
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Petrovnin, Kirill Viktorovich; Perelshtein, Michael Romanovich; Korkalainen, Tero; Vesterinen,
Visa; Lilja, Ilari; Paraoanu, Gheorghe Sorin; Hakonen, Pertti Juhani
Generation and Structuring of Multipartite Entanglement in a Josephson Parametric System

Published in:
Advanced Quantum Technologies

DOI:
10.1002/qute.202200031

Published: 01/01/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Petrovnin, K. V., Perelshtein, M. R., Korkalainen, T., Vesterinen, V., Lilja, I., Paraoanu, G. S., & Hakonen, P. J.
(2023). Generation and Structuring of Multipartite Entanglement in a Josephson Parametric System. Advanced
Quantum Technologies, 6(1), Article 2200031. https://doi.org/10.1002/qute.202200031

https://doi.org/10.1002/qute.202200031
https://doi.org/10.1002/qute.202200031


RESEARCH ARTICLE
www.advquantumtech.com

Generation and Structuring of Multipartite Entanglement in
a Josephson Parametric System
Kirill Viktorovich Petrovnin,* Michael Romanovich Perelshtein, Tero Korkalainen,
Visa Vesterinen, Ilari Lilja, Gheorghe Sorin Paraoanu, and Pertti Juhani Hakonen*

Quantum correlations are a vital resource in advanced information processing
based on quantum phenomena. Remarkably, the vacuum state of a quantum
field may act as a key element for the generation of multipartite quantum
entanglement. In this work, generation of genuine tripartite entangled state
and its control is achieved by the use of the phase difference between two
continuous pump tones. Control of the subspaces of the covariance matrix for
tripartite bisqueezed state is demonstrated. Furthermore, by optimizing the
phase relationships in a three-tone pumping scheme genuine quadripartite
entanglement of a generalized H-graph state (ℋ̃-graph) is explored. This
scheme provides a comprehensive control toolbox for the entanglement
structure and allows to demonstrate, for first time to the authors’ knowledge,
genuine quadripartite entanglement of microwave modes. All experimental
results are verified with numerical simulations of the nonlinear quantum
Langevin equation. It is envisioned that quantum resources facilitated by
multi-pump configurations offer enhanced prospects for quantum data
processing using parametric microwave cavities.

1. Introduction

Entanglement is a crucial resource in advanced information pro-
cessing based on quantum mechanical concepts.[1,2] To exceed
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the computational power of classical de-
vices, quantum devices typically need
to employ highly entangled states. Con-
trolled generation of entanglement is
the key resource not only in quantum
computing,[3–8] but also in sensing[9–12] and
secure communications.[13–15]

One of the most easily accessible and,
at the same time, reliable sources for en-
tanglement generation is the vacuum state
of a quantum field.[16] Squeezing, which is
the fundamental operation for the continu-
ous variable (CV) states production, allows
generation of coherence and entanglement
from vacuum fluctuations.[17] While two-
mode squeezing produces bipartite quan-
tum states, multipartite states can be gen-
erated by applying similar operations.[18] In-
triguingly, multipartite CV states are shown
to enable various promising phenomena
such as quantum state sharing[19] and
secret sharing,[20] dense coding,[21] error

correction,[22] and quantum teleportation.[23] Alongside with
phase sensing[24] and quantum sensor networks,[25] multipar-
tite entangled states have significant potential in multiparame-
ter quantummetrology applications.[25,26] Furthermore, CV clus-
ter states show potential as a universal quantum computing
platform,[27–29] which has been under active development for
the past 20 years. Cluster state calculus, foremost utilizing
optical resources,[28,30–33] realize measurement-based quantum
computing.[3]

While optical-mode schemes for generation of multipartite
states lack versatility, in-situ tunability and are limited to opti-
cal frequencies, the microwave platform allows for full control
of operations via input RF-signals and integration with the exist-
ing silicon-based circuitry. During the past few years, significant
progress in processing of CV multipartite states at microwaves
has been achieved; for instance, squeezed states produced by mi-
crowave cavities have been shown to exhibit correlations between
photons in separate frequency bands[18] and strong entanglement
between different modes.[34]

In this work, we experimentally generate genuinely entangled
tripartite and quadripartite states using a superconducting para-
metric cavity, operated under steady-state conditions. Using the
Gaussian-mode formalism,[35–37] we characterize the generated
states and verify entanglement from the covariance matrix. We
develop an analytical description, which allows us to determine
the entanglement structure of the generated state and establish
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a connection to H(amiltonian)-graph representation.[7,29,38,39] All
of the experimental results are in good agreement with the the-
oretical predictions, in which all circuit parameters were set in
accordance with the measured characteristics of the device.
The paper is organized as follows. Section 2 describes the

quantum dynamics of a Josephson parametric system and
demonstrates the generation protocol for CV multipartite states,
such as fully inseparable and genuinely entangled states. Us-
ing analytical methods, we provide the entanglement structure,
which is described by graphs and their corresponding adjacency
matrices. In Section 3 we present the experimental setup and
explain our data analysis methods. In Section 4 we present the
experimental and theoretical results on the generation of mul-
tipartite entanglement using a Josephson parametric system in
both tripartite and quadripartite cases. In Appendices A.1–A.5 we
present details of our analysis, experimental techniques, and pa-
rameter extraction. Appendix A.6 deals with analytical solution of
the equations of motion for tri-/quadripartite states using simpli-
fied linear model of parametric amplifier and establish correla-
tions (graph connections) between spectral modes, which allows
us to classify and control the entanglement structure. Further-
more, analytical forms of relevant covariance matrices are given.

2. Theoretical Foundations

2.1. Quantum Dynamics of the Device

Our work employs a parametric system comprised of a supercon-
ducting 𝜆∕4 resonator terminated in a SQUID loop. Such a setup
forms the archetype of a narrow-band superconducting Joseph-
son parametric amplifier (JPA).[40,41] In our setting, we pump
the JPA using multi-tone external RF magnetic flux through the
SQUID at frequencies that are approximately twice the frequency
of the resonator 𝜔d ∼ 2𝜔r (three-wave mixing).[18,42] In the rotat-
ing frame, the Hamiltonian of the system, as derived in refs. [40,
43], is given by:

Hsys,rwa(t) = ℏΔr ã
†ã +

ℏ

2

p∑
d=1

(𝛼∗
d e

iΔdtã2 + 𝛼de
−iΔdtã†2) + 6ℏKã†ã†ãã (1)

where ã (ã†) is the annihilation (creation) operator for cavity pho-
tons in the rotating frame at angular frequency 𝜔Σ∕2, 𝛼d is the
complex amplitude of the d-th pump tone and Δd = 𝜔d − 𝜔Σ is
the angular frequency detuning of the corresponding tone. Pos-
sible extra phase factors in different pump tones are included in
the complex pump amplitude 𝛼d = |𝛼|ei𝜑d . Here Δr denotes the
detuning between half of the average pump angular frequency𝜔Σ
and the resonator angular frequency𝜔r:Δr = 𝜔r − 𝜔Σ∕2, with𝜔Σ
representing the average angular frequency in multi-tone driven
case: 𝜔Σ = (1∕p)

∑p
d=1 𝜔d with d = {1,… , p} as the pump tone in-

dex.
Strongly driven SQUIDs are notoriously nonlinear. Therefore,

we also include the nonlinear Kerr term with strength K to the
description of our parametric system. The Kerr constant controls
the parametric behavior close to and above the critical pump-
ing threshold 𝛼 ≥ 𝛼crit. Several effects are accounted for by the

Kerr nonlinearity, such as limited maximum gain, compression,
observed at 𝛼 ≲ 𝛼crit, broadening and shifting of the resonance
curve, and parametric oscillation above the critical point. In our
experiment, we employ the pump-power-dependent gain coeffi-
cient to extract the Kerr constant (see Appendix A.4).
In order to describe the coupling of the cavity resonator to the

incoming transmission line and to an intrinsic thermal bath, we
include two additional terms in the full Hamiltonian:

H(t) = Hsys,rwa(t) +Hsig +Hloss (2)

whereHsig includes the coupling to the signal port transmission
line with dissipation rate 𝜅, while Hloss includes the coupling to
the internal loss port with linear dissipation rate 𝛾 .
Using the quantum Langevin equation (QLE), we obtain the

output modes in our parametric system.We employ the standard
input/output formalism in the rotating frame, which yields

̇̃a(t) = (−iΔr −
𝜅 + 𝛾

2
)ã − i

p∑
d=1

𝛼de
iΔdtã†

+
√
𝜅b̃in +

√
𝛾 c̃in − 12iKã†ãã (3)

where b̃in and c̃in are the ladder (annihilation) operators for the
signal and linear dissipation ports, respectively.
The output mode b̃out is obtained using the following relation

between the incoming and outgoing modes:

b̃out(t) = b̃in(t) −
√
𝜅ã(t) (4)

We are interested in the correlations embedded in the output
mode given by Equation (4) in the time domain. The correla-
tions can be revealed in full after Fourier transformation to the
frequency domain. By defining finite-band spectral modes (see
Section 2.2) in the frequency domain and examining correlations
between these spectral ranges, we can verify the presence of en-
tanglement in the band-limited microwave signals.

2.2. Spectral Modes Definition

Parametric downconversion processes and the definition of em-
ployed spectral modes within the fundamental cavity resonance
in a multi-pump JPA are illustrated in Figure 1. The spacing and
width of the spectral modes are selected in such a manner that
that the modes are generated within the linewidth of the JPA res-
onance. Each pump that acts on the JPA triggers spontaneous
parametric downconversion of a pump photon (vertical red ar-
rows) into two photons, with their energies summing up to the
energy of the pump photon (blue arrows). This process is stim-
ulated by vacuum fluctuations, whose existence is a fundamen-
tal feature of quantum electrodynamics. One might expect that
the downconversion processes would be random, occurring inde-
pendently for each pump in themulti-tone pumping situation. In
such a case, the result would simply be a sum of the downconver-
sion processes, but this turns out not to be the case. Instead, the
photons are fundamentally correlated, even if they originate from
different pump tones, because they were “born into existence”
by the same quantum fluctuation. In other words, one spectral
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Figure 1. Definition of spectral modes and their correlations in a multi-
tone pump setting. Spectral modes in a multi-pump JPA, where the pump
tones (red arrows) trigger parametric downconversion process (PDC)
leading to the appearance of multipartite correlation between microwaves
(blue arrows), extracted from vacuum fluctuations. Numbered spectral
modes depicted in green are also correlated due to the continuous pump-
ing of the JPA resulting in multipartite entanglement between microwaves
in the spectral modes. The bandwidth of each spectral mode Δ in Fourier
analysis is chosen to be much narrower than the cavity resonance width.

mode contains photons correlated with the quanta in the other
spectral modes and, consequently, we expect multipartite corre-
lations to appear (depicted schematically via the zigzag lines).
We consider the fundamental resonance of a transmission line

JPA centered at𝜔r frequencywith a bandwidth 2𝛿𝜔, withinwhich
([𝜔r − 𝛿𝜔,𝜔r + 𝛿𝜔]) we define N spectral modes as depicted in
Figure 1. Let us define ã as a vector of spectral modes:

ã = {ã1,… , ãN, ã
†
1,… , ã†N}

T (5)

where N is a total mode number and the creation ã†i = ã†i (t) and
annihilation ãi = ãi(t) operators are time-dependent. In general,
the frequency difference between half of pth and (p + 1)th pump
tones defines the bandwidth of the spectral mode ãi. We employ
an equidistant pump schemewhere bandwidth of eachmode ãi is
defined as Δ such that the spectrum of a full set of modes ãi cov-
ers the bandwidth 2𝛿𝜔 of the cavity mode ã. In the experiment,
we collect the emitted power over the whole [𝜔r − 𝛿𝜔,𝜔r + 𝛿𝜔]
frequency range and separate signals in the N modes using
numerical postprocessing. The same operation could be imple-
mented by using accurate bandpass filters with bandwidth Δ.
Within the scope of this work, we consider only tripartite

(N = 3, p = 2) and quadripartite (N = 4, p = 3) quantum states.
In the following, we elucidate the internal structure of the gener-
ated states through a graph representation based on the quantum
Langevin equation.

2.3. Graphical Description of Quantum States

In order to construct a comprehensive graphical representa-
tion, we consider interactions between cavity and input vacuum
modes by solving the QLE given in Equation (3) for N cavity

modes defined in Equation (5); for details see Appendix A.6. As-
suming the strong coupling regime with 𝜅 ≫ Δwhile neglecting
dissipation losses 𝛾 and the Kerr-nonlinearityK, Fourier transfor-
mation yields a system of linear equations which can be cast in a
matrix form:

Mã(𝜔) =
√
𝜅b̃in(𝜔) (6)

Here the interactionmatrixM contains diagonal entries provided
by cavity-related part of the Hamiltonian, whereas the paramet-
ric terms appear in the off-diagonal entries. For example, one
obtains for the tripartite case with Δr = 0 and having different
phases for the pump tones 𝛼1 = 𝛼ei𝜑1 , 𝛼2 = 𝛼ei𝜑2 :

M =

⎡⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 i𝛼ei𝜑1 0
0 c 0 i𝛼ei𝜑1 0 i𝛼ei𝜑2
0 0 c 0 i𝛼ei𝜑2 0
0 −i𝛼†e−i𝜑1 0 c 0 0

−i𝛼†e−i𝜑1 0 −i𝛼†e−i𝜑2 0 c 0
0 −i𝛼†e−i𝜑2 0 0 0 c

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

where the frequency dependency enters through the c = −i𝜔 +
𝜅∕2 coefficient. To express the intracavity modes through the vac-
uum input, we use the inverse matrixM−1:

ã(𝜔) =
√
𝜅M−1b̃in(𝜔) (8)

For the tripartite case, such a matrix is written in the following
way

M−1 = 1
c2 − 2𝛼2

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c − 𝛼2

c
0 𝛼2eiΔ𝜑

c

𝛼2eiΔ𝜑

c
𝛼2eiΔ𝜑

c
0 −i𝛼ei𝜑1 0

0 c 0 −i𝛼ei𝜑1 0 −i𝛼ei𝜑2
𝛼2eiΔ𝜑

c

𝛼2eiΔ𝜑

c
𝛼2eiΔ𝜑

c
0 c − 𝛼2

c
0 −i𝛼ei𝜑2 0

0 i𝛼e−i𝜑1 0 c − 𝛼2

c
0 𝛼2eiΔ𝜑

c

𝛼2eiΔ𝜑

c
𝛼2eiΔ𝜑

c
i𝛼e−i𝜑1 0 i𝛼e−i𝜑2 0 c 0
0 i𝛼e−i𝜑2 0 𝛼2eiΔ𝜑

c

𝛼2eiΔ𝜑

c
𝛼2eiΔ𝜑

c
0 c − 𝛼2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where Δ𝜑 = 𝜑1 − 𝜑2. Besides two mode squeezing (TMS) corre-
lations proportional to 𝛼, the matrix contains also beamsplitter
correlations (BS) ∝ 𝛼2 (denoted in bold). Note that the 𝛼2-terms
are absent in the matrixM introduced in Equation (6). In this tri-
partite example, the phase difference Δ𝜑 contributes only to the
BS connection ãi(𝜔) ↔ ãj(𝜔) or ã

†
i (𝜔) ↔ ã†j (𝜔). TMS connections

are defined by entries ãi(𝜔) ↔ ã†j (𝜔) inM
−1. In Appendix A.6 we

discuss how the phase shifts between pumps influence the struc-
ture of subspaces within the covariance matrix. In the quadri-
partite case, it turns out that those products of M−1 responsible
for beamsplitter interaction can be suppressed fully by choosing
pump phases properly in certain pump tone configurations.
Interestingly, the matrix

√
𝜅M−1 can also be interpreted as

an adjacency matrix, which is used in graph theory for char-
acterization of the connections, the graph edges. In regular
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Figure 2. Graph representation for the entangled tripartite and quadripartite systems. Generalized H-graph (ℋ̃-graph) representation of a) bisqueezed
tripartite CV entangled state and b) quadripartite CV entangled ℋ̃-graph state obtained in our experiments. Vacuum modes (red circles) are connected
via two-mode squeezing (TMS, solid lines on graph) and beamsplitter (BS, dashed lines) correlation. Graphs (c,d) represent tri- and quadripartite GHZ
states, which can be obtained via introducing an additional pump tone with Δd = 0 in the tripartite case and two additional tones at −Δ and Δ in the
quadripartite setting. The additional pumps supply missing TMS connections to the entangled states. For details, see Appendix A.6.

H(amiltonian)-graph,[7,29,38,39] each vertex represents a vacuum
mode and the adjacency matrix describes correlations produced
by twomode squeezing (TMS) between the vacuummodes.How-
ever, our scheme produces additional correlations, BS correla-
tions, that can no longer be described purely by the TMS correla-
tions and, therefore, the standard H-graph theory needs a more
generalized approach.
In our approach, we introduce generalized ℋ̃-graphs formed

by both two mode squeezing and beamsplitter correlations (see
Appendix A.6). Examples of such graphs are presented in Fig-
ure 2a,b for the tripartite and quadripartite case, respectively.
Intriguingly, the famous Greenberger–Horne–Zeilinger (GHZ)
states[7,38,44] have different structure since they are devoid of BS
correlations. However, by applying additional pump tones and
adjusting phase difference between them, one can generate tri-
partite and quadripartite GHZ states consisting of only SQ corre-
lations as shown in Figure 2c,d. In general, the consideredmulti-
pumping scheme allows us to control SQ andBS bonds providing
access to more complex structures of CV quantum states beyond
GHZ-like states.
From the experimental point of view, the observer is interested

in the adjacency matrix for out-coming modes b̃out, which are
obtained from ã using the input–output relationship in Equa-
tion (4). This equation yields

b̃out(𝜔) = (I − 𝜅M−1)b̃in(𝜔) (10)

on the basis of whichwemay define the adjacencymatrix ƒM = I −
𝜅M−1 for input–output mode graphs. Due to the linear nature of
the equation, the unit matrix does not change the intrinsic form
of interactions between the vacuum modes, but the correlation
structure of intracavity and output spectral modes is equivalent.
Consequently, analyzing a graph defined by the matrix M−1 is
sufficient to characterize the BS and TMS connections between
vacuum spectral modes.

2.4. Connection to Hamiltonian Graph

CV cluster states with square-lattice graph structure provides a
foundation for measurement-based continuous variable quan-
tum computation (CVQC).[38] Cluster states can be asymp-
totically reached from H-graph states in the case of infinite
squeezing.[39] The H-graph structure is defined by its adjacency

matrix G, whose entries Gij specify the multimode squeezing
Hamiltonian as:

HS = ℏ𝛼
∑
i,j

Gij(ã
†
i ã

†
j + ãiãj) (11)

Here, the pump tone amplitudes are considered to have equal
strength 𝛼. The matrix G involves TMS correlations between
modes ãi ↔ ã†j , but as was pointed out before, the BS correlations
do not show up in the H-graph representation. The equations of
motion for the operators are given by i ̇̃a†k = 𝛼

∑
j Gjkãj and i ̇̃ak =

−𝛼
∑

j G
∗
jkã

†
j . Taking the Fourier transform, the left hand side

equals 𝜔 × ã(𝜔), and the combination 𝜔ãk(𝜔) = 𝛼
∑

j Gjkã
†
j (−𝜔)

provides the connection to the QLE treatment in Equation (6):
ã(𝜔) here is the cavity signal defined by the graph connections
given by Gjk. Consequently, the basic graph structures are the
same, but the form ofM−1 in theQLE analysis yields higher order
correlations which are experimentally relevant.
A standard description for graphs is based on the complex

symmetric matrix Z = ie−G, which is interpreted as the adjacency
matrix for an undirected Gaussian graph with complex-valued
edge weights.[38,39] Decomposing such a matrix up to quadratic
termsZ = iI − iG + i

2
G2 + (h3), we obtain corrections to the ad-

jacency matrix, which correspond to additional correlations, the
BS correlations, obtained in our QLE analysis. Indeed, BS trans-
formations embody interactions to second-order, which provides
classical correlations between corresponding nodes.[45]

Let us now show the origin of BS correlations using the mul-

timode squeezing Hamiltonian of Equation (11) in R = e−
i
ℏ
H𝜏

where we have considered that the system is pumped for a finite
time 𝜏. Themultimode squeezing operatorR can be decomposed
to a combination of TMS operators, containing Bij = ã†i ã

†
j + ãiãj,

and BS transformations based on Tij = ãiã
†
j − ã†i ãj. By utilizing

the Zassenhaus expansion (up to first order of commutation
relationship),[45] we obtain for the tripartite squeezing operator

R = e−i𝛼𝜏
∑3

i,j=1 Gij(ã
†
i
ã†
j
+ãi ãj) = e−i𝛼𝜏(B12+B23) = e−i𝛼𝜏B12

e−i𝛼𝜏B23e
𝛼2𝜏2

2
[B12 ,B23] = e−i𝛼𝜏B12e−i𝛼𝜏B23e𝜃13T13 (12)

Here, 𝜃13 specifies the relative phase shift between the two pump
tones. For detailed information on the expansion coefficients for
a bisqueezed state we refer the reader to ref. [45].

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (4 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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The total multimode squeezing operation can be considered as
a combination of TMS operators, acting on the respective bipar-
titions, and BS transformations between the other modes. The
beamsplitter correlations are phase dependent, and the strength
of the BS contribution can be tuned down to zero in certain cases
via proper choice of the phase difference between the pumps.
The general decomposition of the multimode squeezing oper-

ator can be expressed as

R =
NTMS∏
1

e−i𝛼𝜏B12e−i𝛼𝜏B23⋯
NBS∏
1

e𝜃13T13e𝜃24T24 … (13)

where the total number of TMS and BS operators in the decom-
position is NBS =

∑
n N − 2n and NTMS =

∑
n N − 2n + 1; where

n = 1, 2,… , ⌊N
2
⌋ for the configuration introduced in Figure 1

with N − 1 pump tones and N spectral modes. Collecting all of
the entries of Bij and Tij, we obtain a generalized adjacency ma-

trix ƒG with entries G̃ij =
∑NTMS

1 Bij +
∑NBS

1 Tij. Thus, the beam-
splitter correlations in adjacency matrix arise naturally from the
squeezing operator formalismwhen theHamiltonian is supplied
with the second order terms in pump amplitude. The structure

of the matrix ƒG defines the edge connections in the generalized
ℋ̃-graph.

2.5. Verification of the Multipartite Entanglement

The generalized graph analysis allows us to visualize the struc-
ture of entanglement in the quantum state generated by simul-
taneous multiple pump tones. However, in order to estimate the
amount of quantum resources embedded in the state, we have to
investigate and quantify the classical and quantum correlations
and determine how they reflect the genuine multipartite entan-
glement of the state.
Within the framework of parametric amplifiers, all microwave

fields produced by a JPA below the critical threshold are
Gaussian.[17,46] Therefore, the output states of a N-mode JPA
can be fully characterized by its covariance matrix of 2N-length
column vector with quadratures r̃ = (x̃1, p̃1,… x̃N, p̃N)

T , where
x̃i = (ãi + ã†i )∕2 and p̃i = (ãi − ã†i )∕2i. The covariance matrix 𝒱,
whose elements are given by

𝒱ij = 2
⟨
Δr̃iΔr̃j + Δr̃jΔr̃i

⟩
− 4 ⟨Δr̃i⟩ ⟨Δr̃j⟩ (14)

is sufficient for detection of the entanglement, eliminating the
need for analysis of the full density matrix. The last term can be
ignored aswe takeΔr̃i = r̃i− < r̃i >. Obtaining the covariancema-
trix, we can analyze the entanglement and examine the structure
of the quantum state. In this work, we consider fully inseparable
states and genuinely entangled states, for which the covariance-
based detection is, in general, more robust than detection via
complete determination of the state.[47] While the covariance ma-
trix is sufficient for evaluating entanglement of Gaussian states,
it is necessary to include higher-order correlations in the evalua-
tion of non-Gaussian states.[48,49]

To examine inseparability properties of the quantum
state,[47,50–55] we apply symplectic transformations to the co-
variance matrix and calculate its symplectic eigenvalues—the

positive partial transpose (PPT) criteria.[56,57] Such transforma-
tions are equivalent to a phase space reflection of a single party
in the N-partite state.[50] All minimum symplectic eigenvalues
{𝜈i}

N
i=1 would be less than one, which indicates that this partially

time-reversed state is unphysical; in other words, the original
state is fully inseparable. As has been pointed out in ref. [54],
if the purity of states cannot be guaranteed in an experimental
setting, verification of full inseparability in a multimode system
does not imply genuine multipartite entanglement (GME).
The entanglement structure becomes more involved with in-

creasing number of parties. While the symplectic transform ap-
proach indicates that any one partite were inseparable from the
whole, a state that is a mixture of separable states would show
full inseparability based on this PPT criterion. The states that
cannot be written in such a way are called genuinely entangled[17]

and the verification of such states differs from full inseparabil-
ity. Using generalized position and momentum observables, an
entanglement criterion has been derived and applied to confirm
tripartite energy-time entanglement of three spatially separated
photons.[58] In particular, there is an universal GME criterion de-
rived in ref. [47] and further refined in ref. [54]. This GME crite-
rion utilizes only variances of quadrature operators and it can be
used for entanglement verification without any additional mea-
surements. This general criterion was recently employed for ver-
ification of genuine tripartite entanglement of microwaves in a
double superconducting cavity setting.[34]

The GME criterion is based on the weighted variance of the
quadratures, u =

∑
i hix̃i and v =

∑
k gkp̃k; i, k = {1, 2, 3,… , N}.

Violation of the inequality

S ≡
⟨
Δu2

⟩
+
⟨
Δv2

⟩
f3(hi, gi)

≥ 1 (15)

where

f3(hi, gi) =
1
2
min{ |h1g1 + h2g2| + |h3g3|,

|h3g3 + h2g2| + |h1g1|,
|h1g1 + h3g3| + |h2g2|, } (16)

is sufficient to confirm genuine tripartite entanglement (N = 3)
and violation of

S ≡
⟨
Δu2

⟩
+
⟨
Δv2

⟩
f4(hi, gi)

≥ 1 (17)

where

f4(hi, gi) = min{ |h1g1 + h2g2 + h3g3| + |h4g4|,
|h4g4 + h2g2 + h3g3| + |h1g1|,
|h4g4 + h1g1 + h3g3| + |h2g2|,
|h4g4 + h1g1 + h2g2| + |h3g3|,
|h1g1 + h2g2| + |h3g3 + h4g4|,
|h1g1 + h3g3| + |h2g2 + h4g4|,
|h2g2 + h3g3| + |h1g1 + h4g4|} (18)
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is sufficient to confirm genuine quadripartite entanglement (N =
4) with weights hi, gk being in range [−1, 1]. To simplify the search
domain, we set h1 = g1 = 1 and hi = h, gi = g, for i = {2, 3} or i =
{2, 3, 4} with respect to the number of parties N.[54]

In the double and triple pumping schemes, we generate gen-
eralized tripartite and quadripartiteℋ-graph states, which have a
different structure compared with Greenberger-Horne-Zeilinger
(GHZ) states.[7,38,44] The generalization deals with addition of BS
correlations in theℋ-graph structure. However, by applying ad-
ditional pump tones and adjusting the phase difference between
them, we can obtain regular GHZ type of entangled states. Thus,
our scheme facilitates control of TMS and BS correlations and,
thereby, allows tuning of the structure of the entangled state.
Typically, the experimental weights of the graph edge connec-

tions are slightly non-symmetric due to imperfections in themea-
surement settings. This results in a difference in the optimal
weight values in the GME criterion. In order to find the full vi-
olation of the criterion in our analysis, we swap over all possi-
ble “base” modes (with weights hi = gi = 1) in order to detect the
minimum value for S.

3. Experiment

3.1. Experimental Methods

In our microwave experiments, we employ a niobium 𝜆∕4
coplanar 50Ω transmission line terminated into a SQUID loop
(QWJPA), forming a quarter-wave Josephson parametric ampli-
fier. The SQUID’s junctions are formed by Nb/Al-Al2O3/Nb 1×1
μm tunnel barriers with Ic ≃ 4 μA critical current. The JPA, oper-
ating in three-wave-mixingmode around the cavity frequency𝜔r,
is pumped by an external RF magnetic flux through the SQUID
loop using a single turn pump coil at frequency 2𝜔r (marked as
2𝜔LO in Figure 3a).

[40,59] We chose this operation regime, because
for four-wave mixing (typically using a current pump near 𝜔r),
the large amplitude pump is within the amplification bandwidth,
whereas the three-wave mixing process separates the pump tone
from the amplified signals, thus simplifying the practical use of
the JPA. The loaded quality factor at the operation frequency is
≈900, while the internal Q is by a factor of three larger. The ba-
sic (zero-flux) resonator frequency is 6.115 GHz, it can be tuned
below 5.5 GHz by imposing external DC magnetic flux through
the SQUID.
Our measurement setup is illustrated in Figure 3a. The exper-

iments were conducted at 20 mK using a BlueFors LD400 dry di-
lution cryostat. The JPA was protected from external magnetic
fields using a Cryoperm shield. The DC flux bias and the RF
pump shared a common on-chip flux line, and the signals were
combined in an external bias-tee. Since our basic microwave set-
ting is for reflection measurements, the sample is connected to
the input and output ports via a circulator having a frequency
band of 4 − 12 GHz. A vector network analyzer (VNA) was used
to characterize the sample, whereas during the entanglement
generation measurements, the signal port was kept terminated.
By applying a multitone pump to JPA, correlated microwaves are
generated from vacuum fluctuations. In the tripartite setting il-
lustrated in Figure 3a, we had control over the relative phases of
the pumps directly whereas, in the quadripartite case, phase ro-
tation was possible in the data analysis only. Basic experimental

Figure 3. Experimental scheme and device characterization. a) Principle
of the experimental setup for tripartite entanglement measurements. The
device is connected to the test ports via circulators. The DC bias current
and AC pumping of flux are combined and reseparated in bias-T compo-
nents. Depending on themeasurement type, input is connected either to a
vector network analyzer (VNA) or a 50 Ω termination, whereas the output
is directed either to a VNA, a signal analyzer, or a analog/digital converter.
The frequency span of spectral modes and their separation is given for
tripartite and quadripartite case in frames (b,c), respectively.

data in the tripartite case as well as determination of the cavity
parameters 𝜅, 𝛾 , and K are discussed in Appendix A.4.
3.1.0.1. Tripartite case: : In the tripartite case, phase-

controlled pump signals from the RF waveform generator are
mixed with the frequency-doubled local oscillator (LO) frequency,
filtered by a pair of home-made, tunable bandpass cavity filters.
In order to avoid spurious pumping at 𝜔2LO, a band rejection
filter tuned to 2𝜔LO is employed. The filtering ensures passage
only for the desired two pump signal at angular frequencies
𝜔1 = 𝜔r − Δ∕2 and 𝜔2 = 𝜔r + Δ∕2. Sufficient noise thermaliza-
tion is ensured by the 46 dB attenuation because the pump coil
is only weakly coupled to the SQUID.

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (6 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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We apply a DC magnetic flux of ΦDC = 0.383Φ0 through the
SQUID loop, resulting in 𝜔r

2𝜋
= 6.024 GHz for the cavity fre-

quency. In the three-mode experiment, we apply two pump
tones at (2 × 𝜔r

2𝜋
− 2) MHz and (2 × 𝜔r

2𝜋
+ 2) MHz, with the half-

frequencies positioned as depicted in Figure 3b and the cor-
related spectral modes are defined symmetrically with respect
to the pump half-frequencies. Each mode has a bandwidth of
1.9 MHz and is separated from the other modes by 0.1 MHz. The
phase control in the measurement is facilitated by phase-locking
of microwave generators to a 10 MHz rubidium reference clock
and by using a joint external trigger.
To collect data for correlation analysis, we mix down the out-

put signal using a synchronized LO signal and record the output
quadratures using two channels of a Teledyne SPDevices ADQ14
digitizer with sample rate of 50 MSa s−1 per channel covering
the bandwidth of 25 MHz. Furthermore, we employ an overall
detuning of 14 MHz, that is, a heterodyne detection scheme, in
order to avoid 1∕f noise from the measurement devices and the
IQ mixer in the frequency conversion part of the setup. Using
digital postprocessing, we can easily shift the center frequency of
the heterodyned MHz signal to zero, ready for final correlation
analysis of the modes.
Our three-mode measurement scheme provides the remark-

able advantage of physical control of the phase difference be-
tween the two pump tones, which is essential for the analysis
of phase dependence in the entangled states. The phase differ-
ence between 2 LO signal used as the carrier of the pump tones
and LO readout signal remains fixed. Therefore, a change of
the initial phase of the IF-signal in one of the pump generator
channels (Agilent 33600B in Figure 3a) relative to the second IF
channel creates an effective phase difference Δ𝜑 between two
pump tones. Importantly, this difference Δ𝜑 is preserved after
mixing with 2LO (using simplified notation): e−i(𝜔1t+Δ𝜑)e−i𝜔2LOt =
e−i((𝜔1+𝜔2LO)t+Δ𝜑); e−i(𝜔2t)e−i𝜔2LOt = e−i((𝜔2+𝜔2LO)t).
Since our fully phase-locked scheme preserves the phases of

the received, demodulated output quadratures, themeasurement
of covariance matrix components can be averaged for reducing
noise in the elements. Finally, the reference phase of a single
mode (defining the basis for I and Q) can be adjusted in post-
processing step in such a way that the corresponding subspace
of the covariance matrix becomes a diagonal 2 × 2 matrix.
In the tripartite case, indeed, we find that the hardware-

controlled relative phase rotation (in addition to the reference
phase value to both channels of the pump generator) is equiv-
alent to a proper phase rotation in the postprocessing step. The
postprocessing will be discussed in more detail in Section 4.
3.1.0.2. Quadripartite case: : In the four spectral mode case,

we simplify the experimental setup by eliminating the physical
phase control, and replaced it by postprocessing of the received
signals. This simplification possibility highlights the scalability of
our entanglement generationmethod. The employed digital post-
processing is equivalent to hardware-level selective separation of
spectral modes into four channels, for example, using bandpass
filters in conjunction with power splitters, and additional tunable
delay lines for each selected spectral mode frequency.
We apply a DC magnetic flux of ΦDC = 0.417Φ0 through

a SQUID resulting in 𝜔r = 5.978 GHz cavity frequency that
slightly differs from the tripartite case, see Figure 3b,c. In or-
der to generate quadripartite correlations, we apply three pump

tones using Anapico APMS 12G generator, using strong high-
pass filtering (2 of Mini-Circuits VHF-8400+) to avoid subhar-
monic transmission to the circuitry. In this scheme, we avoid
any external mixers for the input pump microwaves. By apply-
ing three phase-locked pump tones at frequencies 2 × 𝜔r

2𝜋
MHz,

(2 × 𝜔r

2𝜋
+ 1) MHz, and (2 × 𝜔r

2𝜋
− 1) MHz, we generated four cor-

related spectral modes out from the ground state of the mi-
crowave cavity. Each mode has a bandwidth of 0.4 MHz and
is separated from adjacent modes by 0.2 MHz. The output mi-
crowaves are captured, mixed down, and digitized by Anritsu
MS2830A Signal Analyzer with a bandwidth of 2 MHz. Again,
averaging is needed to lower the noise in the covariance matrix
elements, and in this scheme, digital postprocessing is necessary
to unify the phase settings in the covariancematrices before sum-
mation.
The experimental detection of ̃-graph states and their gen-

uine multipartite entanglement depends on relations among the
covariance matrix elements as discussed in Section 2.5. The de-
gree of violation in the GME condition S < 1 depends strongly
on the magnitude ratio of the diagonal covariance elements to
the off-diagonal ones. Therefore, calibration of the detected sig-
nal powers is decisive, which is discussed in Appendix A.3.

3.2. Scaled Covariance Matrix

The system gain < GΣ > determined in Appendix A.3 refers to
measured power per unit bandwidth. Since the measured spec-
tral mode quadratures Ii and Qi are determined over the band
Δfi, the scaled quadrature xi, equivalent to the amplitude of the
quantum mechanical operators x, is given by the formula

xi =
Ii√

GiZ0hfiΔfi
(19)

whereGi =< GΣ,i > is the system gain for ith spectralmode,Z0 =
50 Ω is transmission line impedance and Δfi is the bandwidth of
the spectral mode: Δfi = 2 MHz or Δfi = 0.4 MHz for tripartite
and quadripartite cases, respectively. Similar scaling is applied
also to the quadrature component Qi.
Similar to our earlier work,[43] the noise added by the pream-

plifier is subtracted from the diagonal elements of the covariance
matrix (see Equation (14))

𝒱 = 4
(
Von − Voff

)
+ I coth

hfi
2kbTi

(20)

where Voff denotes the covariance matrix measured in the ab-
sence of the pump. Due to scaling of the covariance matrix 𝒱,
this equation yields a unity diagonal matrix in the absence of
pumping at T → 0. The average physical temperature in our ex-
periments is Ti = 20 mK resulting in coth hfi

2kbTi
= 1.000.

4. Multipartite Entanglement

To characterize the structure of the entanglement in output
states, we analyze the resulting covariance matrices using PPT
formalism and GME criteria discussed in Section 2.5 for tripar-
tite and quadripartite cases.

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (7 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. Phase-dependent genuine entanglement of tripartite bisqueezed state. a) Simulation results for GME criterion as a function of normalized
pump amplitude for three different values of the phase difference Δ𝜑 between pump signals indicated in the figure; the simulation parameters were
set to match the experiment (see Appendix A.4). The inset illustrates S(A,Δ𝜑) up to critical amplitude A = 0.5. The weights hi, gi were optimized in the
calculation of S as discussed in the text. b) Experimental values for S as a function of A at the same phase difference valuesΔ𝜑 between pump signals as
in frame (a). The inset illustrates measured S(A,Δ𝜑) up to A = 0.5. In general, the measured S(A,Δ𝜑) corresponds quite well to the inset in frame (a).
Due to noise, the measured GME nearly vanishes around Δ𝜑 ≃ +90◦ where even the simulated S is only slightly below 1. The best genuine multipartite
entanglement is reached at Δ𝜑 = −90◦⋯ − 120◦ owing to phase shifts introduced by the cavity (see Figure A3 in Appendix A.5). The parametric drive
changes the phase response of the cavity which leads to a shift in the optimum conditions for GME as a function of A.

Tripartite case: Leveraging the amplitude and phase control of
the pump signals, we experimentally evaluate the PPT and GME
criteria values at different pump parameters. For comparison, we
also conducted detailed numerical simulations based on the QLE
in Equation (A8) using experimentally determined JPA parame-
ters in the measurements. In general, we find good agreement
between simulations and the experimental data, which is reas-
suring concerning the validity of the results.
Figure 4 depicts our experimental results on genuine tripartite

entanglement and their comparison with simulations. Figure 4a
illustrates results of numerical simulations on GME in terms
of S defined in Equation (15). At weak pumping, the condition
for genuine entanglement S < 1 is fulfilled almost independent
of the pump phases, but with increasing A, the simulations re-
veal an even smaller range of Δ𝜑 yielding S < 1 (see the inset
in Figure 4a). The strongest genuine tripartite entanglement is
reached at Δ𝜑 ≃ −120◦ under normalized pumping amplitude
A ≃ 0.22, at which the simulations reach S = 0.70. At the mini-
mum of S, the corresponding weights are hi = {1,−0.65,−0.65}
and gi = {1, 0.65, 0.65}. It is noteworthy that the phase setting
Δ𝜑 = +90◦ yields clearly worse entanglement than Δ𝜑 = −90◦.
This asymmetry in GME between Δ𝜑 = ±90◦ arises from differ-
ences in the covariance matrices which is illustrated in Figure 5.
Our experimental data on S in Figure 4b displays similar fea-

tures as Figure 4a. The measured GME criterion S as function
of normalized pump amplitude for three phase differences is
shown in Figure 4b. In the experimental data, nearly no GME
is observed at positive phase differences, whereas Δ𝜑 = −90◦
and Δ𝜑 = −120◦ yield suppression down to S = 0.75 ± 0.05. The
measured result at Δ𝜑 = −120◦ follows quite well the simulated
behavior as a function of the pump amplitude, and genuine en-
tanglement is observed in the normalized amplitude range A ∈

[∼ 0.01, 0.4]. Overall, the pattern of S(𝜑, A) in the inset of Fig-
ure 4b coincides with the simulated pattern in Figure 4a. The
agreement strongly supports the presence of genuinely entan-
gled bisqueezed state in our experiment. We emphasize that the
optimum entanglement at Δ𝜑 = −120◦, observed both in our
simulations and in the experiment, cannot be obtained from a
simple analytical calculations for the lossless, strongly coupled
model. The reason is the frequency-dependent phase response
of the cavity due to finite coupling and dissipation rates (see Sec-
tion A.5), which, when included in the simulations, result in very
good matching with the experiment.
Covariance matrices measured at the pump phase difference

Δ𝜑 = +90◦ and Δ𝜑 = −90◦ are illustrated in Figure 5. Techni-
cally, by rotating the phase of a pump signal, we selectively con-
trol certain subspace of the covariance matrix, which can be seen
in Figure 5. An applied phase shift to the first or the second
pump rotates directly the subspace corresponding to two mode
squeezing correlations, modes 1 − 2 or 2 − 3, respectively. If no
phase shift to the selected pump tone is applied, the correspond-
ing TMS subspace preserves its distribution of covariances. The
subspace spanned by modes 1 and 3, corresponding to the beam-
splitter type of correlations, has a structure according to products
of the involved TMS subspaces. Distinct control of the BS sub-
space alone (leaving the TMS subspaces fixed) using a rotation
of the pump phases is not possible.
Comparison of Figures 5a,b, reveals how the subspaces trans-

form with the phase difference from Δ𝜑 = −90◦ to Δ𝜑 = +90◦.
Subspace 1 − 3 corresponding to BS correlations shows a sign in-
version in its elements. Subspace 2 − 3 corresponds to the pump,
the phase of which has not been changed and, thus, its elements
remain fixed. The phase of the first pump has been changed by 𝜋
which inverts the TMS correlation in subspace 1 − 2. These sub-

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (8 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Covariance matrix of the genuinely entangled tripartite bisqueezed state. Experimentally obtained tripartite covariance matrices for genuinely
entangled bisqueezed states. The phase difference between the two displayed cases is 180◦. Via this control of pump phases we demonstrate the rotation
of the desired subspace elements, corresponding to TMS type of correlations (1 − 2 or 2 − 3). Subspace elements related to BS correlations (1 − 3),
shows always dependency on the distribution of the elements in the corresponding driven TMS subspaces. However, the eigenvalues of the BS subspace
remain constant.

spaces which are controlled by the pump phase settings, can ex-
pressed in symmetric < I1I2 >≃< I2I3 > or antisymmetric form
< I1I2 >≃ − < I2I3 >, see Figures 5a,b, respectively.
The inseparability of the covariance matrix was investigated

using the PPT criteria (see Section 2). Symplectic eigenvalues
obtained for mode partitions 1 − 23, 2 − 13, and 3 − 12 are de-
picted in Figure 6a for simulations, while experimental data are
displayed in Figure 6b; here the first index specifies the mode
in which the sign of the momentum has been reversed. The re-
sults are plotted as a function of normalized pump amplitude
since the phase difference between the pump tones does not
play a role. Indeed, while the genuine entanglement is sensi-
tive to both pump amplitude and phase difference, the PPT cri-
terion is phase independent—the minimum symplectic eigen-
values remain constant when the phase difference is varied at
fixed pump amplitude. Therefore, by exercising phase control
over each pump, we gain the ability to switch from fully insep-
arable state to genuinely entangled state, without making any
changes to the type of interaction between the modes. Accord-
ing to experimental results in Figure 6b, the middle frequency
acted on by both pumps is the most inseparable part of the co-
variance matrix.
Quadripartite case: For the quadripartite case, we apply three

pump drives with identical amplitude 𝛼1 = 𝛼2 = 𝛼3 = 𝛼. While
our goal is to demonstrate genuine entanglement generation of
cluster states (mode structure depicted on Figure 2), we reject
direct, physical phase control, and use digital postprocessing to
transform the covariance matrix to the desired form on which
we then verify its entanglement properties. However, we do pre-
serve the coherence between pump tones by phase locking so that
the relative phases do not fluctuate over time. By applying a post-
processing phase rotation for each mode separately, we bring the
covariance matrix into the symmetric form (see Section 4).
For the analysis of full inseparability of the covariance matrix

according to the PPT criterion, we evaluate the minimum sym-

plectic eigenvalues min{𝜈i} of the following mode permutations:
1 − 234, 2 − 134, 3 − 124, 4 − 123. The experimentally obtained
symplectic eigenvalues as function of normalized pump ampli-
tude A are displayed in Figure 7 alongside with the correspond-
ing predictions given by our numerical simulations. The mini-
mum symplectic eigenvalue min{𝜈i} = 0.79 ± 0.018 is reached,
while all of the eigenvalues in the normalized pump amplitude
range 0.01 ≲ A ≲ 0.15 are less than 1. Compared with the mini-
mum symplectic eigenvalues in Figure 6, we may conclude that
the influence of BS correlations on min{𝜈i} value is less in the
quadripartite state than for the tripartite case.
The GME criterion for four modes as a function of the nor-

malized pump amplitude is depicted in Figure 7b; the symbols
display data while the simulation result is indicated by the solid
curve. As was discussed in Section 2, the optimized weights
in GME inequality Equation (17) are chosen in the same man-
ner as in the tripartite case: h1 = g1 = 1 and hi = h, gi = g, i =
{2, 3, 4}. The strongest genuine entanglement S = 0.84 ± 0.02 is
observed at A ≂ 0.08 pump amplitude using the weights hi =
{1,−0.51,−0.51,−0.51} and gi = {1, 0.69, 0.69, 0.69}. The numer-
ical simulation provides h and g coefficients that coincide with
the experimental values with 1% error, which strongly establishes
that the states produced in the experiment coincide with the ones
that were obtained and analyzed in the numerical model.
The covariance matrices obtained in the experiment and using

numerical simulation are presented in Figure 8a,b, respectively.
They are determined at the strongest entanglement point reached
at A ≂ 0.08. TMS type of correlations are seen in the mode com-
binations 1 − 2, 2 − 3, 3 − 4, and 1 − 4. Subspaces corresponding
to BS correlations are visible in the plot as product distributions
in 1 − 3 and 2 − 4 subpartitions. The covariancematrix structures
illustrated in Figure 8 correspond directly to the ℋ̃-graph struc-
tures shown on Figure 2b. In general, we conclude that for the
employed pump configuration, the genuine quadripartite entan-
glement appears in the amplitude range 0.01 ≲ A < 0.13.

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (9 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. Phase-independent full inseparability of tripartite bisqueezed state. a) PPT criteria in terms of the minimum symplectic eigenvalues simulated
for our double-pump QWJPA using experimentally determined parameters. Eigenvalues min{𝜈i} are traces over normalized pump amplitude A; permu-
tations 1 − 23, 2 − 13, and 3 − 12 have been considered. The symplectic eigenvalues are the smallest for time-reversed second mode (𝜈2−13), which
participates to both TMS processes. b) Experimentally determined symplectic eigenvalues for the same permutations (◦ in the experiment. Gray dashed
line displays the full inseparability threshold. The difference in the simulated behavior of 𝜈1−23 and 𝜈3−12 is caused by asymmetry due to finite value of
resonance detuning Δr.

5. Discussion

The control of bisqueezed tripartite and generalizedH-graph (ℋ̃-
graph) quadripartite states by relative positioning of the pump
frequencies and their phases is indicative of the strong poten-
tial of these methods for CV quantum state processing. The
basic parametric microwave setting allows for enhancement in
the number of spectral modes by additional pump tones, which
leads to generation of more complex, entangled ℋ̃-graph states.
Enhanced number of modes requires larger bandwidth, which
calls for broadband parametric devices such as TWPAs[60–64] or
broadband JPAs[59,65] in order to avoid problems with spectral
mode crowding.
Our approach based on QLE puts in evidence additional corre-

lations, which are captured by the definition of ℋ̃-graph states.
The correlations arise naturally from the connection between
intracavity modes and the input vacuum modes, due to which
the same vacuum fluctuations may act in the downconversion
of more than one quanta. In the literature on cluster and H-
graph states, the adjacency matrix for H-graphs is defined via
the matrix specified in the multimode squeezing Hamiltonian.
TheQLE analysis corresponds to the expansion of themultimode
squeezing operator up to second order, which leads to the ap-
pearance of beamsplitter correlations in the adjacency matrix. In
Appendix A.6 (Equations (A37)–(A39)) we show how to use well-
chosen relative pump phase values in the quadripartite case to

prepare an entangled square lattice state—that is, a state with-
out BS correlations. For the case of very large squeezing, ℋ̃-
graph state can be regarded as an approximation of a 4-node clus-
ter state, minimizing errors in gate operations of measurement-
based CV quantum computing.
Cluster states form a promising platform for scalable quan-

tum information processing. In one-way quantum computing,[3]

the entire computational resource is provided by the entangle-
ment of the cluster state. The processing is based on quantum
measurements which facilitate gate operations as well as the
read-out of the final result. However, cluster states can be ob-
tained from graph states only in the mathematical limit of large
squeezing parameter.[27–29,32] For quantum information process-
ing steps, it is sufficient to perform sub-cluster measurements in
specified order using a suitable computational basis. In refs. [28,
66, 67] different computation scenarios based on resources pro-
vided by squeezing generators and beamsplitters are described.
Encoding, gate and measurement operations have been so far
considered in optical circuits for continuous variable quantum
data and can be efficiently extended to the microwave realm. In
this work, we have utilized this correspondence between optics
and microwaves and demonstrated ℋ̃-graph state encoding.
In contrast to computational models for graph states[38] con-

sidered as ideal clusters, hardware based on finite squeez-
ing with noise and decoherence requires error correction
procedures[6,68,69] to provide reliable CV computation. Using the

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (10 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 7. Full inseparability and genuine entanglement of quadripartite
ℋ̃-graph state (generalized H-graph). a) Results on PPT criterion for
four permutations of a four-mode Gaussian state. Minimum eigenval-
ues min{𝜈i}, indicated as open circles, are traced over normalized pump
amplitude A. Results of our QLE simulations, plotted as solid curves,
exhibit good correspondence with the experimentally obtained values.
The full inseparability condition {𝜈1−234 < 1}

⋀
{𝜈2−134 < 1}

⋀
{𝜈3−124 <

1}
⋀
{𝜈4−123 < 1} is fulfilled in the range of 0.01 ≲ A ≲ 0.15. The green

dashed line displays the entanglement threshold.

presented scheme one can implement error correction codes
based on the idea of repetitions of selective measurements and
new encoding of ℋ̃-graph states before each gate operation. In
ref.[ [70]] a multidimensional platform for scalable quantum com-
puting has been proposed, based on cluster states created us-
ing microring resonators; also multiple frequency combs[67] cre-
ated by optical parametric amplifiers and beamsplitters can serve
as an excellent platform for quantum computation. Our work
shows that the methods of generation of highly-entangled CV
states are not restricted to just optical parametric amplifiers, but
the methods can be carried over into the microwave domain
by employing parametric Josephson junction devices for cre-
ation of topologically involved and structurally versatile ℋ̃-graph
states.
An implementation of the universal quantum computer based

on bosonic modes with the possibility of hardware-efficient
quantum error correction[71] requires efficient generation of
continuous-variable quantum resources. The genuine entangle-
ment between several bosonic modes could potentially be em-
ployed for error-correctable codeword states.[72] Besides potential
in error correction, the introduction of entanglement into quan-

Figure 8. Covariancematrix of genuinely entangled quadripartite ℋ̃-graph
state. a) Experimental covariance where the rotation of the TMS subspaces
1−2, 2−3, and 3−4 have been made in such a way that the structure co-
incides with the matrix in Equation (A36) of Appendix A.6 (each pump
has phase 𝜋

2
). The employed pump amplitude A ≂ 0.08 yields the small-

est value for S. b) Simulated covariance matrix using equal pump phases
𝜋

2
at A ≂ 0.08. The difference from the matrix in Equation (A36) is due to

the cavity response that induces extra phase shifts.

tum measurement implementations leads to a quantum advan-
tage in the detection process when detection is performed in the
presence of high level of noise and loss.[73]

Increase of the number of entangled spectral modes is essen-
tial for future technological application of these CV quantum
state generation methods. The limiting factors are the require-
ments of high precision for the pump frequency and its phase,
the stability of the biasing flux, and possible crowding of modes
within a narrow-band JPA resonance. However, recently it has
been demonstrated that entanglement can be generated in

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (11 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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low-loss traveling wave parametric amplifiers.[] This opens a way
to significant increase in the number of entangled modes.

6. Conclusion

In this work, we presented a practical scheme for generation
of controllable multipartite entanglement from vacuum fluctua-
tions, based onmultitone pumping scheme of a JPA, which facil-
itates pivotal resources for quantum technologies at microwave
frequencies. While optical schemes for multipartite entangle-
ment generation operate on even larger clusters, they lack versa-
tility and are limited to optical frequencies as such. On the other
hand, our scheme allows for a flexible increase in the number of
modes and control of the entanglement configuration among the
modes by adjusting pumping on the same device, whereas op-
tical setups call for massive hardware reconfiguration when the
entanglement structure is altered. Through phase and amplitude
variation of the microwave pump tones, we reach a comprehen-
sive control over the entanglement structure within the spectral
modes of a single JPA cavity mode, which we experimentally ver-
ify in detail for the tripartite case.
Using the developed scheme, we made the first successful

demonstration of an on-demand tunable, fully inseparable, and
phase controllable genuinely entangled tripartite and quadripar-
tite states in a superconducting system. The presence of multi-
partite quantum correlations was verified using the covariance
matrix formalism and genuine entanglement criteria constructed
from the measured quadratures. Experimental results were ac-
curately reproduced by calculating symplectic eigenvalues of a
partially-transposed covariance matrix for full inseparability de-
tection as well as computing GME criteria in normalized pump
amplitude in range 0 < A < 0.5 (0 < A < 0.25) and verified gen-
uine entanglement in the range of 0.01 ≲ A < 0.4 (0.01 ≲ A <

0.13) for the tripartite (quadripartite) state.
We provided results of phase-dependent GME criterion for

bisqueezed state.With optimal phase shift between two pumping
tones Δ𝜑 = −120◦ minimum value of criterion S = 0.75 ± 0.05
was obtained. This result was also faithfully reproduced by nu-
merical simulations.
In our analytical derivations, we demonstrated additional con-

trol possibilities over the BS correlations in the covariance ma-
trix of quadripartite ℋ̃-graph state. To visualize the formed en-
tanglement structure, we provided an extension for the known
H-graph adjacency matrix: besides TMS, it includes BS correla-
tions between the vacuum modes. The QLE approach was used
to introduce such an adjacency matrix and to connect it to the
general approach starting from multimode squeezing operator
and the TMS Hamiltonian for the multi-mode case with mul-
tiple pumps. As shown in Appendix A.6, BS correlations can
be fully suppressed by implementing a 180◦ phase shift of one
pump. Such a phase combination creates a distinct square-lattice
H-graph state which, for the limit of infinite squeezing parame-
ter, transforms to a square-lattice cluster state.
Additional TMS correlations can be introduced by inserting

new pump tones, which can change the nature of the entan-
gled states drastically. For example, using two additional pump
tones with half frequencies at {−Δ

2
; Δ
2
}, we are able to connect

all 4 modes with TMS correlations and thereby achieve a GHZ-
like state. Furthermore, by tuning the phases of the pumps, the

state can be converted into square-lattice H-graph state. With the
bandwidth improvements provided by the state-of-the-art super-
conducting parametric devices, such as the broadband, low-loss
travelling wave parametric amplifier,[62–64] we expect a substan-
tial increase in the number of entangled modes, which facilitates
generation of highly-squeezed square-lattice H-graph states for
CV quantum computation at microwave frequencies.

Appendix A: Analytical Methods, Experimental
Procedures, and Entanglement Analysis

A.1. Details of Theoretical Description

The Hamiltonian of JPA system is given by

Ĥsys = ℏ𝜔r â
†â + ℏ

2

∑p
d=1

[
𝛼∗
d
ei𝜔dt + 𝛼de

−i𝜔dt
]
(â2 + â†2)

+ℏK(â + â†)4 (A1)

where â(â†) is the annihilation (creation) operators for cavity photons, 𝛼d
is the complex amplitude for pump tone d, and K denotes the strength
of the Kerr nonlinearity term. Using the average of p pump tones 𝜔d, d =
{1,… , p}, we define the detuning between the half pump frequency and

the resonator frequency: Δr = 𝜔r −
𝜔Σ
2
, 𝜔Σ =

∑p
d=1 𝜔d

p
.

For each of the p pump tones, we define the detuning from the aver-
age frequency Δd = 𝜔d − 𝜔Σ, d = {1,… , p}. By applying the rotating wave
approximation in the frame 𝜔Σ∕2 (ã(t) = â(t)ei𝜔Σt∕2) and leaving only the
effective high-order terms, we obtain for the nonlinear part of the Hamil-
tonian

Hsys,rwa(t) = ℏΔr ã
†ã + ℏ

2

∑p
d=1(𝛼

∗
d
eiΔdtã2 + 𝛼de

−iΔdtã†2)

+6ℏKã†ã†ãã (A2)

As usual, the bosonic commutation relationships are valid for the cavity
modes [ã, ã†] = 1.

The parametric resonator is coupled to a transmission line via the signal
port and to the thermal bath via a linear dissipation port. The coupling
Hamiltonian associated with the signal port is given by

Hsig = ℏ∫ d𝜔
(
b̃†b̃ + 𝜅ã†b̃ − 𝜅∗b̃†ã

)
(A3)

where creation and annihilation operators b̃† and b̃ refer to modes in the
transmission line, and 𝜅 denotes the coupling rate. The Hamiltonian re-
lated to the linear dissipation port

Hloss = ℏ∫ d𝜔
(
c̃† c̃ + 𝛾 ã† c̃ − 𝛾∗ c̃†ã

)
(A4)

where c̃† and c̃ describe creation and annihilation of thermal bath modes
and the rate 𝛾 represent the coupling of cavity modes to the linear dissipa-
tion port. The transmission line and bath operators obey the commutation
relations

[
b̃(𝜔), b̃†(𝜔′)

]
=
[
c̃(𝜔), c̃†(𝜔′)

]
= 𝛿(𝜔 − 𝜔′) (A5)

and

[
b̃(𝜔), c̃†(𝜔′)

]
=

[
c̃(𝜔), b̃†(𝜔′)

]
=
[
b̃(𝜔), b̃(𝜔′)

]
= [c̃(𝜔), c̃(𝜔′)] = 0 (A6)

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (12 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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The total Hamiltonian can be conveniently written as a sumof the separate
parts given above

H(t) = Hsys,rwa(t) +Hsig +Hloss (A7)

For further analysis and for our simulations, we use the Quantum
Langevin Equation (QLE) for the cavity operator ã(t)

̇̃a(t) = (−iΔr − 𝜅+𝛾
2
)ã − i

∑p
d=1 𝛼de

iΔdtã†

+
√
𝜅b̃in +

√
𝛾 c̃in − 12iKã†ãã (A8)

where the presence of the Kerr term allows us to consider dynamics of the
parametric resonator above the critical oscillation threshold. To obtain the
modes coming out from the cavity, we employ the standard input–output
formalism which yields the relationship

b̃out(t) = b̃in(t) −
√
𝜅ã(t) (A9)

Equations (A8) and (A9) are used in our numerical simulations with Mat-
lab ODE45 solver.

A.2. Full Inseparability

Assuming that the microwave fields produced by the JPA below the criti-
cal pumping threshold are Gaussian,[34] the states with multiple spectral
modes can be fully characterized by measuring the covariance matrix of
corresponding in-phase I and quadrature Q voltages. For the measure-
ment of tripartite correlations, we collect quadrature data for 0.8 s at every
phase difference and pump amplitude value, without averaging. For the
quadripartite case, we repeat the experiment 20 times at each pump power
value and every quadrature sequence has a duration of 1.3 s.

The quantum quadratures x̃i =
ãi+ã

†
i

2
and p̃i =

ãi−ã
†
i

2i
can be com-

bined into a 2N-long column vector operator for the N-mode state r̃ =
(x̃1, p̃1,… x̃N, p̃N)

T . The commutation relations can be written down in a
skew-symmetric, block-diagonal matrix form[50]

[
r̃i , r̃j

]
= i

2
Ωij and =

N⨂
i=1

[
0 1
−1 0

]
(A10)

The covariance matrix V is given by elements Vij =
1
2
< Δr̃iΔr̃j + Δr̃jΔr̃i >

− < Δr̃i >< Δr̃j > where we have defined standard error Δr̃i = r̃i− < r̃i >
and < r̃i >= tr(r̃i�̂�). The uncertainty principle requires that

V + i
4
≥ 0 (A11)

applies for a physical covariance matrix.
For verification of entanglement, we may investigate a modified equa-

tion

V′ + i
4
≥ 0 (A12)

where V′
k
= 𝜆𝜆𝜆kV𝜆𝜆𝜆k, 𝜆𝜆𝜆k is diagonal matrix with ones entries, except of that

related to kth mode, with value of −1. For example, transformation with
𝜆𝜆𝜆k≡N = diag(1, 1,… , 1,−1) means a partial transposition of the covari-
ance matrix with respect to the last mode. The positive partial transpose
(PPT) criterion for multipartite case requires that there is a violation of
Equation (A12) when applying a partial transposition with respect to each
from full set of modes: V′

k
≥ i

4
. In ref. [47], the entangled states are classi-

fied in accordance to the number of modes for which the condition Equa-
tion (A12) is broken. We follow this approach to demonstrate the highest
class—full inseparability—in four mode case.

Unitary operations which retain theGaussian character of the states, for
example, squeezing, are of particular importance. Such operations on the
Hilbert space correspond to a linear transformation P in the phase-space
which preserve the symplectic form, that is,

= PTP (A13)

Symplectic transformations on a 2N-dimensional phase-space form the
real symplectic group denoted as Sp(2N;R), which is a proper subgroup of
the special linear group of 2N × 2N matrices.[74] By utilizing Williamson’s
theorem,[75] any covariance matrix can be expressed in the Williamson
normal form:

ƒVk = PTV′
kP (A14)

where ƒVk is a 2N-dimensional diagonal matrix consisting of the symplectic
eigenvalues, �̃�k, of the covariance matrix. The symplectic eigenvalues are
called the symplectic spectrum which provides a practical means to verify
physicality and various entanglement criteria. Separability is in force, when

condition �̃�k ≥ 1∕4 fulfilled for ƒVk.
For convenience, we insert an additional factor of 4 to the covari-

ance matrix and work with fluctuations with zero mean values: V∗
ij = 2 <

Δr̃iΔr̃j + Δr̃jΔr̃i >. Consequently, for evidence of “fully inseparable” states,
we need to findminimum symplectic eigenvalues with �̃�∗

k
< 1 for each par-

tial transposition k.

A.3. System Gain Calibration

Our system gain calibration procedure consists of a measurement of
Johnson–Nyquist noise spectral density emitted by a 50 Ω termination at
different temperatures. Assuming perfect matching of the source and load
impedances, the received power per unit of bandwidth can be written by
applying the Friis formula: the measured noise is given by the noise tem-
perature of the source Ts, the contribution of the cooled amplifier THEMT,
and the noise of the room-temperature amplifiers TRT multiplied by the
system gain GΣ,i = GHEMTi

GRTi
:

⟨
I2i +Q2

i

⟩
Z0Δfi

= kbGΣ,i

(
Ti + THEMT +

TRT
GHEMT

)
(A15)

Here i refers to the frequency of the spectral mode and Δfi refers to the
bandwidth of the detection of quadratures Ii and Qi. The total gain GΣ,i
was separately determined for different spectral modes.

Figure A1 displays the measured noise power per unit band as a func-
tion of sample temperature Ts, averaged over frequencies covering the res-
onance curve. By fitting a line to the data, we obtain < GΣ,i >= 94.4 ± 0.2
dB for the average total gain. The linear fit in Figure A1 is performed at T >
0.2 K, which allows us to neglect the corrections from the coth(ℏ𝜔∕2kbTs).

The error in the system gain calibration results in uncertainty in the
symplectic eigenvalues on the order of 2%, that is, the eigenvalues fall in
the range of min{�̃�∗

k
}=min{�̃�∗

k
} ± 0.018 for each partial bipartition. Ran-

dom variations of the system parameters were reduced by averaging the
outcome by ten to twenty times.

A.4. System Parameter Fitting

In order to determine coupling rates 𝛾 and 𝜅 introduced in Section 2 A,
we characterized our nonlinear resonator as a two-port device using a
vector network analyzer. For the characterization, we chose the optimal
DC operating point ΦDC = 0.383Φ0 depicted in Figure 3b. At this DC-
flux, we measured the resonance curve in the absence of the pump in or-
der to estimate the external and internal loss rates 𝜅 and 𝛾 , respectively.
By fitting the measured resonance curve to the analytical solution of the

Adv. Quantum Technol. 2023, 6, 2200031 2200031 (13 of 19) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure A1. Gain calibration using linear temperature dependence of the
measured thermal noise spectral density of a 50 Ω terminator measured
as a function of Ts, the source temperature. The average total gain <
GΣ,i >= 94.4 ± 0.2 dB over the cavity resonance is obtained from the lin-
ear fit (in red) to the data. This gain value < GΣ,i > also includes fre-
quency mixing losses/amplification in the signal analyzer circuit part. The
term Tpreamp = THEMT +

TRT
GHEMT

= 5.2 ± 0.25K characterizes the equivalent

noise temperature of the amplifiers; the largest contribution originates

from the cooled HEMT amplifier at 4 K. The value coth( hfi
2kbTpreamp

) sets

the background for the diagonal elements in the covariance matrix 4Voff.

QLE (b̃out(𝜔)∕b̃in(𝜔)), derived for the linear case without any pump drive,
we obtain the coupling coefficients 𝜅

2𝜋
= 4.44 MHz and 𝛾

2𝜋
= 2.30 MHz.

The employed analytical solution, displayed in Equation (A16), was de-
rived from the full QLE in Equation (A8) without taking the nonlinear part
−iKã†ãã into account

b̃out(𝜔)

b̃in(𝜔)
= 1 − 𝜅

(−i(𝜔 − 𝜔r) +
𝜅+𝛾
2
)

(A16)

For fitting of the Kerr constant K, we employed the whole form of the QLE
in the rotating wave approximation Equation (A8). By comparing the mea-
sured and simulated gain coefficients G(𝜔probe − 𝜔r, A) (Figure A2) in the
cavity at large pump amplitudes, we obtain an estimate K = 6.5𝜔r for the
Kerr constant.

A.5. Cavity Phase Response

Optimal value of GME criterion, which governed by “symmetric” covari-
ance matrix view in tripartite mode case, can be obtained with { 𝜋

2
; 𝜋
2
} only

if modes reshuffling suffers no additional phase rotations (see next sub-
section). However, in experiments we deal with finite values of coupling
and dissipation loss rates. Cavity phase response becomes crucial figure in
pump tones phase shift adjustments. Cavity phase response illustrated on
Figure A3.

A.6. Multifrequency Correlations in Terms of QLE with 3 and 4
Spectral Modes

As discussed in Section 2 C, our measurement setting probes outgoing
waves from the parametric resonator, which brings about slight differences
with standard quantum optics schemes where the entanglement analysis
is based on the Hamiltonian of the system. In our case, the QLE provides
a good description, and here we derive the relevant matrix equations de-
scribing the coupling of the different outgoing spectral modes under two
and three pump tones (3 and 4 spectral modes, respectively).

3 Mode Case: Let us define ã as a vector of spectral modes:

ã = {ã1, ã2, ã3, ã
†
1, ã

†
2, ã

†
3}

T
; (A17)

Figure A2. a,b) Gain coefficient measurement and QLE’s simulation re-
sults (Equation (A8)) which are used for fitting coupling and Kerr con-
stants. Vertical axis represents normalized pump amplitudeA = 𝛼

𝜅+𝛾 . Hor-

izontal axis represents detuning between probe signal frequency and res-
onance frequency

𝜔probe−𝜔r
2𝜋

. Pumping carried out in degenerate mode,
𝜔d = 2𝜔r. Fano resonance picture, given in experimental plot, explained
by phase shift between the cavity and input modes and described by com-
plex rate value of 𝜅.

where the creation ã†i = ã†i (t) and annihilation ãi = ãi(t) operators are
time-dependent. After Fourier transform,

ã(𝜔) = {ã1(𝜔), ã2(𝜔), ã3(𝜔), ã
†
1(−𝜔), ã

†
2(−𝜔), ã

†
3(−𝜔)}

T
. (A18)

We define our spectral modes ai as {(− 3Δ
2
,−Δ

2
); (−Δ

2
, Δ
2
); (Δ

2
, 3Δ

2
)} ac-

cording pump tone positions {−Δ,Δ} (see Figure 1). Similarly, we define
for the input and output modes b̂in∕out:

b̃in/out = {b̃in1∕out1, b̃in2∕out2, b̃in3∕out3,

b̃†in2∕out2, b̃
†
in1∕out1, b̃

†
in3∕out3

}T
. (A19)

The commutation relationships for the case of N modes can be conve-
niently expressed in matrix form. We use the common convention for
[ãi, ãj] from ref. [74].
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Figure A3. Cavity phase response given by fitted experimental parameters
𝜅

2𝜋
= 4.44 MHz and 𝛾

2𝜋
= 2.30 MHz. Vertical dash lines show center fre-

quencies of first and last modes. Corresponding phase shifts applied to
pump tones to reach “symmetric” covariance matrix view on double fre-
quencies areΔ𝜑1 =

𝜋

2
− 𝜋

4
= 𝜋

4
andΔ𝜑2 =

𝜋

2
+ 𝜋

4
= 3𝜋

4
with correspond-

ing phase shift between pump tones 𝜋

2
, given in results (see Figure 4). Half

of applied phase shift described by pump tones on double resonance fre-
quencies. Additional phase shift with increase of A relates to modification
of phase response curve during pumping.

The effect of Kerr nonlinearity is significant only at large pump ampli-
tudes. Hence, we may take the QLE Equation (A8) without the nonlinear
part for our treatment. In theoretical analysis we assume, that spectral
modes lay down deep in cavity mode, such that Δ ≪ 𝜅; we also neglect
internal dissipation expressed by loss rate 𝛾 . For that case phase shift be-
tween modes, provided by phase response of the cavity, can be neglected.
Guided by standard Fourier transform technique for solving linear QLE,[40]

we denote ãi(𝜔) = ∫ ãi(t)e
i𝜔tdt and Fourier transform the QLE term by

term. Owing to detuning of the pump tones in the rotating frame, there
will be coupling of spectral modes and we have mode index exchange. For
example, for ã†1,2: ∫ ã†1(t)e

i𝜔teiΔ1tdt = ã†2(−𝜔); ∫ ã†2(t)e
i𝜔teiΔ2tdt = ã†1(−𝜔),

while for ã†2,3: ∫ ã†2(t)e
i𝜔te−iΔ2tdt = ã†3(−𝜔); ∫ ã†3(t)e

i𝜔te−iΔ3tdt = ã†2(−𝜔).
Thus, it is seen that each pump creates a two-mode squeezed state (TMS)
between two neighboring spectral modes independently from RWA’s zero-
frequency position.

After Fourier transforming,

(−i(𝜔 − Δr)+
𝜅

2
)ã(𝜔) + i𝛼(∫ ã†(t)ei𝜔te−iΔdtdt +

∫ ã†(t)ei𝜔teiΔdtdt) =
√
𝜅b̃in(𝜔) (A20)

the QLE yields the following system of linear equations:

√
𝜅b̃in1(𝜔) = (−i(𝜔 − Δr) +

𝜅

2
)ã1(𝜔) + i𝛼ã†2(−𝜔)√

𝜅b̃in2(𝜔) = (−i(𝜔 − Δr) +
𝜅

2
)ã2(𝜔) + i𝛼(ã†1(−𝜔) + ã†3(−𝜔))√

𝜅b̃in3(𝜔) = (−i(𝜔 − Δr) +
𝜅

2
)ã3(𝜔) + i𝛼ã†2(−𝜔)√

𝜅b̃†in1(−𝜔) = (−i(𝜔 + Δr) +
𝜅

2
)ã†1(−𝜔) − i𝛼†ã2(𝜔)

√
𝜅b̃†in2(−𝜔) = (−i(𝜔 + Δr) +

𝜅

2
)ã†2(−𝜔) − i𝛼†(ã1(𝜔) + ã3(𝜔))

√
𝜅b̃†in3(−𝜔) = (−i(𝜔 + Δr) +

𝜅

2
)ã†3(−𝜔) − i𝛼†ã2(𝜔). (A21)

We cast Equation (A21) into matrix form:

Mã(𝜔) =
√
𝜅b̃in(𝜔) (A22)

M =

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0 0 0 i𝛼 0
0 c1 0 i𝛼 0 i𝛼
0 0 c1 0 i𝛼 0
0 −i𝛼† 0 c2 0 0

−i𝛼† 0 −i𝛼† 0 c2 0
0 −i𝛼† 0 0 0 c2

⎤⎥⎥⎥⎥⎥⎥⎦
(A23)

where c1 = −i(𝜔 − Δr) +
𝜅

2
and c2 = −i(𝜔 + Δr) +

𝜅

2
Solving for the in-

verse of M̂ and using Equation (A9), we obtain

b̃out(𝜔) = (I − 𝜅M−1)b̃in(𝜔) (A24)

for the outgoing radiation b̃out(𝜔) in terms of incoming waves b̃in(𝜔).
Because our goal is to determine the structure of the experimental co-

variance matrix, it is unsatisfactory to consider cavity modes ã with equa-
tion ã(𝜔) =

√
𝜅M−1b̃in(𝜔) though it has a more compact final form. How-

ever, the presence of the identity matrix I and the multiplication factor 𝜅
do not change the final structure.

Assuming that the pump amplitude 𝛼 is a real number and c1 = c2 = c
(zero detuning case), we have

M−1 = 1
c2 − 2𝛼2

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 𝛼2

c
0 𝛼𝛼𝛼2

c
0 −i𝛼 0

0 c 0 −i𝛼 0 −i𝛼
𝛼𝛼𝛼2

c
0 c − 𝛼2

c
0 −i𝛼 0

0 i𝛼 0 c − 𝛼2

c
0 𝛼𝛼𝛼2

c
i𝛼 0 i𝛼 0 c 0

0 i𝛼 0 𝛼𝛼𝛼2

c
0 c − 𝛼2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A25)

This allows us to draw the generalized ℋ̃-graph for describing the para-
metric interaction between the spectral modes, Figure 2. The off-diagonal
beamsplitter elements proportional to 𝛼2 are set in bold in Equation (A25).

Still, we want to construct the parametric interaction matrix S−1 for
quadrature vector operator r̃. Using a linear operator matrix K to imple-
ment a change of basis

K = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0
−i 0 0 i 0 0
0 1 0 0 1 0
0 −i 0 0 i 0
0 0 1 0 0 1
0 0 −i 0 0 i

⎤⎥⎥⎥⎥⎥⎥⎦
(A26)

we obtain by a canonical transformation S−1 =
√
𝜅KM−1K−1:

S−1 =
√
𝜅

c2 − 2𝛼2
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c + 𝛼2

c
0 0 −𝛼 𝛼𝛼𝛼2

c
0

0 c + 𝛼2

c
−𝛼 0 0 𝛼𝛼𝛼2

c
0 −𝛼 c 0 0 −𝛼
−𝛼 0 0 c −𝛼 0
𝛼𝛼𝛼2

c
0 0 −𝛼 c + 𝛼2

c
0

0 𝛼𝛼𝛼2

c
−𝛼 0 0 c + 𝛼2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A27)

Note, that here the overall structure of the matrix has changed because
of the basis change from ladder to quadrature operators. This is seen, for
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example, in the distribution of the off-diagonal beamsplitter correlations
(shown in bold).

Since the environment of the cavity is in the ground state, b̃in has a
Gaussian covariance matrix of the form Vin = 1

4
I. Consequently, the co-

variance matrix of the cavity spectral modes ãi can be represented as

Va = S−1Vin(S
−1)T (A28)

or, equivalently, for output modes b̃out: Vout = (I −
√
𝜅S−1)Vin(I −√

𝜅S−1)T . Both forms Va andVout can be employed for studying the struc-
ture of parametric interactions between the quadratures, because input–
output relationship doesnot change the general structure of the couplings
between the quadratures (see below).

As shown in Section 4 experimentally, phase shift between pumps
changes the appearance of the covariance matrix (see Figure 5) as well as
the strength of genuine multipartite entanglement. A change in the matrix
M due to a phase shift is illustrated in Equation (A29), in which the phase

of the first pump has been rotated by e
i𝜋
2 .

M̂ =

⎡⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 −𝛼𝛼𝛼 0
0 c 0 −𝛼𝛼𝛼 0 i𝛼
0 0 c 0 i𝛼 0
0 −𝛼𝛼𝛼 0 c 0 0
−𝛼𝛼𝛼 0 −i𝛼 0 c 0
0 −i𝛼 0 0 0 c

⎤⎥⎥⎥⎥⎥⎥⎦
(A29)

The elements affected by the rotation are indicated in bold in the ma-
trix. The elements in bold face indicate coupling between modes ã1(𝜔) ↔
ã2(𝜔) while the other off-diagonal elements indicate squeezing across
ã2(𝜔) ↔ ã3(𝜔). Note, that phase rotation operates in opposite direction
on rows related to b̃in(𝜔) and b̃†in(𝜔).

The inversion of the rotated matrixM yields for the parametric interac-
tion matrix, where all the beamsplitter elements (in bold) have acquired a
𝜋∕2 phase shift. This phase shift can be unwound by a phase shift on the
second pump, which indicates different phase dependence of the beam-

splitter correlations compared with the TMS correlations. The structure of
matrixM−1 in Equation (A30) shows that phase rotation of specified pump
tones does not change parametric interaction form between modes, pre-
serving structure of a bisqueezed tripartite state. However, as shown in the
main text, the criterion describing the strength of GME (see Equation (15))
depends on the difference of pump phases and strong genuine entangle-
ment is reached only at specific phase settings.

M−1 = 1
c2 − 2𝛼2

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 𝛼2

c
0 i𝛼i𝛼i𝛼2

c
0 𝛼 0

0 c 0 𝛼 0 −i𝛼
− i𝛼i𝛼i𝛼2

c
0 c − 𝛼2

c
0 −i𝛼 0

0 𝛼 0 c − 𝛼2

c
0 − i𝛼i𝛼i𝛼2

c
𝛼 0 i𝛼 0 c 0

0 i𝛼 0 i𝛼i𝛼i𝛼2

c
0 c − 𝛼2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A30)

The covariance matrix Va obtained from matrix M in Equation (A25)
with zero pump phase shifts is given in Equation (A31). The correspond-
ing covariance matrix for 𝜋∕2 phase rotation in the first pump is displayed
in Equation (A32). The matrix Va in Equation (A32) has one rotated sub-
space, corresponding to two quadrature pairs; these rotated components
are indicated by bold face. Based on these analytical relationships we con-
clude that control over desired covariance matrix TMS-subspace can be
provided by phase rotation of corresponding pump tone. Finally, we intro-

duce the same phase rotation e
i𝜋
2 to the second pump. This brings the co-

variance matrix for the spectral cavity modes to the “standard-symmetric”
form displayed in Equation (A33). By comparing Equation (A31) and Equa-
tion (A33) we note that the beamsplitter elements (in bold) in the covari-
ance matrix are unchanged (the phase difference between the pumps is
the same) while the TMS elements are different.

Va =
𝜅

4(c2 − 2𝛼2)2
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝛼2 + 2𝛼4

c2
+ c2 0 0 −2𝛼c 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0

0 −𝛼2 + 2𝛼4

c2
+ c2 −2𝛼c 0 0 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0 −2𝛼c 2𝛼2 + c2 0 0 −2𝛼c

−2𝛼c 0 0 2𝛼2 + c2 −2𝛼c 0

3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0 0 −2𝛼c −𝛼2 + 2𝛼4

c2
+ c2 0

0 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
−2𝛼c 0 0 −𝛼2 + 2𝛼4

c2
+ c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A31)

Va =
𝜅

4(c2 − 2𝛼2)2
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝛼2 + 2𝛼4

c2
+ c2 0 2𝛼c2𝛼c2𝛼c 0 0 −3𝛼2 + 2𝛼4

c2
−3𝛼2 + 2𝛼4

c2
−3𝛼2 + 2𝛼4

c2

0 −𝛼2 + 2𝛼4

c2
+ c2 0 −2𝛼c−2𝛼c−2𝛼c 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0

2𝛼c2𝛼c2𝛼c 0 2𝛼2 + c2 0 0 −2𝛼c
0 −2𝛼c−2𝛼c−2𝛼c 0 2𝛼2 + c2 −2𝛼c 0

0 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0 −2𝛼c −𝛼2 + 2𝛼4

c2
+ c2 0

−3𝛼2 + 2𝛼4

c2
−3𝛼2 + 2𝛼4

c2
−3𝛼2 + 2𝛼4

c2
0 −2𝛼c 0 0 −𝛼2 + 2𝛼4

c2
+ c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A32)

Va =
𝜅

4(c2 − 2𝛼2)2
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝛼2 + 2𝛼4

c2
+ c2 0 2𝛼c 0 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0

0 −𝛼2 + 2𝛼4

c2
+ c2 0 −2𝛼c 0 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
2𝛼c 0 2𝛼2 + c2 0 2𝛼c 0
0 −2𝛼c 0 2𝛼2 + c2 0 −2𝛼c

3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0 2𝛼c 0 −𝛼2 + 2𝛼4

c2
+ c2 0

0 3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
3𝛼2 − 2𝛼4

c2
0 −2𝛼c 0 −𝛼2 + 2𝛼4

c2
+ c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A33)
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4 Mode Case: We treat the case with three pump tones (p = 3)
in the same way as we did with two pumps above. By taking 𝜔Σ =∑p

d=1 𝜔d

p
= 2𝜔r, we have a configuration of pump tones {−2Δ, 0, 2Δ}

with respect to 2𝜔r. We define our spectral modes around 𝜔r as
{(−2Δ,−Δ); (−Δ, 0); (0,Δ); (Δ, 2Δ)} =̂{ã1(𝜔); ã2(𝜔); ã3(𝜔); ã4(𝜔)}. Indi-
vidual pump tones at 𝜔1 and 𝜔3 create TMS states between neighboring
spectralmodes as in the two pump case above. However, themiddle pump
creates TMS correlations between two pairs of spectral modes: ã1(𝜔) ↔
ã†4(−𝜔) and ã2(𝜔) ↔ ã†3(−𝜔). Rotation of the middle pump phase has an
effect on both corresponding subspaces of the covariance matrix. Con-
sequently, this pump configuration is quite suitable for producing square
ℋ̃-graph states (see Figure 2).

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 0 −𝛼 0 −𝛼−𝛼−𝛼
0 c 0 0 −𝛼 0 −𝛼−𝛼−𝛼 0
0 0 c 0 0 −𝛼−𝛼−𝛼 0 −𝛼
0 0 0 c −𝛼−𝛼−𝛼 0 −𝛼 0
0 −𝛼 0 −𝛼−𝛼−𝛼 c 0 0 0
−𝛼 0 −𝛼−𝛼−𝛼 0 0 c 0 0
0 −𝛼−𝛼−𝛼 0 −𝛼 0 0 c 0
−𝛼−𝛼−𝛼 0 −𝛼 0 0 0 0 c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A34)

The parametric interactions in the covariance matrix can be analyzed
in the same way as above, but now the number of phase differences influ-
encing the beamsplitter correlations has increased. The system of linear
equations ban be written as for threemodes in Equation (A21), but we skip
it and write down the interaction matrix M (Equation (A34)), where all c
coefficient are equal since we have assumed Δr = 𝜔r −

𝜔Σ
2

= 0. The signs

of 𝛼’s are governed by the choice of pump phases as {𝛼e
i𝜋
2 ; 𝛼e

i𝜋
2 ; 𝛼e

i𝜋
2 }.

The correlations produced by the pump at 𝜔2 = 2𝜔r are indicated in bold.
The special role of the central pump is seen because its correlations cover
the whole ascending diagonal.

The inverse matrix M−1 reveals the beamsplitter correlations between
ã1(𝜔) ↔ ã3(𝜔) and ã2(𝜔) ↔ ã4(𝜔):

M−1 = 1
(c2 − 4𝛼2)

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 2𝛼2

c
0 2𝛼2

c
2𝛼2

c
2𝛼2

c
0 0 𝛼 0 𝛼

0 c − 2𝛼2

c
0 2𝛼2

c
2𝛼2

c
2𝛼2

c
𝛼 0 𝛼 0

2𝛼2

c
2𝛼2

c
2𝛼2

c
0 c − 2𝛼2

c
0 0 𝛼 0 𝛼

0 2𝛼2

c
2𝛼2

c
2𝛼2

c
0 c − 2𝛼2

c
𝛼 0 𝛼 0

0 𝛼 0 𝛼 c − 2𝛼2

c
0 2𝛼2

c
2𝛼2

c
2𝛼2

c
0

𝛼 0 𝛼 0 0 c − 2𝛼2

c
0 2𝛼2

c
2𝛼2

c
2𝛼2

c

0 𝛼 0 𝛼
2𝛼2

c
2𝛼2

c
2𝛼2

c
0 c − 2𝛼2

c
0

𝛼 0 𝛼 0 0 2𝛼2

c
2𝛼2

c
2𝛼2

c
0 c − 2𝛼2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A35)

The beamsplitter correlations are indicated in bold in this matrix M−1.
We see that there are two sequences of pump transformations that yield
BS correlations between modes ã1(𝜔) ↔ ã2(𝜔) and ã3(𝜔) ↔ ã4(𝜔). This
agrees with the simple argument that indicates BS correlations to exist
when two spectral bands are connected across squeezing action by two
pumpswith one joint frequency. Higher order correlations via three pumps
exist also, but these are neglected in our analysis. Note that the number of
beamsplitter correlations also coincides with the independent number of
phase differences between the pumps. Connection of the cavity spectral
mode correlations to ℋ̃-graphs is illustrated in Figure 2.

The beamsplitter correlations are prominent also in the covariance ma-
trix Va (see Equation (A28)):

Va =
𝜅

4(c2 − 4𝛼2)2
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2𝛼2 + 8𝛼4

c2
+ c2 0 2𝛼c 0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0 2𝛼c 0

0 −2𝛼2 + 8𝛼4

c2
+ c2 0 −2𝛼c 0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0 −2𝛼c

2𝛼c 0 −2𝛼2 + 8𝛼4

c2
+ c2 0 2𝛼c 0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0

0 −2𝛼c 0 −2𝛼2 + 8𝛼4

c2
+ c2 0 −2𝛼c 0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2

6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0 2𝛼c 0 −2𝛼2 + 8𝛼4

c2
+ c2 0 2𝛼c 0

0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0 −2𝛼c 0 −2𝛼2 + 8𝛼4

c2
+ c2 0 −2𝛼c

2𝛼c 0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0 2𝛼c 0 −2𝛼2 + 8𝛼4

c2
+ c2 0

0 −2𝛼c 0 6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
6𝛼2 − 8𝛼4

c2
0 −2𝛼c 0 −2𝛼2 + 8𝛼4

c2
+ c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A36)
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Bold font marks the beamsplitter correlations which display a different
structure in comparison to Equation (A35) owing to the base change to
quadratures ordered as (x̃1, p̃1,… x̃N, p̃N)

T . So the BS correlations are be-
tween quadratures of ã1(𝜔) ↔ ã3(𝜔) and ã2(𝜔) ↔ ã4(𝜔).

By choosing the phase of the first pump to be opposite to that of the

second and the third {𝛼e
−i𝜋
2 ; 𝛼e

i𝜋
2 ; 𝛼e

i𝜋
2 } we are able to flip the sign of one

minor diagonal indicated by bold font in Equation (A37).

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 0 𝛼𝛼𝛼 0 −𝛼
0 c 0 0 𝛼𝛼𝛼 0 −𝛼 0
0 0 c 0 0 −𝛼 0 −𝛼
0 0 0 c −𝛼 0 −𝛼 0
0 𝛼𝛼𝛼 0 −𝛼 c 0 0 0
𝛼𝛼𝛼 0 −𝛼 0 0 c 0 0
0 −𝛼 0 −𝛼 0 0 c 0
−𝛼 0 −𝛼 0 0 0 0 c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A37)

Interestingly, this choice of phases leads to full cancellation of the
beamsplitter correlation terms. This is seen in the structure of the inverse
matrix:

M−1 = 1
(c2 − 2𝛼2)

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 0 −𝛼 0 𝛼
0 c 0 0 −𝛼 0 𝛼 0
0 0 c 0 0 𝛼 0 𝛼
0 0 0 c 𝛼 0 𝛼 0
0 −𝛼 0 𝛼 c 0 0 0
−𝛼 0 𝛼 0 0 c 0 0
0 𝛼 0 𝛼 0 0 c 0
𝛼 0 𝛼 0 0 0 0 c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A38)

which does not have any elements proportional to 𝛼2. Without any beam-
splitter correlations, Equation (A38) indicates a clear connection to a
square-lattice ℋ̃-graph.

Finally, the corresponding covariance matrix Va for cavity spectral
modes is given by Equation (A39). This structure for the covariance ma-
trix is obtained when all the pump signals have an additional phase shift of

e
i𝜋
2 . Such a choice of phases will result in a covariance matrix with “sym-

metric” structure as shown in experimental data in Figure 8a,b. By con-
trolling the phases of the pump tones separately, we can rotate and adjust
certain subspaces of the 8 × 8 covariance matrix. In particular, the influ-
ence of the beamsplitter correlations can be eliminated from Va in the
four pump case.

Regarding the quadripartite covariance matrix structures, the relative
phase shift between the pump tones are not influenced by the cavity re-
sponse in the limit of vanishing band widths or with the assumption of
huge coupling rate and tiny internal dissipation loss rate. However, addi-
tional phase shifts will appear if these conditions are not met, which has
to be taken into account in the generation of the desired entangled states.

In principle, it would be possible to evaluate the criteria for GME
from the analytical expressions derived in this Appendix (see e.g. Equa-
tions (A33) and (A39)). However, we leave the conclusions about gen-
uine entanglement both in the tripartite and quadripartite case for anal-
ysis based on numerical simulations where even the nonlinear terms
can be taken into account. The nonlinear terms are of central im-
portance when increasing the pump drive past the critical pumping
amplitude.

Va =
𝜅

4(c2 − 2𝛼2)2
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2 + 2𝛼2 0 −2𝛼c 0 0 0 2𝛼c 0

0 c2 + 2𝛼2 0 2𝛼c 0 0 0 −2𝛼c

−2𝛼c 0 c2 + 2𝛼2 0 2𝛼c 0 0 0

0 2𝛼c 0 c2 + 2𝛼2 0 −2𝛼c 0 0

0 0 2𝛼c 0 c2 + 2𝛼2 0 2𝛼c 0

0 0 0 −2𝛼c 0 c2 + 2𝛼2 0 −2𝛼c

2𝛼c 0 0 0 2𝛼c 0 c2 + 2𝛼2 0

0 −2𝛼c 0 0 0 −2𝛼c 0 c2 + 2𝛼2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A39)
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