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Smooth poly-hypar surface structures: freeform shells based on 
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          Abstract 
This article presents a new approach to the design of freeform shells--smooth poly-hypar surface 

structures.  As combinations of hyperbolic paraboloids (hypars), smooth poly-hypar surfaces are ruled locally, 

while globally appearing to be continuous freeform. The double curvature of the individual hypar modules and 

the smooth connections (G1 degree) between them ensure global bending-free structural behavior, while the 

ruled geometrical property of these surfaces allows the relatively lost cost construction. In this article, the 

structural performance of smooth poly-hypar surface is calculated on two levels with graphic statics: the 

distribution of internal forces within an individual hypar, and the combination of hypars.  It also defines two 

geometrical constraints of a smooth poly-hypar surface: the coplanarity principle and load paths, which ensure 

the visual smoothness of the surface and limit only membrane forces transmitted within the global surface. 

Moreover, several built case studies are presented as applications of smooth poly-hypar surfaces in 

architectural design, which also show the ease of construction of this new type of double-curved freeform 

surface. 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction  

1.1 Freeform surface structures  

Since the beginning of the 1990s, freeform surfaces have started appearing frequently in architectural 

design. Such tendency towards form smoothness was derived from the theory of continuity (Lynn, 1993), 

and interacted with the simultaneous revolution in computer technology, finally aroused a discourse of 

new architectural forms in digital times (Carpo, 2014) . However, in most cases, freeform surfaces were 

shallowly treated as a symbol of new digital forms, while the multiple influencing technical factors were 

ignored. As a result, a series of technical problems in structural performance and construction were raised. 

In this case, different approaches in structural and geometrical optimization were explored to improve 

the structural performance and reduce the construction difficulties of freeform surfaces. From a 

structural point of view, shells developed from the form-finding method by structural artists (Chilton, 

2000) such as Heinz Isler, Sergio Musmeci, and among others were rediscussed in new structuralism to 

understand the relationship between structural performance and freeform geometry (Oxman & Oxman, 

2010). However, these form-finding methods are generally carried out considering given dominant load 

cases, the resulting freeform shells are only bending-free for a specific load configuration. Moreover, due 

to their non-developable geometry, there remains quite a lot of difficulties in construction.  

Approaches in another direction mainly aimed to reduce energy cost and technical complexity in 

constructions, by discretizing the freeform surface as a group of developable strips (Flöry, et al., 2013), or 

approximate freeform surface by A-nets, also referred to as hyperbolic nets (Craizer, et al., 2009), 

(Käferböck & Pottmann, 2013), (Emanuel & Thilo, 2014). These explorations simplified the undevelopable 

freeform surfaces into the descriptive geometry, thus reduce the complexity of freeform during the 

construction process. However, the relevant consideration in structural performance is still missing in 

these researches. 

Among these researches, the A-net is a special geometry combined from a group of hyperbolic 

paraboloids(hypars), whose edges intersecting at one node are always coplanar (Emanuel & Thilo, 2014), 

(Käferböck & Pottmann, 2013). Its basic modules, hyperbolic paraboloids(hypars), due to the high 

structural performance and construction convention, were applied by several structural engineers and 

architects of the 20th century in the design of double-curved shells. As shown by the remarkable work of 

Felix Candela (Mendoza, 2011) (Garlock & Billington, 2008), Eduardo Torroja (Adriaenssens, et al., 2012), 

Pier Luigi Nervi (Bergdoll, et al., 2010), among others, hypars can be effectively used for the design of 



complex shell structures. Recently, more researches are developed to explore the discontinuous 

combinations of hypars in architectural design (Blanco, 2021). 

In the existing precedents, hypars are generally combined through folds (Figure 1), which visually lead to 

interruptions of surface smoothness, and structurally cause stiffening beams to resist bending actions at 

the folds (Apeland, 1962), (Billington, 1965), (Ramaswamy, 1968), (Mueller, 1977) (Schnobrich, 1971), 

(Schnobrich, 1988a), (Schnobrich, 1988b), (Domingo, et al., 1999), (Shengzhe Wanga, 2020). However, 

once the structural advantage of hypars is combined with the geometrical potential of A-nets, an 

innovative approach can be developed to design structurally informed freeform surfaces. Architectural 

intentions for smoothness, structural requirements for efficiency, and production demands for the 

economy could all be combined with the help of a new type of freeform surface structures — smooth 

poly-hypar surface structures (Cao, 2019) (Cao, et al., 2021).  

  

Figure 1: Los Manantiales restaurant designed by Felix Candela. (Faber, 1963). The folded edges of hypar are stiffened with 
beams.  

  

1.2 Smooth poly-hypar surface structures 

From a geometrical point view, smooth poly-hypar surfaces are a special type of A-nets or parabolic nets 

(Käferböck & Pottmann, 2013). Comparing with A-net, the additional geometrical constraints of a smooth 

poly-hypar surface results from the requested structural efficiency (section 3.1), called coplanarity 

principle. It differentiates the smooth poly-hypar surface from A-nets, which only ensure edges of hypars 

intersect at one node are coplanar (Cao, 2019). 



                           
(a)                                                                  (b) 

Figure 2: Smooth poly-hypar surfaces is a special type of A-net. (a) They are locally ruled, (b) while globally are smooth 
freeform. 

 

 

Figure 3 : Following the coplanarity principle, rulings and edges (such as hm
1, hm

2 and BD)of two adjacent hypars intersecting 
at one point are always coplanar. 

For two adjacent hypars to satisfy the coplanarity principle, the edges of the hypars, represented as 

vectors, should satisfy the following linear combination (Figure 3 , with k, j, l scalars and k<0 ), (section 

3.1):  

𝐷𝐷𝐷𝐷�����⃗ = 𝑘𝑘𝐷𝐷𝐷𝐷�����⃗  +𝑗𝑗𝐷𝐷𝐷𝐷�����⃗               𝐷𝐷𝐶𝐶�����⃗ = 𝑘𝑘𝐷𝐷𝐶𝐶�����⃗ + 𝑙𝑙𝐷𝐷𝐷𝐷�����⃗  

(1-1) 

Geometrically, this coplanarity principle ensures the smooth connection between different hypars. Such 

smoothness satisfies the second-order of continuity - i.e. G1 continuity and tangency (Mortenson, 2006), 

(Figure 3a). When j= l ≠0 in (1-1), the smoothness between two adjacent hypars can reach G2 degree 

(Figure 3b); when j= l =0 in (1-1),  it can reach G3 degree(Figure 3c). While in the case of G0 degree, two 

adjacent hypars cannot satisfy the coplanarity principle (that’s case in the work of Felix Candela ) , there 



will be bending moment at the shared edges of two adjacent hypars, the geometry is not a smooth poly-

hypar surface.  

Benefiting from the nature of the individual hypars as ruled surfaces, a smooth poly-hypar surface is 

globally freeform, but it is locally ruled (Figure 2,Figure 3).  This special geometrical property enables the 

aesthetic expression in architectural design, and also allows the construction convenience. 

   

(a)                                                       (b)                                                                                      (c) 

Figure 3: The smoothness between two adjacent hypars in a smooth poly-hypar surface. (a) G1 degree. (b) G2 degree. (c) G3 
degree. 

 

1.3 Graphic statics 

The structural analysis of single hypar and smooth poly-hypar surfaces developed in the following sections 

are entirely based on graphic statics. Graphic statics is an equilibrium-based approach that relies on the 

theory of plasticity (Muttoni, et al., 1997). As a synthetic vector-based structural analysis and design 

method, it can be described as a set of geometric procedures based on vectors and projective geometry 

(Maxwell, 1864) (Culmann, 1866) (Cremona, 1890).   These geometrical and vectorized properties of 

graphic statics enable it to become the best mediate to present the relation between forms and forces 

(Edward & Wacław, 2010), especially in the analysis of hypar geometries, in which the curved surfaces 

can be represented as groups of vectors (straight rulings), (Figure 4). 

 

1.4 Content 



Generally, the remainder of the article explains in detail the geometrical and structural properties of an 

individual hypar and its combinations, smooth poly-hypar surfaces. Then, the advantages of this new type 

of freeform shells in constructions are explained with several built projects. 

In section 2, the geometrical definition of a hypar is presented at first. Based on the geometrical and 

vectorized representation of a hypar, the structural behavior of a hypar is analyzed in detail with graphic 

statics. Found on the conclusion from section 2,  section 3  shows explains two constraints to join hypars 

into smooth poly-hypar surfaces, which avoid local bending moments meanwhile ensure the global 

equilibrium of the surface structures. Afterward, a smooth poly-hypar shell is exemplified to calculate its 

internal forces and reactions in equilibrium.  Section 4 presents the application of smooth poly-hypar 

surfaces in several built prototypes, to show their efficiency in fabrications. Eventually, in the last section, 

some conclusions are drawn on the main advantages of smooth poly-hypar surfaces in terms of structural 

performances and fabrication efficiencies. The future potential to optimize the performance of existing 

freeform geometries with the approximation of smooth poly-hypar surface is also mentioned. 

 

2. Hypar as a module of smooth poly-hypar surfaces 

To find out the most efficient way to join hypars into bending-free surfaces (smooth poly-hypar 

surfaces), this section will study the geometrical properties and structural behavior of an individual 

hypar with graphic statics at first. 

2.1 Geometry of a hypar  

This subsection defines in detail the important geometrical objects within a hyperbolic paraboloid (hypar), 

such as ruling, parabolas, and the axis, which are closely related to the structural performance and 

construction efficiency of hypar geometries. At the end, the important geometrical terms are defined as 

formulas of ruling vectors, which are helpful to analyze the structural performance of hypar geometries 

with graphic statics in the section 2.2 and section3. 

A hypar can be constructed geometrically after defining four non-coplanar points A, B, C, and D (Figure 

4). Every two consecutive points are connected by an edge of a hypar. The vector from the middle point 

of diagonal BD to the middle point of diagonal AC is the axis 𝑟𝑟 of the hypar, which passes through the 

center O (Figure 4). When planes parallel with plane AOr and plane BOr intersect a hypar, the intersecting 

curves define two sets of parabolas. The axes of all the parabolas of a hypar are always parallel to the axis 



𝑟𝑟(Figure 4). Axis 𝑟𝑟 is a fundamental geometrical parameter of the hypar and it is directly related to its 

structural behaviour, as it indicates the direction of loads which can be taken by the parabolas of a hypar. 

The planes Ohr and Oir are parallel to edges AD, BC, and AB, DC respectively, (Figure 4b). When a hypar 

intersects with planes parallel to the plane Ohr,  one set of straight rulings hm can be obtained. And 

another set of rulings in are the intersecting lines of the hypar and planes parallel to the plane Oir, (m, n 

∈ Z), (Figure 4). To directly relate the geometry of a hypar to its internal forces and reactions,  a coordinate 

system with origin O and three coordinate axes r, h, and i  (Figure 4, the dot products ℎ�⃗ · 𝐶𝐶𝐷𝐷�����⃗  > 0, 𝚤𝚤 · 𝐷𝐷𝐶𝐶�����⃗  > 

0)  is set up to represent the hypar surface as two family of ruling vectors: ℎ�⃗ 𝑚𝑚 ,𝚤𝚤𝑛𝑛 (m, n ∈ Z ) , assuming 

there are 2N rulings in each family,( N ∈ Z ). 

 

(a)                                                                                          (b) 

Figure 4: (a) A hypar defined by four non-coplanar points, there are two sets of parabolas and axis 𝑟𝑟 in a hypar. (b)The surface 
is defined by two sets of vectors in a coordinate system with origin O and three coordinate axes r, h, and i . 

 

Axis 𝑟𝑟 can always be represented as a linear combination of two vectors in the same family, which can be 

proven as shown below: 

It is trivial that in Figure 4, vector 𝑟𝑟 can be written as the sum of vectors 𝐷𝐷𝐷𝐷�����⃗ , 𝐷𝐷𝐷𝐷�����⃗  and 𝐶𝐶𝐷𝐷������⃗ : 

 𝑟𝑟  =
1
2
𝐷𝐷𝐷𝐷�����⃗ + 𝐷𝐷𝐷𝐷�����⃗ +

1
2
𝐶𝐶𝐷𝐷������⃗  (2-1) 



 

By replacing vectors 𝐷𝐷𝐷𝐷�����⃗ , 𝐶𝐶𝐷𝐷������⃗  as sums of vectors ℎ�⃗ 𝑁𝑁, ℎ�⃗ −𝑁𝑁, 𝚤𝚤𝑁𝑁, 𝚤𝚤−𝑁𝑁, (2-1) can be simplified and represented 

as : 

 
𝑟𝑟  =

ℎ�⃗ 𝑁𝑁
2
−
ℎ�⃗ −𝑁𝑁

2
 (2-2) 

Or : 

 
𝑟𝑟  =

𝚤𝚤𝑁𝑁
2
−
𝚤𝚤−𝑁𝑁
2

 (2-3) 

If there are any two rulings ℎ�⃗ 𝑛𝑛 and ℎ�⃗ 𝑚𝑚 , as it is showed in Figure 5, ℎ�⃗ 𝑛𝑛 can be always represented as the 

sum of ℎ�⃗ 𝑚𝑚, 𝚤𝚤𝑁𝑁, and  𝚤𝚤−𝑁𝑁: 

 ℎ�⃗ 𝑛𝑛 =
𝑚𝑚− 𝑛𝑛

2𝑁𝑁
𝚤𝚤−𝑁𝑁 + ℎ�⃗ 𝑚𝑚 −  

𝑚𝑚− 𝑛𝑛
2𝑁𝑁

𝚤𝚤𝑁𝑁 (2-4) 

 

 
Figure 5:linear relation of rulings ℎ�⃗ 𝑛𝑛, ℎ�⃗ 𝑚𝑚, 𝚤𝚤𝑁𝑁, and  𝚤𝚤−𝑁𝑁. 

 

Rearranging (2-4) and substituting it for 𝚤𝚤𝑁𝑁 − 𝚤𝚤−𝑁𝑁 in (2-3), gives 𝑟𝑟 as a linear combination of ℎ�⃗ 𝑚𝑚, ℎ�⃗ 𝑛𝑛 : 

  ℎ�⃗ 𝑛𝑛  − ℎ�⃗ 𝑚𝑚 =
𝑛𝑛 −𝑚𝑚
𝑁𝑁

𝑟𝑟 (2-5) 

Similarly,  𝑟𝑟 can also be represented as a linear combination of  𝚤𝚤𝑛𝑛 ,  𝚤𝚤𝑚𝑚: 



  𝚤𝚤𝑚𝑚  − 𝚤𝚤𝑛𝑛 =
𝑚𝑚− 𝑛𝑛
𝑁𝑁

𝑟𝑟 (2-6) 

With (2-5) and (2-6), the two important characters of a hypar -- doubly ruled and doubly curved (two sets 

of rulings and two sets of parabolas) -- are related with each other through formulas of ruling vectors and 

axis 𝑟𝑟. It is helpful to represent all the internal forces and reactions of a hypar by two sets of ruling vectors 

in the next steps in section 2.2. 

 

2.2 Hypar as a shell in equilibrium 

Based on the geometrical properties mentioned above, the internal forces and reactions within a smooth 

poly-hypar surface can be analyzed and controlled using vector-based graphic statics (D′Acunto, et al., 

2019). In this section, a single hypar in an arbitrary position is implemented as a strut and tie model, 

describing the structural behavior as subsystems in equilibrium. The analysis in this subsection prepares 

the structural basis to combine single hypars into bending-free surfaces (smooth poly-hypar surfaces) in 

section 3. 

To study the relation between the geometry and the structural behavior of a hypar, a coordinate system 

(Section 2.1) is introduced to represent all rulings hm, in as ruling vectors ℎ�⃗ 𝑚𝑚 ,𝚤𝚤𝑛𝑛 (m, n ∈ Z), and to number 

the nodes with coordinates h and i (Figure 6). In the end, all the internal forces and reactions of a hypar 

can be represented as formulas of ruling vectors ℎ�⃗ 𝑚𝑚 ,𝚤𝚤𝑛𝑛 . 

 

Compression  
Tension  
Load  
Reaction  
Ruling/Axis component  

Table1: in this paper, the main structural terms are represented in colored graphic. 

 

2.2.1 Redistribution of loads 



In a classical hypar with an axis 𝑟𝑟 parallel to gravity, all the weight of a hypar are taken by two sets of 

parabolas (Candela, 1951) (Apeland, 1962). However, when the axis 𝑟𝑟 of a hypar is not parallel to gravity, 

the redistribution of loads in the surface is more complicated.  

Assuming there are 2N rulings in a hypar (N ∈ Z), the total weight of a hypar is split into N2 patches. To 

simplify the calculations, the weight of each patch is considered as the same, then combined as a point 

load �⃗�𝑔 applied at the center of each patch (Figure 6a). A point load applied at any node (m,n) can be 

divided into three components (Figure 6b): ruling components 𝑓𝑓ℎ(𝑚𝑚,𝑛𝑛) and 𝑓𝑓𝑖𝑖(𝑚𝑚,𝑛𝑛) parallel to ruling vectors 

ℎ�⃗ 𝑚𝑚 and 𝚤𝚤𝑛𝑛 respectively, and axis components 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) parallel to axis 𝑟𝑟 of the hypar. In this way, it ensures 

all the loads can be transmitted always in the surface. 

Below explains in detail how to calculate these three components 𝑓𝑓ℎ(𝑚𝑚,𝑛𝑛),𝑓𝑓𝑖𝑖(𝑚𝑚,𝑛𝑛) and 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛)  at any node 

(m,n). 

 

                           
(a)                                     (b) 

Figure 6: (a) A hypar is split into N2 patches, the weight of each patch is combined as a point load �⃗�𝑔 applied at the centre of 

each patch. (b) A point load applied at any node (m,n) can be divided into three components: ruling components 𝑓𝑓ℎ(𝑚𝑚,𝑛𝑛) and 

𝑓𝑓𝑖𝑖(𝑚𝑚,𝑛𝑛) parallel to ruling vectors ℎ�⃗ 𝑚𝑚 and 𝚤𝚤𝑛𝑛 respectively, and axis components 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) parallel to axis 𝑟𝑟 of the hypar. 

Assuming a point load �⃗�𝑔  at origin O, it can be split into three load components concerning the scalars a, 

b, c of vectors ℎ�⃗ 0, 𝚤𝚤0 and 𝑟𝑟 : 



 �⃗�𝑔 =  𝑎𝑎ℎ�⃗ 0 + 𝑏𝑏𝚤𝚤0 + 𝑐𝑐𝑟𝑟  (2-7) 

Similarly, for a point load �⃗�𝑔 at any node (m,n),  the three load components can be expressed in relation 

to the scalars a(m,n), b(m,n), and c(m,n) of vectors ℎ�⃗ 𝑚𝑚, 𝚤𝚤𝑛𝑛 , and 𝑟𝑟 : 

 �⃗�𝑔 =  𝑎𝑎(𝑚𝑚,𝑛𝑛)ℎ�⃗ 𝑚𝑚 + 𝑏𝑏(𝑚𝑚,𝑛𝑛)𝚤𝚤𝑛𝑛 + 𝑐𝑐(𝑚𝑚,𝑛𝑛)𝑟𝑟  (2-8) 

According to (2-5) and (2-6), ℎ�⃗ 𝑚𝑚 and 𝚤𝚤𝑛𝑛 in (2-8) can be replaced as formulas of ℎ�⃗ 0 and 𝚤𝚤0, then rewritten 

as below: 

�⃗�𝑔 =  𝑎𝑎(𝑚𝑚,𝑛𝑛)ℎ�⃗ 0 + 𝑏𝑏(𝑚𝑚,𝑛𝑛)𝚤𝚤0 + [𝑐𝑐(𝑚𝑚,𝑛𝑛) +
𝑛𝑛
𝑁𝑁
𝑏𝑏]𝑟𝑟 (2-9) 

Comparing (2-8) and (2-9), gotten: 

𝑎𝑎(𝑚𝑚,𝑛𝑛) = 𝑎𝑎    𝑏𝑏(𝑚𝑚,𝑛𝑛) = 𝑏𝑏    

 𝑐𝑐(𝑚𝑚,𝑛𝑛) = 𝑐𝑐 −  𝑚𝑚𝑚𝑚+𝑏𝑏𝑛𝑛
𝑁𝑁

  (2-10) 

 

From  (2-9) and (2-10), a point load �⃗�𝑔 at any node (m,n) can be split into ruling components 𝑓𝑓ℎ(𝑚𝑚,𝑛𝑛), 𝑓𝑓𝑖𝑖(𝑚𝑚,𝑛𝑛) 

and axis component 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) as below: 

𝑓𝑓ℎ(𝑚𝑚,𝑛𝑛) = 𝑎𝑎ℎ�⃗ 𝑚𝑚 𝑓𝑓𝑖𝑖(𝑚𝑚,𝑛𝑛) =  𝑏𝑏𝚤𝚤𝑛𝑛 

 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) = (𝑐𝑐 −
𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑛𝑛

𝑁𝑁
) 𝑟𝑟 (2-11) 

In this way, the weight of a hypar is redistributed into components parallel to ruling vectors ℎ�⃗ 𝑚𝑚 , 𝚤𝚤𝑛𝑛  and 

axis 𝑟𝑟 respectively. In the next section, these components will be applied separately onto the hypar, the 

entire hypar can be regarded as the superposition of two subsystems in equilibrium: subsystem I (Figure 

7) and subsystem II (Figure 8). 

 

 

2.2.2 Construction of Subsystem I in equilibrium 



Subsystem I is only loaded with the ruling components 𝑓𝑓ℎ(𝑚𝑚,𝑛𝑛) ,𝑓𝑓𝑖𝑖(𝑚𝑚,𝑛𝑛). To achieve the equilibrium, two 

edges of the hypar should be supported, and the reactions should have the same magnitude as the 

internal forces along with rulings but reversed directions (Figure 7).  

 
Figure 7:subsystem I is only loaded with ruling components, and internal forces, reactions are parallel to rulings. 

Considering that there is N number of nodes in the same ruling, according to (2-11), the sum of ruling 

components along with any ruling hm and in, can be written as follows: 

 

�⃗�𝐷ℎ(𝑚𝑚)_I = 𝑁𝑁𝑎𝑎ℎ�⃗ 𝑚𝑚 �⃗�𝐷𝑖𝑖(𝑛𝑛)_I = 𝑁𝑁𝑏𝑏𝚤𝚤𝑛𝑛 (2-12) 

And the reactions are in the reversed directions and the same magnitude: 

𝑅𝑅�⃗ ℎ(𝑚𝑚)_I = −𝑁𝑁𝑎𝑎ℎ�⃗ 𝑚𝑚 𝑅𝑅�⃗ 𝑖𝑖(𝑛𝑛)_I = −𝑁𝑁𝑏𝑏𝚤𝚤𝑛𝑛 
(2-13) 

 

2.2.3 Construction of subsystem II in equilibrium 

• Redistribution of axis components  

Subsystem II is supported at the same edges ℎ�⃗ 𝑁𝑁, 𝚤𝚤𝑁𝑁as subsystem I, and only loaded with axis components 

𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) (Figure 8), which are taken by a group of parabolic cables and a group of parabolic arches in a 

hypar. To ensure only membrane forces in every parabola, a part of the axis component applied on every 

parabolic arch,  𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛)  should be the same at every node (m,n) of the same arch. Similarly, for 



parabolic cables, the other part of axis component, 𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛) should also be the same at every node 

(m,n) of the same cable (Figure 8).  

 

 

Figure 8:subsystem II loaded with axis components 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛). 

To achieve the configuration described above, by comparing the value of axis component  𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) in (2-

11), the part of axis component applied on the cable and arch, respectively𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) and  𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛) , 

can be written as formulas of 𝑚𝑚 − 𝑛𝑛 or 𝑚𝑚 + 𝑛𝑛, since the difference of two coordinates 𝑚𝑚− 𝑛𝑛 is the same 

for every node on the same arch, and 𝑚𝑚 + 𝑛𝑛 is the same for every node on the same cable, (Figure 8): 

𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛) = �𝑦𝑦𝑐𝑐 + 𝑥𝑥 𝑚𝑚+𝑛𝑛
𝑁𝑁
� 𝑟𝑟  

  (2-14) 

 

𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) = [(1 − 𝑦𝑦) −
(𝑎𝑎 + 𝑥𝑥)𝑚𝑚− (−𝑏𝑏 − 𝑥𝑥)𝑛𝑛

2𝑁𝑁
]𝑟𝑟 

(2-15)  

 

where 𝑥𝑥 and 𝑦𝑦 are unknown parameters. To ensure that 𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) remains the same when coordinates 

m, n vary, it is trivial that in (2-15) the value of 𝑎𝑎 + 𝑥𝑥 should equal to −𝑏𝑏 − 𝑥𝑥, thus gotten  𝑥𝑥 = −𝑚𝑚+𝑏𝑏
2

. To 

minimize the different between 𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) and 𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛), 𝑦𝑦𝑐𝑐 in (2-14) and (1 − 𝑦𝑦)𝑐𝑐 in (2-15) should 

be the same, so gotten 𝑦𝑦 = 1
2
 . Then  (2-14), (2-15) can be rewritten as below: 



 

𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛) = [
𝑐𝑐
2
− (𝑚𝑚 + 𝑛𝑛)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

]𝑟𝑟 

  (2-16) 

 

𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) = [
𝑐𝑐
2

+ (𝑚𝑚 − 𝑛𝑛)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
]𝑟𝑟 

  (2-17) 

 

(2-16) and (2-17) are the most efficient way to redistribute the axis component  𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛) applied to cables 

and arches in a hypar as a continuous shell. However, by varying 𝑦𝑦, the value and direction of 𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) 

will be different. If the direction of  𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) is reversed as the one of axis component 𝑓𝑓𝑟𝑟(𝑚𝑚,𝑛𝑛), the 

parabolas curving downward will turn from arches into cables, in this case, the whole hypar turns into a 

prestressed gridshell (Cao, et al., 2021). 

 
Figure 9: cable Pl(m,-N / -N,m) and arch Pl(m,-N / N, -m) are loaded with axis components 𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) and 𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛) 

respectively, supported by rulings and edges.  

• Internal forces of parabolas  

After setting the 𝑓𝑓𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,𝑛𝑛) in (2-16) for parabolic cables, and 𝑓𝑓𝑟𝑟.𝑚𝑚𝑟𝑟𝑎𝑎ℎ(𝑚𝑚,𝑛𝑛) in (2-17) for parabolic arches, 

it is possible to calculate the maximum internal forces and reactions of every parabola in a hypar.  

 



Assuming a parabolic cable Pl(m,-N / -N,m) in the hypar, with two ends as node (m,-N) and node (-N,m), 

(Figure 9). According to (2-16), the sum of all the axis components applied on this cable can be written as 

below: 

�⃗�𝐷𝑟𝑟.𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐(𝑚𝑚,−𝑁𝑁/−𝑁𝑁,𝑚𝑚) = �
𝑐𝑐
2 −

(𝑚𝑚−𝑁𝑁)
𝑎𝑎 + 𝑏𝑏

2𝑁𝑁 �
𝑁𝑁 + 𝑚𝑚

2 𝑟𝑟 

(2-18) 

Because the tangents at two ends of cable Pl(m,-N / -N,m) are coplanar with hm, i-N, and h-N, im respectively, 

to achieves the equilibrium of cable Pl(m,-N / -N,m),  reactions should be parallel to the rulings hm, im, and 

edges h-N, i-N  (Figure 9). While, according to (2-5) and (2-6), the vectors  ℎ�⃗ 𝑚𝑚, 𝚤𝚤−𝑁𝑁 ,ℎ�⃗ −𝑁𝑁 , 𝚤𝚤𝑚𝑚 and  𝑟𝑟 are 

linearly constrained as: 

 

ℎ�⃗ 𝑚𝑚 − ℎ�⃗ −𝑁𝑁 + 𝚤𝚤𝑚𝑚 − 𝚤𝚤−𝑁𝑁 =
2(𝑁𝑁 + 𝑚𝑚)

𝑁𝑁
𝑟𝑟 (2-19) 

 

Comparing (2-18) and (2-19), reactions of cable Pl(m,-N / -N,m) parallel to the rulings hm, im, and edges h-N, 

 i-N  can be written as below: 

 

𝑅𝑅�⃗ ℎ(𝑚𝑚)_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = −�
𝑐𝑐
2
− (𝑚𝑚 −𝑁𝑁)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

�
𝑁𝑁
4
ℎ�⃗ 𝑚𝑚 (2-20) 

 

𝑅𝑅�⃗ ℎ(−𝑁𝑁)_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = �
𝑐𝑐
2
− (𝑚𝑚−𝑁𝑁)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

�
𝑁𝑁
4
ℎ�⃗ −𝑁𝑁 (2-21) 

 

𝑅𝑅�⃗ 𝑖𝑖(𝑚𝑚)_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = −�
𝑐𝑐
2
− (𝑚𝑚−𝑁𝑁)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

�
𝑁𝑁
4
𝚤𝚤𝑚𝑚 (2-22) 

 

𝑅𝑅�⃗ 𝑖𝑖(−𝑁𝑁)_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = �
𝑐𝑐
2
− (𝑚𝑚 −𝑁𝑁)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

�
𝑁𝑁
4
𝚤𝚤−𝑁𝑁 (2-23) 

 

The maximal internal forces at node (m,-N) and node (-N,m), which are two ends of cable Pl(m,-N / -N,m), 

should be balanced by the sum of reactions in (2-20) and (2-23), (2-21) and (2-22) respectively, (Figure 

10):  

�⃗�𝐷(−𝑁𝑁,𝑚𝑚 )_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = −�
𝑐𝑐
2
− (𝑚𝑚−𝑁𝑁)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

�
𝑁𝑁
4

(ℎ�⃗ −𝑁𝑁 + 𝚤𝚤𝑚𝑚) 



 

�⃗�𝐷(𝑚𝑚,−𝑁𝑁 )_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = �
𝑐𝑐
2
− (𝑚𝑚 −𝑁𝑁)

𝑎𝑎 + 𝑏𝑏
2𝑁𝑁

�
𝑁𝑁
4

(𝚤𝚤−𝑁𝑁 − ℎ�⃗ 𝑚𝑚) 

(2-24) 

Similarly, for any parabolic arch Pl(m,-N / N, -m) in the hypar (Figure 9), the reactions parallel to rulings hm, i-

m and edges iN, h-N can be represented as: 

𝑅𝑅�⃗ ℎ(𝑚𝑚)_𝑚𝑚𝑟𝑟𝑎𝑎ℎ = �
𝑐𝑐
2

+ (𝑚𝑚 + 𝑁𝑁)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
�
𝑁𝑁
4
ℎ�⃗ 𝑚𝑚 (2-25) 

 

𝑅𝑅�⃗ ℎ(𝑁𝑁)_𝑚𝑚𝑟𝑟𝑎𝑎ℎ = −�
𝑐𝑐
2

+ (𝑚𝑚 + 𝑁𝑁)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
�
𝑁𝑁
4
ℎ�⃗ 𝑁𝑁 (2-26) 

 

𝑅𝑅�⃗ 𝑖𝑖(−𝑚𝑚)_𝑚𝑚𝑟𝑟𝑎𝑎ℎ = −�
𝑐𝑐
2

+ (𝑚𝑚 + 𝑁𝑁)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
�
𝑁𝑁
4
𝚤𝚤−𝑚𝑚 (2-27) 

 

𝑅𝑅�⃗ 𝑖𝑖(−𝑁𝑁)_𝑚𝑚𝑟𝑟𝑎𝑎ℎ = �
𝑐𝑐
2

+ (𝑚𝑚 + 𝑁𝑁)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
�
𝑁𝑁
4
𝚤𝚤−𝑁𝑁 (2-28) 

 

By adding (2-25) and (2-28), (2-26) and (2-27) respectively. The maximal internal forces at two ends of 

arch Pl(m,-N / N, -m) are: 

�⃗�𝐷(𝑚𝑚,−𝑁𝑁)_𝑚𝑚𝑟𝑟𝑎𝑎ℎ = −�
𝑐𝑐
2

+ (𝑚𝑚 + 𝑁𝑁)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
�
𝑁𝑁
4

(ℎ�⃗ 𝑚𝑚 + 𝚤𝚤−𝑁𝑁) 

 

�⃗�𝐷(𝑁𝑁,−𝑚𝑚 )_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐 = �
𝑐𝑐
2

+ (𝑚𝑚 + 𝑁𝑁)
𝑏𝑏 − 𝑎𝑎

2𝑁𝑁
�
𝑁𝑁
4

(ℎ�⃗ 𝑚𝑚 + 𝚤𝚤−𝑚𝑚) 

(2-29) 

 

 

• Reactions parallel to edges 

In subsystem II, there are N pieces of cables and arches each intersecting with edge i-N (Figure 9). 

According to (2-23) and (2-28), reactions accumulated along edge i-N equal to the sum of reactions of all 

cables and arches intersecting to it : 

 



𝑅𝑅�⃗ 𝑖𝑖(−𝑁𝑁)_II = � 𝑅𝑅�⃗ 𝑖𝑖(−𝑁𝑁)_𝑎𝑎𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐

𝑁𝑁

𝑚𝑚=−𝑁𝑁+2

+ � 𝑅𝑅�⃗ 𝑖𝑖(−𝑁𝑁)_𝑚𝑚𝑟𝑟𝑎𝑎ℎ

𝑁𝑁−2

𝑚𝑚=−𝑁𝑁

 

 

Which is: 

𝑅𝑅�⃗ 𝑖𝑖(−𝑁𝑁)_II = (
𝑐𝑐 + 𝑏𝑏

4
𝑁𝑁2 −

𝑏𝑏
4
𝑁𝑁) 𝚤𝚤−𝑁𝑁 (2-30) 

Similarly, reactions parallel to the other three edges iN , h-N , hN are respectively (Figure 9):  

𝑅𝑅�⃗ 𝑖𝑖(𝑁𝑁)_II = (
𝑏𝑏 − 𝑐𝑐

4
𝑁𝑁2 −

𝑏𝑏
4
𝑁𝑁) 𝚤𝚤𝑁𝑁 (2-31) 

 

𝑅𝑅�⃗ ℎ(−𝑁𝑁)_II = (
𝑎𝑎 + 𝑐𝑐

4
𝑁𝑁2 −

𝑎𝑎
4
𝑁𝑁) 𝚤𝚤−𝑁𝑁 (2-32) 

 

𝑅𝑅�⃗ ℎ(𝑁𝑁)_II = (
𝑎𝑎 − 𝑐𝑐

4
𝑁𝑁2 −

𝑎𝑎
4
𝑁𝑁) 𝚤𝚤−𝑁𝑁 (2-33) 

 

• Reactions parallel to rulings 

In subsystem II, any ruling hm intersects with four parabolas (Figure 10): cable Pl(m,-N / -N,m) and Pl(N,m / m,N), 

arch Pl(m,-N / N, -m) and Pl(-N ,-m/ m, N) ,which cause four reactions parallel to ruling hm respectively .  

 

Figure 10: four parabolic arches (blue) and cables(red) are connected with ruling hm . 



The reactions parallel to ruling hm caused by cable Pl(m,-N / -N,m) and arch Pl(m,-N / N, -m) are already calculated 

in (2-20) and (2-25). Following a similar process, it is possible to find reactions caused by cable Pl(N,m / m,N) 

and arch Pl(-N,-m/ m, N). By summing up these four reactions, gotten the reactions accumulated along ruling 

hm in subsystem II: 

𝑅𝑅�⃗ ℎ(𝑚𝑚)_II = −
𝑎𝑎𝑁𝑁
2
ℎ�⃗ 𝑚𝑚 (2-34) 

Similarly, the reactions accumulated parallel to ruling in in subsystem II is written as: 

 𝑅𝑅�⃗ 𝑖𝑖(𝑛𝑛)_II = −
𝑏𝑏𝑁𝑁
2
𝚤𝚤𝑛𝑛 (2-35) 

 

2.2.4 Superposition of two subsystems 

By superposing subsystem I and II, it is easy to find that a hypar loaded with self-weight can maintain 

internal forces as membrane forces, when two edges are fully supported. The maximal internal forces 

along parabolas can be calculated with formula (2-29), and the necessary reactions are always parallel to 

rulings and edges as showed in (2-13), and (2-30) to (2-33). 

With variations of geometry and position in space, the main behavior of a hypar is changed between a 

shell and a wall: when axis r of a hypar is not parallel to gravity, which is the case in section 2.2, internal 

forces are along with parabolas, rulings, and edges. The hypar behaves similarly as a combination of a 

shell and a wall. While, if axis r is parallel to gravity, there are only internal forces along with parabolas of 

a hypar, which behaves like a shell. However, in both cases, the necessary reactions are always parallel to 

straight rulings and edges of a hypar. 

 

3  Structural behaviour of smooth poly-hypar surface structures 

Based on the structural behavior of an individual hypar, it is possible to evaluate the global equilibrium, 

internal forces and reactions of a smooth poly-hypar surface structure. Only membrane forces are 

allowed to be transferred within the smooth poly-hypar surface. Such property, on one hand, relies on 

the structural behavior of an individual hypar, on the other hand, the global stability of a smooth poly-

hypar surface which is ensured by the special geometrical constraints, the coplanarity principle  (section 

1.2) and the fully supported load paths.  



This section explains first how the coplanarity principle is achieved to keep the bending-free behavior of 

a smooth poly-hypar surface, then it analyzes the global equilibrium of a smooth poly-hypar surface 

structure through the load paths and the special supporting conditions. In the end, the calculations of 

internal forces, reactions of a smooth poly-hypar surface are presented. 

3.1 Local bending-free behaviour and the coplanarity principle 

As a combination of hypars, the key point to ensure the structural efficiency of the surface is to avoid 

bending moment caused by interactions between adjacent hypars.  According to the conclusions in 

section 2.2, interactions, which maintain hypars’ internal forces as membrane forces, are always parallel 

to straight rulings and edges. To ensure these interactions always transmitted in the plane, all the edges 

and rulings of adjacent hypars intersecting at one node must always be coplanar. When two adjacent 

hypars satisfy the coplanarity principle (1-1) in section 1.2. 

𝐷𝐷𝐷𝐷�����⃗ = 𝑘𝑘𝐷𝐷𝐷𝐷�����⃗  +𝑗𝑗𝐷𝐷𝐷𝐷�����⃗               𝐷𝐷𝐶𝐶�����⃗ = 𝑘𝑘𝐷𝐷𝐶𝐶�����⃗ + 𝑙𝑙𝐷𝐷𝐷𝐷�����⃗                                             (1-1) 

 Which can be proved as below (Figure 11) that any rulings and edges intersect at one node should always 

be coplanar: 

 

Figure 11: Two adjacent hypars satisfy the coplanarity principle.  

ℎ�⃗ 𝑚𝑚1  and ℎ�⃗ 𝑚𝑚2   (Figure 11) are any ruling vectors on hypar ABCD and CDEF respectively, intersecting at point 

C’ . Vector 𝐶𝐶′𝐶𝐶�������⃗ , 𝐷𝐷′𝐷𝐷������⃗ , 𝐶𝐶′𝐶𝐶������⃗  can be written as: 



𝐶𝐶′𝐶𝐶�������⃗ = 𝑥𝑥𝐷𝐷𝐶𝐶�����⃗                      𝐷𝐷′𝐷𝐷������⃗ = 𝑥𝑥𝐷𝐷𝐷𝐷�����⃗                     𝐶𝐶′𝐶𝐶������⃗ = 𝑥𝑥𝐷𝐷𝐶𝐶�����⃗                (0<x<1)                           (3-2) 

 

It is trivial in Figure 11, ruling vector ℎ�⃗ 𝑚𝑚1  can be written as the sum of vector 𝐶𝐶′𝐶𝐶�������⃗  , 𝐶𝐶𝐷𝐷�����⃗  and 𝐷𝐷′𝐷𝐷������⃗ , by 

replacing 𝐶𝐶′𝐶𝐶�������⃗  and 𝐷𝐷′𝐷𝐷������⃗  with 𝑥𝑥𝐷𝐷𝐶𝐶�����⃗  and 𝑥𝑥𝐷𝐷𝐷𝐷�����⃗  in (3-2) respectively, gotten: 

ℎ�⃗ 𝑚𝑚1 = 𝑥𝑥𝐷𝐷𝐶𝐶�����⃗  + 𝐶𝐶𝐷𝐷�����⃗  - 𝑥𝑥𝐷𝐷𝐷𝐷�����⃗                                                                          (3-3) 

In which vector 𝐷𝐷𝐶𝐶�����⃗  can be rewritten as: 

𝐷𝐷𝐶𝐶�����⃗  = 𝐷𝐷𝐷𝐷�����⃗  + 𝐷𝐷𝐷𝐷�����⃗  + 𝐷𝐷𝐶𝐶�����⃗                                                                              (3-4) 

Substituting (3-4) for 𝐷𝐷𝐶𝐶�����⃗  in (3-3), gotten: 

ℎ�⃗ 𝑚𝑚1 = 𝑥𝑥𝐷𝐷𝐷𝐷�����⃗  + (1 − 𝑥𝑥)𝐶𝐶𝐷𝐷�����⃗                                                                          (3-5) 

Similarly, ℎ�⃗ 𝑚𝑚2  can be written as: 

ℎ�⃗ 𝑚𝑚2 = 𝑥𝑥𝐷𝐷𝐷𝐷�����⃗  + (1- 𝑥𝑥)𝐷𝐷𝐶𝐶�����⃗                                                                          (3-6) 

According to (1-1),   (3-6) can be rewritten as: 

ℎ�⃗ 𝑚𝑚2 = −𝑥𝑥𝑘𝑘𝐷𝐷𝐷𝐷�����⃗  −(1 − 𝑥𝑥)𝑘𝑘𝐶𝐶𝐷𝐷�����⃗ + (𝑙𝑙 − 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑗𝑗)𝐷𝐷𝐷𝐷�����⃗                                   (3-7) 

By comparing (3-5), and (3-7), ℎ�⃗ 𝑚𝑚2   can be written as a formula of ℎ�⃗ 𝑚𝑚1   and 𝐷𝐷𝐷𝐷�����⃗ :                                   

ℎ�⃗ 𝑚𝑚2 = −𝑘𝑘ℎ�⃗ 𝑚𝑚2   +(𝑙𝑙 − 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑗𝑗)𝐷𝐷𝐷𝐷�����⃗                                                                        (3-8) 

Which means rulings vectorℎ�⃗ 𝑚𝑚1   , ℎ�⃗ 𝑚𝑚2   and the shared edge  𝐷𝐷𝐷𝐷�����⃗  are coplanar.  

In this case, when two adjacent hypars satisfy the coplanarity principle (1-1), any rulings and edges 
intersect at one point are always coplanar.  

 

3.2 Global equilibrium and load paths 

Benefiting from the coplanarity principle, the interactions of adjacent hypars are always transmitted in 

the plane without causing bending moment. However,to achieve the global equilibrium, all the 

interactions should be transmitted to the support finally. 

The load path is the way to transmit all the interactions to the supports. Since the internal local forces 

along parabolas do not affect the global equilibrium, only interactions along rulings and edges are 

considered in the global equilibrium of smooth poly-hypar surfaces. Considering each hypar as a sub-

system in equilibrium, the reactions at the border of one hypar are transferred as actions into the adjacent 

hypars. In this case, hypars in a smooth poly-hypar surface are supported one by another until all the 



forces are transmitted to the supports (Cao & Schwartz, 2017), (Figure 13). Based on the coplanarity 

principle, all intersecting rulings and edges of two adjacent hypars are always coplanar. This geometric 

property implies that the interaction forces between adjacent hypars are always transmitted along with 

rulings and edges, thus generating specific load paths (Figure 12) to transfer the internal forces to the 

supports (Cao & Schwartz, 2017).  

In this way, the designer can combine hypars freely as long as the coplanarity principle is fulfilled and 

each load path is directly connected to a support. 

 

 

Figure 12: load paths parallel to middle rulings in a smooth poly-hypar surface supported by the ground and the side wall. 

 

3.3 Internal forces and reactions of smooth poly-hypar surface structures 

In a smooth poly-hypar surface, the reactions of a hypar are transferred as action forces applied at the 

border of an adjacent hypar. As the hypar analyzed in section 2.2, the reactions 𝑅𝑅�⃗ ℎ  and 𝑅𝑅�⃗ 𝑖𝑖  along any 

rulings and edges can be reversed as input action forces �⃗�𝐷ℎ and �⃗�𝐷𝑖𝑖 in the global equilibrium of a smooth 

poly-hypar surface structure (Cao & Schwartz, 2017). Action forces �⃗�𝐷ℎ and �⃗�𝐷𝑖𝑖 along rulings and edges of 

one hypar should be the same magnitude but opposite to the directions of reactions 𝑅𝑅�⃗ ℎ , 𝑅𝑅�⃗ 𝑖𝑖.  



 

(a)                                                           (b) 

Figure 13: A group of hypars in a smooth poly-hypar surface supported one by another, forming load paths to transmit loads 

to the group. (b) A special load path is showed as an example. (a) The action force  �⃗�𝐷ℎ(𝑚𝑚)
(𝑞𝑞−1) along ruling hm

q-1 can be decomposed 

into two components parallel to ruling hm
q of and edge iNq. 

These action forces are accumulated and transmitted along load paths formed by rulings and edges, 

causing internal forces and reactions of a smooth poly-hypar surface. Below it studies particularly the 

internal forces along with rulings hm (m∈ Z) of this group of hypars. The position of hypar along the load 

path is numbered as q from zero (Figure 13).  

According to the coplanarity principle and load paths, the action force  �⃗�𝐷ℎ(𝑚𝑚)
(𝑞𝑞−1) along ruling hmq can be 

decomposed into two components parallel to ruling hmq and edge iNq (Figure 13).  

�⃗�𝐷ℎ(𝑚𝑚)
(𝑞𝑞−1) = 𝑠𝑠𝑞𝑞�⃗�𝐷ℎ(𝑚𝑚)

𝑞𝑞  + 𝑡𝑡𝑞𝑞�⃗�𝐷𝑖𝑖(𝑁𝑁)
𝑞𝑞  (3-9) 

where sq , tq are vector scalars of the action force �⃗�𝐷ℎ(𝑚𝑚)
𝑞𝑞  and �⃗�𝐷𝑖𝑖(𝑁𝑁)

𝑞𝑞  respectively; m represents the number 

of rulings h; i(N) represent one edge of a hypar  q represents the position of the hypar along the load path. 

As it shows in Figure 13, all the hypars that precede hypar Hq along the same load path generate 

components that are eventually accumulated at the ruling hmq of hypar Hq. According to (3-7), internal 

forces accumulated along any ruling hmq can be written as the sum of q+1 parts components in (3-8), (Cao, 

et al., 2021): 



𝐷𝐷ℎ(𝑚𝑚)
𝑞𝑞 = �1 + ��𝑠𝑠𝑐𝑐

𝑞𝑞

𝑐𝑐=𝑗𝑗

𝑞𝑞

𝑗𝑗=1

�  �⃗�𝐷ℎ(𝑚𝑚)
𝑞𝑞  (3-10) 

where sl are vector scalars of the action force �⃗�𝐷ℎ(𝑚𝑚)
𝑞𝑞 ; in the index of the action force �⃗�𝐷ℎ(𝑚𝑚)

𝑞𝑞 , m represents 

the number of rulings; q represents the position of the hypar along the load path. 

By decomposing the accumulated force 𝐷𝐷ℎ(𝑚𝑚)
𝑞𝑞−1  along ruling hmq-1 into two components along ruling hmq 

and edge iNq, (Figure 13) we can get the deviation force accumulated along edge iN of hypar Hq as (Cao, et 

al., 2021): 

𝐷𝐷��⃗ 𝑖𝑖(𝑁𝑁)
𝑞𝑞 = 𝑡𝑡𝑞𝑞 �1 + ��𝑠𝑠𝑐𝑐

𝑞𝑞−1

𝑐𝑐=𝑗𝑗

𝑞𝑞−1

𝑗𝑗=1

�  �⃗�𝐷𝑖𝑖(𝑁𝑁)
𝑞𝑞  (3-11) 

The deviation force 𝐷𝐷𝑖𝑖(𝑁𝑁)
𝑞𝑞  along the edge iNq in  Figure 13 can be added with the action force �⃗�𝐷𝑖𝑖(𝑁𝑁)

𝑞𝑞 , and 

treated again as an input action force parallel to rulings and transmitted into the supports through other 

load paths. Using Equations (3-8) and (3-9) repeatedly, the final accumulated internal forces along rulings 

and edges can be calculated until the deviation forces along the edges are all connected with the supports 

directly.  

From (3-8) and (3-9), we can find that reactions along with rulings and edges of a smooth poly-hypars 

surface, which are the same magnitude but different directions of (3-8) and (3-9), only depends on the 

action force �⃗�𝐷ℎ and �⃗�𝐷𝑖𝑖.  If the total loads and geometry are the same, the resulted actions �⃗�𝐷ℎ and �⃗�𝐷𝑖𝑖 always 

keep the same when the hypars are implemented either as continuous shell or prestressed gridshell (Cao, 

et al., 2021). That means, no matter a smooth poly-hypar surface is built as a rigid continuous shell or a 

prestressed gridshell, if the total load applied on the surface structure is the same, the reactions to keep 

the global equilibrium always remain unchanged. 

 

4 Construction Prototypes  

Smooth poly-hypar surfaces have been applied in the design and construction of several shell structures. 

Their special geometrical properties enable not only structural efficiency but also construction 

convenience for double-curved surface structures.  



Since the structural analysis based on graphic statics is materially independent, smooth poly-hypar 

surfaces can be implemented as different material systems, either as rigid shells or prestressed gridshells. 

As rigid shells, smooth poly-hypar surfaces were built with material that can take both compressions and 

tensions, such as plywood in the fabrication of Hypar Wave, a shelter for a temporary open theatre (Figure 

14); or ferrocement used to construct Hypar Cantilever (Figure 16). While, as a prestressed gridshell, 

parabolas in each hypar module can be built as cables in tension, while straight elements as aluminium 

rods, like the case of Hypar Pavilion, a temporary campus installation (Figure 15).  

Generally speaking, there are several advantages of smooth poly-hypar surface in terms of construction: 

               
(a)                                                                                                  (b) 

Figure 14: (a) a shelter for a temporary open theatre, Hypar Wave, was built with prefabricated plywood modules and 

assembled in site . (b) Elevation and plan of Hypar Wave. 

• Low-tech and low-cost prefabrications: Benefiting from the ruled geometry, smooth poly-hypar 

surfaces can be prefabricated in modules separately using straight elements instead of customized 

curved components, which effectively reduce the construction cost and complexity. In Hypar Pavilion, 

a prestressed grid shell (Figure 15), the hypar modules of the shell were prefabricated with straight 

aluminium rods manually; and in the case of Hypar Wave, a timber grid shell (Figure 14), each hypar 

module was made with timber strips twisted manually with a tool; or in the test of a ferrocement shell, 

straight reinforcement bars were welded into a metal grid (Figure 16),  covered with steel mesh, then  

working as a lost formwork for concrete casting.  

• Minimized scaffoldings: Due to the local stiffness of double-curved geometries, lightweight hypar 

modules can be assembled starting from the ground up to the top of the structure without the 



complex scaffolding require (Cao, et al., 2021). As the combination hypar modules can be self-

supported during the whole dynamic assembly process, only some temporary supports are necessary.   

• Reusable components: Benefiting from the straight elements of hypar modules and mechanical joints, 

all the elements can be dissembled and reused in another design layout. Such as the case of a 

prestressed grid shell—Hypar Pavillion (Figure 15), up to 80 percent of rods were cut into standard 

lengths, and connected through standardized joints (Cao, et al., 2021). it was first built at the campus 

of the Southeast University of Nanjing , then disassembled and subsequently moved around 700 

kilometres away to the city of Dezhou, to be reassembled for a second exhibition. This proved the 

success of the proposed temporary and reusable fabrication concept. 

 

     

(a)                                                                                                 (b) 

Figure 15: (a) Hypar Pavillion as a prestressed gridshell made from alumini rods and steel cablse.(b) Plan and elevation of Hypar 

Pavillion, which is combined from 64 pieces of hypars 

     

Figure 16: A test of ferrocement shell in the construction of hypar cantilever. 



5 Conclusion   

Smooth poly-hypar surfaces, a modular system of hypars, achieve the smoothness called for in the design 

of freeform architecture, while simultaneously including technical consideration in structural 

performance and fabrication efficiency. As the structural analysis presented in this article, the coplanarity 

principle and load path enable smooth poly-hypar surfaces under distributed loads free of bending 

moment, meanwhile keep the visual smoothness of the surface. While the locally ruled properties of 

smooth poly-hypar surfaces also enable simple and economic methods to fabricate complex double-

curved surfaces.  

This innovative surface geometries could also enable a structural and geometrical optimization of existing 

complex freeform surfaces. In the current research of freeform optimization, the complex freeform 

surfaces are normally approximated with planar surfaces or ruled strips (Flöry, et al., 2013), which cannot 

lead to smooth approximations of the original geometries, neither improvement of structural behaviour. 

When using smooth poly-hypar surfaces though, the resulting approximations are always smooth. 

Although the difference between the original surfaces and the approximation still exists. If this difference 

doesn’t affect the architectural expression of the original geometry, the approximated geometry 

generated following the principle of smooth poly-hypar surfaces certainly leads to more advantages in 

structural efficiency and construction convenience. 
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