first convolution layer to capture k-nearest
neighbors (kNN) in metric space via kNN-convolution. An
illustrative schematic is presented in Fig. 1. This convolution
kernel considers the closest k points in the metric space instead
of the neighboring points based on the pixel coordinates, en-
abling better spatial information for the network. To mitigate
the computational burden of the KNN-search, we search only in
the neighboring area of the anchor point in the ordered point
cloud. We show an improvement compared to a traditional
convolution in an ablation study (Section I'V-C). For simplicity,
a pixel coordinate is denoted as

= (w,v). 2
The spatial-kNN-convolution becomes

k

() =wxPY =" w(dp) - PP ()05 )
8p=0
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Fig. 2. The Temporal-kNN-kernel capturing temporal information. Distribu-

tions given by d = a — k(*=1), in the spherical coordinate system, are smoother
for a set of points with a uniform motion. On the contrary, a set of points caused
by a nonuniform motion are more random.

where w denotes trainable weights and () is defined as

(@) = argmink (|PY (F—£€.....7+€) —PL@) @

where argmink(-) returns indicies of minimum-k elements, and
ng,») denotes the range channel. é’ is a hyperparameter that
defines the number of elements that are considered in the KNN-
search. Gathered kernel inputs are activated witha Re LU (©(p))
function.

C. Utilization of Temporal Information

The effects of adverse weather in LiDAR point clouds have
a more chaotic nature than valid points. This is caused by a
reflection of the beam from an airborne particle. The reflections
caused by these particles are more unpredictable since they are
small and are moved by turbulent airflow. This chaotic behavior
is on a much smaller scale in other points. Thus, temporal
information can be utilized in our task. An empirical study shows
that a reflection from an airborne particle, e.g. snowflake, is
extremely unlikely to be occurring twice in the same place. That
is, a single beam reflected from an airborne particle is highly
unlikely to occur in the adjacent scan for a given beam, whereas
reflections of other surfaces are more predictable.

As illustrated in Fig. 2, we capture temporal information by
searching for a kINN-set of points from a previous point cloud
P(#1 using anchor points a € R*»*=*3 je. the Cartesian
channels of the current point cloud P(*), Similarly to the P
kNN-search, the search considers only the neighboring area
in the ordered point cloud. The temporal-kNN-convolution is
defined as

AP) =wa +d

k
= Y wa(0p)- (a®) — PSP ®a@))(05) (5)

ap=0
where ¥4 (7) is defined as

Ya(®) = argmink ([PSVF-E,...5+8 - PO@) ).
(©6)
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d € RF*#r>¢wx3 j5 an approximation of the motion of a local
manifold. d is converted from Cartesian into a spherical co-
ordinate system to have a more relevant representation of the
data, i.e. r and (#, ¢) are the magnitude and the direction of the
motion, respectively,

R3 — B3
ta {(a:,y, 2) = (1,0,9), @

this is done before convolving with wa. Similarly to the
spatial-kNN-convolution, kernel output is activated with a
ReLU(A(p)) function.

D. Neural Network Design and Training

Based on the above insights, a function that captures both
spatial and temporal features should have superior performance
over its counterparts. We approximate this function by a novel
neural network, namely 4DenoiseNet (Fig. 3), where 4D is a
reference to time as the fourth dimension. It has two branches:
spatial and temporal. The spatial branch processes the spatial
features of the current point cloud P(*), and the temporal branch
processes the temporal features of the previous point cloud
P (-1, The spatial branch has a kNN-convolution block that
captures kNN for each point. The kNN-search is also computed
in the temporal branch. However, anchors are provided by the
spatial branch and subtracted from the kNN points of the pre-
vious point cloud P(*-1), This captures temporal information
as illustrated in Fig. 2. Both branches have a residual block
for encoding, inspired by the work of Cortinhal et al. [22] and
Aksoy et al. [42]. The branches are fused by the motion-guided
attention (MGA) block, which fuses temporal features with
spatial features using the motion-guided attention mechanism,
described in [43]. After another residual block, a pixel shuffle

4DenoiseNet architecture. K, D, and BN indicate the kernel size, dilation, and batch normalization, respectively.

decreases channel dimension and increases spatial dimensions.
The residual block’ connects the skip connection from the spatial
branch with the main pipeline. A standard convolution and
Softmax normalization layers give us the desired logits. Finally,
a mask module M removes points caused by airborne particles
us(it;g the Softmax confidences, giving us a clean point cloud
P®,

Training objective is a standard cross-entropy and Lovisz-
Softmax loss [44], which optimizes for the Jaccard index [45]
i.e. intersection over union (IoU) metric

1

1o = 3 B7(m(c)) and
e
f1-ai(0), ife=wilo)
mi(c) = {xi(c), otherwise. ®)

where the number of classes in denoted with C, A;_ defines
the Lovdsz extension of the Jaccard index, y;(c) € {0,1} and
z;(c) € [0,1] hold the ground truth label and the prediction of
pixel ¢ for class c, respectively. The complete loss function is
formulated as follows

L= Lls + ‘Gce (9)

where L., denotes the standard cross-entropy loss.

IV. EXPERIMENTS
A. Experimental Setup

Datasets: We conduct qualitative tests on the Canadian Ad-
verse Driving Conditions dataset [46]. It is captured in real-
world adverse weather conditions which include light, medium,
heavy, and extreme snowfall. Since this dataset does not have



TABLEI
DEFINITIONS OF DIFFERENT ADVERSE WEATHER CONDITIONS AND TRAINING
SUBSETS
Classification | Light Medium Heavy
Snowfall rate [0.5,1.5] [1.5,2.5] [2.5,3.0]
Terminal velocity | [1.0,2.0] [1.0,2.0] [1.0,2.0]
All v v v
Subset 1 v v -
Subset 2 v - '
Subset 3 - v v
Subset 4 - - v
Subset 5 - v -
Subset 6 v - -

point-wise annotations, we train our model on our SnowyKITTI
dataset. SnowyKITTI is a modified KITTI odometry bench-
mark dataset [47] with synthetic snowfall created with a highly
realistic physics-based simulation model presented in [12].
SnowyKITTI is divided into training, validation, and testing
splits with a ratio of 40/10/50. We also evaluate our model
with the SnowyKITTI testing set. Testing and validation sets
are different sequences compared to the training set. Further-
more, the training set is divided into subsets depending on the
parameters of the snowfall simulation. The subsets are described
in Table I. This is done to investigate the generalizability of the
models. That is, a network is trained only with e.g. light snowfall
conditions and tested in all conditions. We have created a diverse
selection of training subsets that validate robust performance
across a wide range of adverse weather conditions.

Evaluation metrics: We use the Jaccard index [45] i.e. IoU,
which is formulated as follows

_Hy=cnix=c}|
Jc(Y: X) - _ _ "
Hy =cu{x=c}|
where y and x denote ground truth and predicted labels, respec-
tively. We are only interested in the IoU value of the noise class.
Thus, from here forward IoU is for noise class.

Training and inference details: The parameters of the network
are optimized with the Adam optimizer [48]. We fix the spatial
dropout probability to 0.2. The initial learning rate is set to
0.01 which is decayed by 0.01 after each epoch. An L2 penalty
is applied with A = 1-10* and a momentum of 0.9. Data is
augmented by randomly dropping points before creating the pro-
jection, applying a random translation and rotation, and flipping
randomly relative to the y-axis. These augmentation methods are
applied independently of each other with a probability of 0.5.
Inference runtime is benchmarked with an Nvidia GTX 1060
GPU.

The code and the data are made publically available here.!

(10)

B. Quantitative Results

The main results are presented in Table II. Our 4DenoiseNet is
compared with the other adverse weather filtering model Weath-
erNet [21], and with general-purpose state-of-the-art semantic
segmentation networks [22], [23]. The models are evaluated

![Online]. Available: https://github.com/alvariseppanen/4DenoiseNet
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TABLE 11
TRAINED WITH ALL CONDITIONS. GPU: NvIDIA GTX 1060, CPU: 4.0 GHz
INTEL 15-7600 K 5TH GENERATION

Light Mediumm Heavy | Runtime  Param.

Method U U  IoU ms 108

DROR* [16] 0.442 0.445 0.437 120 10-%

LIOR* [18] 0.445 0.442 0.430 120 10~%
SalsaNext [22] 0.947 0.947 0.951 26 88
Cylinder3D [23] | 0.949 0.943 0.942 65 41.7
‘WeatherNet [21] | 0.884 0.889 0.865 44 1.5
4DenoiseNet | 0.975 0.976 0.977 | 19 0.6

* - No training required. Bolded font indicates the best values.

in terms of Jaccard index, runtime, and parameter count in
Light, Medium, and Heavy snowfall. Furthermore, the models
are trained with different subsets (Table I) to investigate gener-
alizability to conditions differing from training conditions. All
learned models in Table II are trained and tested with all con-
ditions, albeit training and testing do not share any sequences.
The training set is 80% of the size of the testing set as described
in Section I'V-A. Overall our model performs the best in both
accuracy and runtime. Moreover, our model has fewer trainable
parameters compared to the other learned models. There is
a large gap in accuracy between classical DROR and LIOR
compared to learned approaches, highlighting the difficulty of
this task.

Fig. 4 presents the performance when models are trained with
different training subsets. It should be noted, that the testing
sets are separate from the training sets. In the figure, the x-axis
presents which training set was used. Most notably, our model
is the most robust as there is a smaller variance in IoU compared
to other models. When trained with Subset2, SalsaNext is on par
with our model. We hypothesize that it is more unlikely to overfit
with Subset2 because it has more variance in conditions. This
hypothesis is supported by the performance with Subset5 where
the performance of SalsaNext is lower. When the other models
are trained with all conditions, their performance is lower, this
might be caused by conditions imbalance of the dataset, which
causes the models to overfit to the most frequent condition.
However, our model performs the best when trained with all
conditions in Medium and Heavy snowfall.

C. Ablation Study

To study the importance of spatial-temporal kNN-
convolution, we conducted an ablation study where four 4De-
noiseNet variants were compared. Table III describes the vari-
ants and their performance, runtime, and the number of trainable
parameters. The kNN-convolution module was replaced with
a traditional 2D convolution layer. In the variants without the
temporal branch, MGA is not used, and the spatial branch con-
nects straight to the second residual block. Based on the ablation
study, the spatial kNN-convolution increases the performance
slightly more than the temporal kKNN-convolution. Overall, both
spatial and temporal kNN-convolution modules improved the
performance significantly.
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Quantitative results on the Light, Medium, and Heavy test sets with different training sets (Table I). The performance of 4DenoiseNet remains high

(a) Light

Fig. 5.
image pair, respectively. We suggest zooming in for better detail.

D. Qualitative Results and Discussion

We conducted qualitative tests on real LiDAR data captured
in adverse weather. The data is from the Canadian Adverse
Driving Conditions dataset [46]. The performance was analyzed
in snowfall as it causes more noise to the point cloud compared
to other conditions. Fig. 5 illustrates the denoising performance.
The reader should focus on the framed image pairs, where the
image on the left side is the raw input, and the image on the right
side is the denoised output. In medium and heavy snowfall, some
objects are not visible in the input point cloud, but after applying

(b) Medium

(c) Heavy

Denoising performance on 6 individual sample point clouds from real snowfall. Raw input and denoised output are on the left and right sides of each

our algorithm they are clearly visible. Based on visual analysis,
our model does not seem to remove valid points albeit being
sparse (see the first Medium pair).

To further highlight the challenge of this task, the LIDAR used
from this dataset has different intrinsic parameters compared
to the LiDAR used for training. The training LiDAR has a
vertical resolution of 0.44°. The testing LiDAR has a vertical
resolution of 1.25°. This means that the training point clouds
are denser compared to the testing point clouds. Furthermore,
the performance on the domain shift improves when the intensity
channel is omitted. The trained models that we tested (Table II)
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TABLE III
ABLATIONS OF DIFFERENT MODULES AND THEIR CONTRIBUTION TO THE IoU
AND RUNTIME

First P Light Medium Heavy | Runtime Param.
conv. 71| ToU IoU ToU ms 103
2D - | 0599 0566 @ 0562 8 477.84
2D v | 0676 0654  0.666 13 568.92
kNN - | 0882 0864 0866 16 480.53
KNN v | 0975 0976 0977 | 19 571.61

Our KNN-convolution module is replaced with a traditional 2-dimensional
convolution (first conv. 2D) on the ordered point cloud. v'Indicates that
previous point cloud P-; and the temporal branch are used.

get biased on the intensity. Therefore, we omitted the intensity
channel and trained our model with (r, z, y, z)-input channels.
After this, the model generalizes well to the real data. Note
that the intensity channel was not omitted in the quantitative
experiments.

V. CONCLUSION

We presented 4DenoiseNet, the first deep learning algorithm
for adverse weather denoising on adjacent LIDAR point clouds.
Quantitive results on our annotated SnowyKITTI dataset, qual-
itative results on the Canadian Adverse Driving Conditions
dataset, and runtime indicate that our model is the new state-of-
the-art on adverse weather denoising. 4DenoiseNet is based on
the spatial-temporal KNN-convolution module that is presented
in this work. We show via ablation study the importance of spa-
tial and temporal information in metric space in adverse weather
denoising tasks. Given the light computational demand and the
performance, our algorithm will be an essential component in
outdoor LiDAR applications, enabling clean point cloud data
for all downstream tasks. For more qualitative results we refer
to our repository page 1.
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