Värtinen, Susanna; Hämäläinen, Perttu; Guckelsberger, Christian

Generating Role-Playing Game Quests With GPT Language Models

Published in:
IEEE Transactions on Games

DOI:
10.1109/TG.2022.3228480

E-pub ahead of print: 12/12/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Generating Role-Playing Game Quests
With GPT Language Models

Susanna Värtinen¹, Perttu Hämäläinen¹, and Christian Guckelsberger¹, 2, 3, *

¹Department of Computer Science, Aalto University, Espoo, Finland, 2Finnish Center for Artificial Intelligence, 3School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

Abstract—Quests represent an integral part of role-playing games (RPGs). While evocative, narrative-rich quests are still mostly hand-authored, player demands towards more and richer game content, as well as business requirements for continuous player engagement necessitate alternative, procedural quest generation methods. While existing methods produce mostly uninteresting, mechanical quest descriptions, recent advances in AI have brought forth generative language models with promising computational storytelling capabilities. We leverage two of the most successful Transformer models, GPT-2 and GPT-3, to procedurally generate RPG video game quest descriptions. We gathered, processed and openly published a data set of 978 quests and their descriptions from six RPGs. We fine-tuned GPT-2 on this data set with a range of optimizations informed by several mini studies. We validated the resulting Quest-GPT-2 model via an online user study involving 349 RPG players. Our results indicate that one in five quest descriptions would be deemed acceptable by a human critic, yet the variation in quality across individual quests is large. We provide recommendations on current applications of Quest-GPT-2 and its future potential.

Index Terms—artificial intelligence, generative models, games, procedural content generation, computational storytelling, quests.

I. INTRODUCTION

QUESTS in role-playing games (RPGs) represent explicitly posed, challenging tasks for the player to accomplish. Main quests are vital to progressing in a game, while side quests can yield auxiliary rewards to the player. Quests are often narrative-driven and woven into a game’s larger storyline. At present, most such quests are written by people. However, players’ growing demand for more game content, e.g. in dynamic and open-ended games [1], poses a challenge to human quest designers on both the developer and community side: writing a large number of quests that are meaningful and of sufficient quality to warrant continuous player engagement requires time, skill and creativity. To alleviate the quest creation task, designers could either draw inspiration from, or co-create [2], computationally generated quests and the narratives that communicate their objectives, i.e. quest descriptions. Autonomous computational quest generation methods could moreover enable quests that adapt online to a player’s actions, including user-generated content. Next to these practical concerns, we deem it a fascinating scientific question whether high-quality quests can be generated by procedural means.

Existing approaches to procedurally generate quests and their descriptions are lacking as their products are often formulaic and repetitive. Meanwhile, AI research has brought forth novel text-generating language models with powerful computational storytelling capabilities. Arguably the most prominent such model at present is OpenAI’s Generative Pre-trained Transformer (GPT), which has been leveraged to produce various types of realistic, human-like texts with unprecedented quality, from poetry to fictional news [3]–[5].

This paper investigates the potential of GPT-2 and GPT-3, the latest two models in the GPT family, to automatically generate quest descriptions for RPGs. By quest descriptions, we denote short texts that explain the quest to the player from the perspective of a quest-giving non-playable character (NPC). We thus focus on one building block of a larger pipeline, preceded by e.g. a dynamic quest ingredient generator accounting for the narrative and gameplay context, a dialogue generator for the quest giver, and a game logic generator linking the quest’s progression to game events and objects.

GPT-3 has more than 100 times more parameters than its predecessor GPT-2, but it cannot be trained or sampled on hardware that players and game studios typically have access to. In this work, we hence focus on fine-tuning GPT-2, based on a custom-made RPG quest description data set. We have validated the resulting Quest-GPT-2 model both objectively, with training and validation loss as well as conditional perplexity scores, and subjectively via an online user study. To provide indications for the future potential of text generation models, we complement these fine-tuning experiments with case-studies on generating quest descriptions with the vanilla GPT-3 model. Our contributions are threefold:

1) A novel and publicly available quest data set with 978 quests and descriptions from six RPG games.
2) Quest-GPT-2, a fine-tuned variant of GPT-2 to generate RPG quest descriptions, provided the quest as input. The model has been evaluated in a comprehensive user study, involving 349 participants and 500 quest descriptions.
3) A comparison of different language model fine-tuning text formatting techniques, including the use of placeholders for proper nouns and numbers [6] to reduce variance in the Transformer model fine-tuning.

We have made our quest data set publicly available¹ for use in other creative applications and to support the development of next-generation procedural quest systems.

MANUSCRIPT received Dec 20, 2021.

¹Corresponding author. Email: christian.guckelsberger@aalto.fi.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
II. RELATED WORK

Procedural quest generation is a long-lasting challenge in game AI, with related work dating back more than 15 years [7]. We provide a brief, incomplete overview of related work, focusing on the generation techniques and main shortcomings.

Early research on procedural quest generation focused on planning and rule-based approaches. Ware and Young [8] made an interactive narrative adventure game The Best Laid Plans that utilises computational models of intentionality and conflict in controlling its NPCs. Thue et al. [9] have built an interactive storytelling system, Player-Specific Stories via Automatically Generated Events (PaSSAGE), which uses player modelling to automatically determine players’ preferred styles of play. Si et al. [10] have presented Thespian, a framework for creating interactive drama from user-modifiable agents, i.e. characters with different personality styles and action policies.

Some authors have also attempted more emergent, dynamic quest generation methods. McCoy et al. [11] developed the award-winning social puzzle game Prom Week that utilizes a “social physics” engine named Comme il Faut (CiF). CiF uses character traits, relationships, and desires to influence player–NPC interactions while also utilizing thousands of pre-programmed sociocultural considerations. Guimaraes et al. [12] implemented CiF into the popular RPG The Elder Scrolls V: Skyrim [13] as a freely downloadable modification.

Many existing quest generation algorithms construct quests based on graphs. Kybartas and Verbrugge [14] used narrative graph rewriting in their REwriting Graphs for Enhanced Narratives (ReGEN) system to create complex branching stories. Calvin and Michael [15] leveraged graphs to generate quests for key and lock puzzles in their experimental game Charbitat. Pita et al. [16] created dynamically linked quests in persistent multiplayer worlds, and Stocker and Alvin [17] generated non-linear quests based on implementation-specific rules and natural language. Doran and Parberry [18] analyzed 750 quests from four popular RPGs to identify a common structure to be leveraged in their prototype quest generator through context-free grammars. The latter has been further expanded by Breault et al. [19] in their Creation Of Novel Adventure Narrative (CONAN) system. Soares de Lima et al. [20] combine automated planning with evolutionary search guided by story arcs. We note two main shortcomings in the above body of related work. Firstly, the used techniques produce formulaic and repetitive quests, and do not generalize well to other games and genres. Secondly, the generated quests have only been evaluated against computational metrics and quests from existing games, but not against players’ experiences.

Recent work has overcome these shortcomings through the use of language models for quest generation and user studies for their evaluation. Ammanabrolu et al. [21] fine-tuned GPT-2 for creating quests in the form of cooking instructions in a text-based cooking game. Based on a small user study with 75 participants, they found that the GPT-2 quests were experienced as more valuable and coherent, but less surprising and novel than quests produced by random assignment or Markov chains. Most closely related to our work, van Stegeren and Myśliwiec [22] have recently fine-tuned GPT-2 for the generation of quest descriptions told from the perspective of an NPC. Crucially though, they solely use data from the Massively Multiplayer Online Role-Playing Game (MMORPG) World of Warcraft [23]. This is problematic in that such a homogeneous data set reduces the generalizability of the generator, as supported by the study’s authors. Moreover, while MMORPGs contain tens of thousands of quests and thus represent an easy data source, the quests are typically simpler in structure and less varied than their RPG counterparts: rather than functioning as vehicles for role-playing or captivating story-heavy adventures, they often provide mere busywork for player character progression. Unsurprisingly, their model input only consists of the quest title and objective. Our approach affords more control for integration in a specific game by incorporating more differentiated and essential input information such as the quest-giver, location, involved characters and quest reward. Van Stegeren and Myśliwiec’s user study motivates our use of GPT-2 for quest generation, in that at least some generated descriptions scored higher than user’s ratings for human authored texts. This finding must however be taken with a grain of salt, as their study only involved 20 quest descriptions rated by 32 participants, and each corresponding to exactly one quest. Our study in contrast involved 349 participants, rating a total of 500 quest descriptions generated from 50 quests from six RPGs. Our study is thus not only more representative, but also allowed us to investigate quality variations in quest descriptions produced from the same quest input.

III. LANGUAGE MODELS AND THE GPT FAMILY

Language modeling and generation has a long history in AI and computational creativity research [24]–[26]. Typically, text generation is approached statistically as sampling each token – a character, word, or word part – conditional on previous tokens, $c_i \sim p(c_i|c_1 \ldots c_{i-1}; \theta)$, where c_i denotes the i:th token in the text sequence, and θ denotes the parameters of the sampling distribution. In this statistical view, the modeling/learning task amounts to optimizing θ based on training data, e.g., to maximize the probabilities of all tokens in the training data conditional on up to N preceding tokens, where N is the context size. Modern language models use deep neural networks to learn the regularities in the data, and θ become the parameters of the network. For the text generation/sampling task, such a neural network takes in a sequence of tokens and outputs the sampling probabilities of each possible next token. There is ample empirical evidence that large enough neural language models can reach beyond memorizing their input and exhibit remarkable creative and intelligent behavior, e.g., in handling novel concepts not included in the training data and only introduced in the prompt.

The GPT model family is based on the Transformer neural network architecture introduced in 2017 [4], [27], which is characterized by encoder and decoder blocks as well as a self-attention mechanism. Encoder blocks transforms variable length input data into fixed-sized feature maps, whereas decoder blocks attempt to transform the maps back into the assumed input. The self-attention mechanism relates each input word to each other to establish links between related words,
such as names and pronouns, modulating which previous tokens influence each generated token. Transformer models have been proven capable in a wide range of challenging tasks, e.g., generating music and images [28], [29], synthesizing proteins with desired properties [30], and logical and counterfactual reasoning with facts and rules defined using natural language [31]. Most relevant here, they have been shown to produce realistic, human-like text with unprecedented quality [3]–[5].

GPT models are trained with a diverse collection of unlabeled textual data and, optionally, fine-tuned with a small set of task-specific labeled training data. The pre-training allows to encode a large amount of common knowledge and learn long-range dependencies between tokens, but fine-tuning has been shown to improve performance on specific tasks considerably [32]. The different models in the GPT family not only differ from each other in terms of the used training data, but also notably in scale: GPT-2 has ten times more parameters than GPT-1, whereas GPT-3 has over one hundred times more parameters than GPT-2 [3], [4]. Training and sampling GPT-3 is at present not possible on the hardware that players and game studios typically have access to. In the rest of this article, we consequently focus on fine-tuning GPT-2, and only use the vanilla GPT-3 model for comparative case-studies on the enhanced capabilities of this more complex model generation.

IV. TRAINING DATA SET

We adopt the hypothesis from related work [22] that the data used to pre-train GPT-2 does not contain a sufficient amount of quest examples to facilitate high-quality quest generation without additional fine-tuning based on a separate, specialized data set. We confirmed this hypothesis by investigating the output of the vanilla GPT-2 model with 744M parameters, if presented with different quests (cf. Sec.V). Unfortunately, most of the quest data sets used in previous related work have not been made public, a state of affairs which is discussed more widely by van Stegeren and Theune [33]. We consequently collected, processed and published a data set of 978 quests and quest descriptions from six RPGs to fine-tune GPT-2, and for others to adopt and potentially extend in their projects.

A. Collecting Data

Fine-tuning a language model can require a few thousand examples to produce good results, depending on the task and model size. For instance, GPT-2-774M has been shown to require around 5,000 text samples, when fine-tuning the model for text continuation tasks [34]. Video game descriptions are typically longer than these text samples. and we consequently assumed that a data set of roughly 1000 quests and quest descriptions would suffice for fine-tuning Quest-GPT-2. This is also supported by the observation that GPT variants with more parameters, such as our target model GPT-2-1.5B, are better at learning patterns from few examples [4].

Hand-authoring this amount of quest data for our study would have been too time-intensive, hinder comparison to quests in actual games, and introduce the risk of experimenter bias. We consequently decided to use quests from existing RPG games. We collected quests from multiple games for two reasons. Firstly, RPGs from different game series have distinct styles of quest writing, and collecting a diverse set of writing styles holds the promise to increase the expressive range of the learned model. Secondly, we were unlikely to find the required amount of quests in a single, regular RPG. As argued earlier, we discarded MMORPGs as less constrained data source to avoid a negative impact on the quality of our model output.

There are two main techniques for obtaining video game texts [33]: (i) extracting text directly from game files and (ii) scraping text from unofficial, fan-curated online sources. However, game files are often either encrypted or use poorly documented proprietary file formats, whereas fan-written sources, such as online wikis, typically only paraphrase the contents of the in-game texts, e.g., character dialogue, instead of directly documenting how they appear to the players.

We consequently focused on (i) and extracted quest texts directly from the game files with modding tools (more detail in Appendix A). We appealed to (ii) by drawing on fan wisdom, selecting the RPG games not only based on quest quality, but also based on the presence of high-quality fan wikis and active modding scenes. Information from fan wikis made it easier to retrieve quest data from game files, while modding tools allowed us to sidestep the file format and encryption issues.

To obtain a sufficiently large data set of varied and complex quests, we first collected a total of 878 quest examples from five RPGs. These games share a medieval-esque fantasy setting, which should improve the quality of the model, but can also limit the its expressive range. To counteract this, we extended our data set with one hundred manually written Minecraft [38] quests. In total, our data set comprises 978 quests from six games as summarized in Tbl. I. Additionally, Tbl. II shows how our quest data set performs on some well-known natural language processing metrics. Overall, all RPGs in our data set produce similar scores on the depicted metrics: a considerable exception to this is the readability metric, which implies that the Torchlight II [39] quest descriptions are more difficult to read than the descriptions from the other RPGs in.

Table I

<table>
<thead>
<tr>
<th>Game</th>
<th>Sourcing</th>
<th>Quests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldur’s Gate [15]</td>
<td>collected (game files)</td>
<td>100</td>
</tr>
<tr>
<td>Baldur’s Gate II: Shadows of Ann [36]</td>
<td>collected (game files)</td>
<td>94</td>
</tr>
<tr>
<td>The Elder Scrolls IV: Oblivion [37]</td>
<td>collected (game files)</td>
<td>215</td>
</tr>
<tr>
<td>The Elder Scrolls V: Skyrim [13]</td>
<td>collected (game files)</td>
<td>389</td>
</tr>
<tr>
<td>Minecraft [38]</td>
<td>written by the authors</td>
<td>100</td>
</tr>
<tr>
<td>Torchlight II [39]</td>
<td>collected previously by [33]</td>
<td>80</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Game</th>
<th>Readability (Flesch-Kincaid Grade)</th>
<th>Syntaxic Complexity (Dependency Distance)</th>
<th>Lexical richness (Type-Token Ratio)</th>
<th>Word Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldur’s Gate [15]</td>
<td>3.01 ± 0.04</td>
<td>2.31 ± 0.31</td>
<td>0.59 ± 0.08</td>
<td>99 ± 42</td>
</tr>
<tr>
<td>Baldur’s Gate II [36]</td>
<td>2.68 ± 1.34</td>
<td>2.18 ± 0.25</td>
<td>0.66 ± 0.08</td>
<td>134 ± 58</td>
</tr>
<tr>
<td>The Elder Scrolls IV [37]</td>
<td>3.00 ± 0.05</td>
<td>2.19 ± 0.27</td>
<td>0.68 ± 0.08</td>
<td>143 ± 77</td>
</tr>
<tr>
<td>The Elder Scrolls V [13]</td>
<td>2.79 ± 1.53</td>
<td>2.10 ± 0.30</td>
<td>0.71 ± 0.08</td>
<td>105 ± 47</td>
</tr>
<tr>
<td>Minecraft [38]</td>
<td>3.36 ± 1.48</td>
<td>2.30 ± 0.28</td>
<td>0.71 ± 0.06</td>
<td>91 ± 29</td>
</tr>
<tr>
<td>Torchlight II [39]</td>
<td>4.56 ± 2.11</td>
<td>2.45 ± 0.40</td>
<td>0.74 ± 0.09</td>
<td>79 ± 28</td>
</tr>
</tbody>
</table>

Overall: 3.07 ± 1.67, 2.23 ± 0.31, 0.70 ± 0.08, 112 ± 57
B. Data Formatting

To generate a quest description, a language model must be given an outline with the desired “ingredients” of a quest as input. We analyzed the collected quests to recognize these ingredients (Tbl. III). Our quest ingredients align partially with classical narrative analyses in literature, such as Vladimir Propp’s *Morphology of the Folktale* [40]. For example, Propp’s definitions of various types of dispatchers and character archetypes bear similarities to our quest-givers. Existing narrative analyses were only of limited use, as they typically span the entire duration of a story while we are more interested in the circumstances at the beginning of a quest.

Not only what information is provided, but also how it is laid out is crucial to training a language model: semantically equivalent pieces of input text can yield wildly different results, likely because some text formats synergize better with the model’s pre-training data. We devised and compared three distinct input formats, i.e. quest metadata formats, for representing the quests via their quest ingredients: a highly structured format that resembles XML, later referred to as *XML-like*, a *simple* format that is inspired by *dramatis personae*, i.e. character listings in plays and movie scripts, and a *narrative* format that reads like a small story. The first format, *XML-like*, is adopted from Lee [41], who has successfully used a similar format to generate patent claims with GPT-2. Fig. 1 illustrates all three formats based on an example quest.

We devised a generic JSON representation for storing our quests in an organized manner (Appendix B), and to derive our training data in the three metadata formats. We also hope that storing our quests in a canonical format makes it easier for other researchers to adopt our data set in their work.

C. Data Processing

While collecting the quest data set, candidate quests were evaluated by the authors based on the following criteria:

- Novelty and interestingness of narrative and content [42].
- The existence of clearly defined goals.
- The length of the quest description.

We excluded quest descriptions that lacked the essential quest ingredients in Tbl. III. As a side-effect, these descriptions were typically very short. We also discarded too long descriptions (>256 words), as they might exceed GPT-2’s context window that holds 1,024 tokens (i.e., roughly 256 English words), resulting in the model forgetting ingredients.

Some candidates did not meet one or multiple criteria and were consequently omitted. Other quests only met these criteria to a limited extent, and were consequently manually edited. For instance, quests are usually delivered through sprawling dialogue between the player and the quest-giver, not linearly through monolithic pieces of text. As a consequence, quest rewards are commonly discussed after the player has already completed the quest; we had to make some tense changes to accommodate the rewards into the quest descriptions. Moreover, some candidate quests were split into multiple independent quests, as they either (i) involved the quest-giver directing the player to another NPC, or (ii) had distinct paths for the player to follow based on their actions in the game.

V. Developing Quest-GPT-2

Our text generation example in Fig. 2 demonstrates that GPT-2 can generate some short, rudimentary quest descriptions even without fine-tuning, if one provides few quest examples in the input text. However, the output quality is not convincing. Moreover, quest descriptions typically incorporate many small elements, such as world knowledge, as well as character relationships and archetypes. It is difficult to incorporate those elements into a few quest examples in the input, especially considering the fact that the context window of GPT-2 holds only 1,024 tokens, i.e. byte-pair encoded sets of characters. In the following, we describe the process of fine-tuning GPT-2 with our custom data set into Quest-GPT-2. We made all code publicly available on Github\(^2\).

\(^2\)https://github.com/svartinen/gpt2-quest-descriptions

![Table III: Quest Ingredients Identified from our Data Set](image-url)
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Figure 4. An example quest in the XML-like format with placeholder text of the input quest outlines into output quest descriptions more comprehensively. Additionally, the cross-entropy loss for the larger GPT-2-355M converges noticeably faster towards zero than the loss for the smaller GPT-2-124M (Fig. 3).

B. Substituting Proper Nouns and Numbers With Placeholders

To address these consistency issues, we employ the placeholder token technique introduced by Martin et al. [6]: proper nouns (i.e. unique names) and numbers are replaced in the quest metadata with placeholder tokens. The original names and numbers are substituted back into the generated output in a post-processing step. Fig. 4 displays the example quest from Fig. 1 in XML-like format with placeholders. Generative models like GPT-2 learn complex multivariate probability densities $p(x, y, ...)$, which becomes more difficult as the number of variables grows. We assume that names and numbers are independent from other quest content, and that the joint distribution can thus be factorized into $p(x, y, ...) = p(x)p(y, ...)$. We hypothesized that this factorization via placeholders will allow the model to learn content independently from the name and number information that bears no significant meaning.

C. Fine-tuning Quest-GPT-2

We split the 978 quests in our data set (Tbl. I) into training, validation, and test sets with 80:15:5 percent ratios. We used the validation set to mitigate over-fitting, and the test set for evaluation against human judgment in our user study (Sec. VI). To represent all six source games equally in all sets, the quests were first split proportionally per game, and then combined into the complete training, validation, and test sets. Afterwards, we converted the sets into the three proposed quest metadata formats, producing both raw text and placeholder text for each format for performance comparison.

In contrast to the preliminary experiments, we fine-tuned the largest GPT-2 model with 1.5B parameters. We trained the model six times, once for each combination of metadata format and the two placeholder conditions. We used the same fine-tuning settings as in the preliminary experiments (Sec. V-A) for 1,000 iterations at most and stopped early once the validation loss increased again. On an Nvidia V100 32GB GPU, the fine-tuning took ca. 50 minutes per combination.

Fig. 5 shows the fine-tuning loss. The placeholder substitution performs unanimously best in terms of training and validation loss for all metadata formats. Amongst the metadata formats, the XML-like format achieves the smallest training and validation loss, while the simple format performs worst.

Crucially though, comparing metadata formats based on fine-tuning loss only can be misleading: the model might learn repetitive formatting easily without respecting format-independent quest ingredients, thus “masking” the loss values smaller when using heavier formatting. To rule this out, we compared the fine-tuned models with perplexity, an established language model metric that measures how well a model can predict each token in a piece of text, with lower values being better. We calculated the conditional and normalized perplexities of the quest descriptions in the validation set when given a certain quest outline as input. If a model has a low fine-tuning loss but a high conditional perplexity, it most likely predicts the formatting tokens correctly while displaying a

<table>
<thead>
<tr>
<th>Metadata Format</th>
<th>Text Type</th>
<th>Conditional Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>narrative</td>
<td>raw text</td>
<td>10.63</td>
</tr>
<tr>
<td></td>
<td>placeholder text</td>
<td>10.50</td>
</tr>
<tr>
<td>simple</td>
<td>raw text</td>
<td>10.95</td>
</tr>
<tr>
<td></td>
<td>placeholder text</td>
<td>10.55</td>
</tr>
<tr>
<td>XML-like</td>
<td>raw text</td>
<td>11.05</td>
</tr>
<tr>
<td></td>
<td>placeholder text</td>
<td>10.78</td>
</tr>
</tbody>
</table>

Figure 5. Fine-tuning results, moving averages of cross-entropy loss.

Table IV

Conditional perplexities of the fine-tuned models.
high degree of uncertainty with respect to the quest ingredient tokens. The results in Tbl. IV show that placeholder text achieves lower perplexity than raw text with all three metadata formats, thus supporting our previous findings. While XML-like always produces the highest perplexities, the narrative format consistently achieves the lowest perplexity regardless of the placeholder use and is thus to be preferred.

Based on these objective metrics, we selected the Quest-GPT-2 model fine-tuned with the narrative format and placeholder text for the final subjective evaluation.

D. Exploring Quest-GPT-2 Text Generation Settings

We anticipate that even after fine-tuning, many generated quests would not convince a human audience. For example, Fig. 6 shows quest descriptions generated by the fine-tuned model that might be considered somewhat nonsensical by people. Instead of merely sampling the most probable tokens from the output probability distribution, methods such as top-k sampling and nucleus sampling have been successfully employed to generate more natural-sounding text [43]. Holtzman et al. [43] have argued that natural language does not maximize probability; humans favor non-obvious language.

As a final step before our user study, we determined the optimal sampling settings for Quest-GPT-2 model inference through four mini-studies. The studies were performed among the members of the game AI research group at Aalto University, and had three participants on average. We generated six to ten quest descriptions for two quests and each of the below sampling setting configurations, and asked participants to rate the descriptions according to their perceived quality on a 7-point Likert scale. The scale was accompanied with the statement “The quest description fits the quest great.” We compared the following sampling setting configurations:

- **Nucleus sampling with top-p values 0.5, 0.7, and 0.9**
- **Top-k sampling with top-k 40**
- **Baseline pure sampling**

with or without the following additional modifiers:

- **Temperature**: 0.7
- **Repetition penalty**: 1.2

The first mini-study compared all sampling setting configurations without the additional modifiers, the second one introduced the temperature modifier, the third added in repetition penalty, and the last compared two nucleus sampling configurations, top-p values 0.5 and 0.9, to each other with both modifiers and two Likert scale statements “The quest description fits the quest great narratively” and “The quest description fits the quest great in terms of correctness.”

It is difficult to balance the narrative quality and the correctness of details: one needs to find the sampling settings that produce an optimal degree of randomness to generate interesting yet sensible quest descriptions. We found that nucleus sampling with top-p=0.5, temperature=0.7, and repetition penalty=1.2 produced the best results with Quest-GPT-2.

E. Rejecting Quest-GPT-2 Outputs

To further improve the model outputs, we implemented two simple heuristic filters that reject bad samples. Both filters exploit our special placeholder tokens (Fig. 4).

The first filter performs token verification, i.e. it checks whether the special tokens in the output also exist in the input. For instance, the example quest input in Fig. 4 (i.e., lines up to and including the $<$begin_description$>$) does not include any named groups or related group_n tokens. Consequently, the resulting output quest description (i.e., lines after $<$begin_description$>$) should not contain said tokens either. The second filter complements the first: it checks that important, user-configurable special tokens in the input are present in the output. This filter can ascertain that only outputs are retained which contain certain desired quest elements, e.g. the output description in Fig. 4 should mention character_0.

VI. EVALUATING QUEST-GPT-2

Writing RPG quest descriptions is usually considered a creative activity, and we thus want Quest-GPT-2 to be a creative system. Assessing creativity however is not easy, and defining creativity alone is a source of debate among (computational) creativity researchers [44, p. 77ff.]. Most researchers however agree that a creative product must be novel and valuable [45] to be deemed creative. Assessing the novelty of generated artifacts however is not straightforward, as perceived novelty is highly contingent on individual experience [46]. We consequently focus on assessing the quality of the generated quests, and complement ratings with open-ended questions to gather further information on what influenced our participants’ assessment. We next present our evaluation methods, describe the results, and, finally, discuss them critically.
Figure 7. Box plots of quest description ratings for each of the 50 quests in the test set, sorted by the median in ascending order. Each point represents participants’ mean ratings on a quest description produced for the corresponding quest.

Figure 8. Box plots of quest description ratings distinguished by quest types. Each point represents the mean rating for a quest in the test set.

Figure 9. Box plots of averaged ratings per participant, grouped by their average weekly playtime (groups holding <5% participants were omitted).

Figure 10. Box plots of averaged ratings per participant, grouped by game.

A. Experiment Design

We performed a randomized mixed design user study in the form of an online questionnaire in which participants were presented with quests and asked to rate corresponding quest descriptions. We chose a mixed design to obtain ratings on many quest descriptions produced from many quests, while avoiding fatigue that could negatively impact response quality.

B. Materials

Participants were presented with a quest from the test set that was set aside during fine-tuning (Sec. V-C). For each quest in the test set, we generated ten quest descriptions with Quest-GPT-2, utilizing the improvements from Sec. V-D and V-E. Based on the 50 random quests in the test set (sampled proportionally from each game in our quest data set as mentioned in Sec. V-C), we obtained a total of 500 quest descriptions as stimuli in the study. Table V illustrates the same natural language metrics as Table II on the generated descriptions. The generated descriptions are noticeably simpler, i.e. easier to read and shorter, than the original human-authored ones. All quests and quest descriptions are available in a public Open Science Foundation repository.

The quests and their generated descriptions were embedded in an online questionnaire. For improved readability, the quests were presented in the simple format (Fig. 1b) without placeholders, instead of the narrative format with placeholders which was used in fine-tuning Quest-GPT-2.

To keep the individual workload manageable, each participant received five quest descriptions from five randomly sampled test set quests, i.e. 25 quest descriptions in total. To counteract fatigue, the five quests were always presented along with their description instead of interleaving the quests with each other. The presentation order of the quest descriptions for each quest was randomized to avoid order effects.

C. Participants

The study participants were recruited from various RPG sub-communities on Reddit and r/SampleSize, a sub-community dedicated to (scientific) surveys. The study was advertised toward everyone aged over 18 years with RPG playing experience. We did not offer any incentives for participation.

Overall, 349 respondents participated in the questionnaire, of which 345 responses were retained. We excluded three respondents, as they only provided empty or one-word answers to our free-form questions. Additionally, one respondent was excluded due to being under 18 years old. The gender breakdown of participants was 71.9% male, 20.0% female, 4.9% gender variant / non-conforming, 0.6% other, and 2.6% preferred not to state their gender. 97.1% of participants stated their age, ranging from 18–62 years (M=28.7, SD=8.1).

The participants reported their average weekly gaming time as follows: 0.9% played less than an hour, 7.5% 1–4 hours, 15.1% 5–8 hours, 23.8% 9–12 hours, 15.7% 13–16 hours,
Table V
MEAN NATURAL LANGUAGE PROCESSING METRICS (MEAN ± STDDEV) ON THE GENERATED QUEST DESCRIPTIONS

<table>
<thead>
<tr>
<th>Game</th>
<th>Reusability (Fisch-kendall Grade)</th>
<th>Syntactic Complexity (Dependency Distance)</th>
<th>Lexical Richness (Type-Token Ratio)</th>
<th>Word Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldur’s Gate II [31]</td>
<td>2.57 ± 0.38</td>
<td>2.25 ± 0.24</td>
<td>0.74 ± 0.06</td>
<td>92 ± 23</td>
</tr>
<tr>
<td>Baldur’s Gate II [34]</td>
<td>2.59 ± 1.47</td>
<td>2.13 ± 0.32</td>
<td>0.74 ± 0.07</td>
<td>98 ± 39</td>
</tr>
<tr>
<td>The Elder Scrolls IV [27]</td>
<td>2.74 ± 1.18</td>
<td>2.21 ± 0.23</td>
<td>0.71 ± 0.07</td>
<td>127 ± 50</td>
</tr>
<tr>
<td>The Elder Scrolls V [35]</td>
<td>2.39 ± 1.37</td>
<td>2.08 ± 0.21</td>
<td>0.71 ± 0.07</td>
<td>104 ± 46</td>
</tr>
<tr>
<td>Minecraft [28]</td>
<td>3.12 ± 0.98</td>
<td>2.64 ± 0.25</td>
<td>0.78 ± 0.07</td>
<td>65 ± 22</td>
</tr>
<tr>
<td>Torchlight II [18]</td>
<td>2.39 ± 1.90</td>
<td>2.17 ± 0.23</td>
<td>0.72 ± 0.09</td>
<td>95 ± 29</td>
</tr>
<tr>
<td>Overall</td>
<td>2.38 ± 1.33</td>
<td>2.37 ± 0.24</td>
<td>0.74 ± 0.08</td>
<td>103 ± 46</td>
</tr>
</tbody>
</table>

35.1% more than 16 hours, and 2.0% preferred not to say. Regarding the participants’ familiarity with RPGs, 35.4% had played Baldur’s Gate, 30.1% Baldur’s Gate II, 58.8% Minecraft, 58.6% The Elder Scrolls IV: Oblivion, 83.2% The Elder Scrolls V: Skyrim, 26.7% Torchlight II, 76.8% other RPGs, and 0.3% preferred not to say. When asked about other RPG games, the participants listed dozens of Western, Japanese, tabletop-inspired and MMORPGs, confirming that most participants were avid, experienced RPG fans.

D. Measures
We gathered demographic data on age and gender, as well as player expertise data based on the number of hours spent on playing games per week, and players’ favourite RPGs (detailed questions and answer options provided in our public repository). Participants were asked to rate each quest description on a 4-point Likert scale (Strongly Disagree – Strongly Agree), indicating their agreement with the statement “I would be happy to see this quest description in a video game.” An even scale was chosen to disallow neutral ratings and support the ratings’ interpretation as separating unsuitable (mean rating < 2.5) from suitable (mean rating > 2.5) descriptions. We moreover asked the following free-form questions:

Qn 1. Which criteria did you use to assess the suitability of each quest description?
Qn 2. What upset you most about the unsuitable quest descriptions?
Qn 3. What did you like most about the suitable quest descriptions?

The first question was used to understand participants’ criteria in assessing quest descriptions, and the last two were used to determine the strengths and weaknesses of the descriptions.

E. Procedure
Firstly, the participants were asked to read and agree to an informed consent form. They were then asked to provide details on demographics and expertise. In the main part of the questionnaire, the participants were presented blocks of (i) a random quest, and (ii) five different descriptions generated for each quest. After rating all five quest descriptions, they were presented with another quest with the corresponding descriptions. This process was repeated five times, until each participant rated five quest descriptions for five quests. Finally, the participants were given the previously described free-form questions. Each step is illustrated in our public materials.

F. Results
We found strong variations in the perceived quality of quest descriptions (Fig. 7) within and beyond individual quests. If we interpreted strong deviations from the Likert midpoint as a reliable indicator of suitability, then many quests had a mix of suitable and unsuitable quest descriptions. The median rating over all quests is slightly above 2 and thus below the midpoint of our 4-point Likert scale (Fig. 8a). We did not find any striking differences in ratings when categorizing quests by their type (Fig. 8b), outline length (Fig. 8c), or the game they originated from (Fig. 10). Participants generally appear more critical the more they played (Fig. 9). The exception are those who reported playing for more than 16 hours per week, which also includes “hard-core” gamers. We performed a one-way ANOVA to further investigate the effect of reported playtime on the participants’ ratings, yielding that differences between the groups are only slightly significant (F=2.3, p=0.063).

Based on participants’ rich answers to our free-form ques-
tions, we learned that players used various criteria to assess the suitability of the quest descriptions (Question 1). The most often mentioned criteria include correctness in regards to the given quest outline, internal logic as well as coherence, tone and immersiveness. Other common criteria were interestingness, the lack of repetition, grammar, narrative flow, and clear instructions. Sporadically, participants noted humor, the length of the quest description, and the feelings that are evoked while reading the quest descriptions as assessment criteria. There were notable differences in how the participants applied their criteria. In particular, participants were not equally-minded about the importance of criteria, such as grammar, and a small subset of participants’ answers indicate that they were lenient with their ratings, as (i) they knew that they were reading AI-generated text (“If these numbers went from 1-10 instead of 1-4, I think they’d get the same ratings, for the most part”), (ii) they were not native English speakers (“note: I’m not native speaker”), or (iii) they appreciated the unintentional humor often found within computer-generated text (“They [suitable descriptions] were humorous at times”). Our participants’ comments on unsuitable (Question 2) and suitable (Question 3) quest descriptions echoed their assessment criteria. The unsuitable quest descriptions failed and the suitable ones fulfilled them. Unsuitable descriptions were lamented to be non-sensible or illogical, contained unnecessary details, repetition and conflicting information, had poor grammar to the point of “reading ‘off’ as if poorly translated from a Chinese comic”, or were simply boring lists of facts. On the contrary, suitable descriptions were found clear, surprising, fun, original, and believable even to the point of being seemingly human-authored, thus supporting that our model marks a step forward in achieving less repetitive and formulaic computer-generated quests. Some participants noted that there were no suitable quest descriptions in their subset, supporting our finding that the descriptions vary greatly in quality.

On a general note, it seems that there is no objective consensus for what makes a good quest description: some study participants preferred short, no-nonsense descriptions without unnecessary details, whereas others liked longer descriptions laced with in-game lore. Regarding quest objectives, there were participants who would rather only receive hints about what to do, and others who preferred in-dept instructions.

Fig. 11 shows examples of the worst and best rated quest descriptions. In addition to highlighting many of the participants’ thoughts on unsuitable quest descriptions, the badly rated descriptions indicate that Quest-GPT-2 sometimes fails to discern different entities from each other even if unique names are substituted with generic placeholders. This behavior is likely inherent to GPT-2, and made worse with complicated relationships between different characters. For instance, Mogrul, the quest-giver of “A New Debt”, and Drovas Relvi, Mogrul’s debtor in the same quest, are supposed to be different people, yet in the top-most quest description in Fig. 11a the quest-giver states that “My name is Mogrul. You might know me as Mogrul, or maybe as Drovas Relvi.”

We provide all responses, quantitative and qualitative, as well as the computation of the summary statistics, in anonymized form in our public repository1.

G. Discussion

Our results suggest that even the largest variant of GPT-2, fine-tuned on our well-curated data set, cannot be used to autonomously generate high-quality quest descriptions reliably. This confirms findings in related work [22]. We especially found that Quest-GPT-2 lacks the ability (i) to distinguish between multiple entities, and (ii) to “glue” quest ingredients well together while not relaying illogical information.

The model’s direct successor, GPT-3, has been shown to offer vast, general improvements in text quality [4], and we hypothesize that GPT-3 would handle these two aspects of quest description generation better. To support this hypothesis, we have provided the quest with the worst rated quest description in our experiment, “A New Debt” (Fig. 11a), as input to the vanilla GPT-3 model. In comparison to Quest-GPT-2, the descriptions generated by GPT-3 (Fig. 12) are noticeably more coherent than the worst rated Quest-GPT-2 descriptions. Given suitable hardware for fine-tuning and tweaks such as our placeholder text, we believe that this next generation of models can bring fully autonomous quest description generation within the reach of game developers.

We advocate several use-cases for our present model. Firstly, many of the poorly rated quest descriptions outputted by Quest-GPT-2 only contain few issues, such as a single illogical sentence. Therefore, the model could be used as an assistant for co-creative quest writing: a professional RPG writer could first give a rough, simplified quest outline to Quest-GPT-2, and then fill in more complex details into the generated output. Secondly, Quest-GPT-2 could be used to generate quest ideas: one can supply the starting sentence of a quest outline to generate the rest of the outline and the quest description. Thirdly, Quest-GPT-2 could be used to generate quest descriptions offline which can, after only little human curation, be used in a video game without further changes. This is supported by the observation that some quest descriptions were rated highly by people. The curation coefficient, i.e. the ratio of human-acceptable outputs from any given creative system [47] is 0.22, indicating that roughly one in five quest descriptions would be deemed acceptable.

We finally reflect on the limitations of our study. Firstly, we observed both positive and negative bias toward AI-generated text. The former was evident from the participants using lenient ratings as described previously, and the latter was observed from e.g. one of the participants describing bad experiences with procedurally generated quests from The Elder Scrolls V: Skyrim [13]. Such biases are well known when people judge computer-generated artifacts [47]. To alleviate them, we recommend comparing human-written and AI-generated quest descriptions in future studies. Turing-style tests on creative systems have been criticized [48], and we hence suggest to omit any explicit mention of this dichotomy. A second limitation of our study is given by its focus on RPG games with medieval-esque fantasy settings. Generalizing our findings to other settings is not advisable, as the model’s capacity to generate text on a specific theme depends on the presence of this theme in the original pre-training data set. A third limitation is given by the gender imbalance which was
quest descriptions for different kinds of RPG players and player characters; replacing our simple heuristic filters with an AI critic for rejecting dissatisfying model outputs as well as using grammar checking tools or other algorithms for improving text quality; and generating other quest-related artifacts, e.g. quest names, journal entries and dialogue trees, in addition to quest descriptions. Moreover, one could investigate expanding the quest generation system to continuous quest lines or multi-step quests by including previous quests or quest steps alongside quest ingredients. Bidirectional language models such as BERT [49] could be investigated to provide individual, fill-in suggestions for all quest ingredients, not only the quest descriptions. Finally, we highlight the opportunity for collaborations between games industry and researchers on both, the use of existing data sets to improve new models, and the latter’s integration in tools for design-time co-creation.

We encourage researchers and the general public to adopt the techniques presented here, and extend our publicly available code and data set to investigate the future use of large language models for video game quest generation.

APPENDIX A

QUEST COLLECTING IN DETAIL

We gathered the quests in the following manner. Firstly, the quests from Baldur’s Gate I-II were extracted by first identifying the quest-giving non-playable characters by reading the Baldur’s Gate Wiki quest descriptions, then looking for and selecting the relevant game dialogue files with Near Infinity, a browser and editor software for games that use the Infinity game engine, and finally using the relevant pieces of dialogue to construct proper quest descriptions. Secondly, the skeletons for The Elder Scrolls IV-V quests were first scraped from the Unofficial Elder Scrolls Pages in JSON format; each quest contained information on objective, locations, quest giver, and reward. The final quest descriptions were then formulated by reading the relevant game files with either The Elder Scrolls Construction Set (The Elder Scrolls IV) or the Creation Kit (The Elder Scrolls V). Lastly, the Torchlight II quests originally collected by van Stegemen and Theune [33] were in .csv format with the following fields: speaker (quest-giver), text, dialogue type, quest name as seen in-game, quest name in game data, quest file, speaker unit type, unit file, and raw quest text. We converted these quests to our JSON schema (Appendix B), cleaned them up, and added any missing, relevant information, such as archetypal character descriptions.

APPENDIX B

JSON REPRESENTATION FOR QUESTS

```json
"name": "the name of the quest",
"objective": "quest objective",
"first_task_locations": ["a list of locations that should be done to fulfill the objective"],
"first_task_rewards": ["a list of rewards that should be done to fulfill the objective"],
"quest_giver": {"name": "the name of the quest giver", "description": "a brief, archetypal description of the quest giver", "location": "the whereabouts of the quest giver"},
"reward": ["a list rewards, a reward is defined as a task that the player must complete to fulfill the objective", "amount": "the number of rewards the quest giver will receive", "characters": ["optional list of characters involved in this quest"]},
"description": "a brief, archetypal description of the quest giver", "location": "the whereabouts of the quest giver"},
```

Figure 12. A quest generation demo with the quest A New Debt and GPT-3 (OpenAI API Playground, default text generation settings apart from response length of 700). The quests Ashes to Eternity, Assassin at Large, and Vald’s Debt were given as examples to GPT-3 beforehand.

inherited from the Reddit communities that participants were recruited from, and should in the future be compensated for via other communities and additional recruitment channels.

VII. CONCLUSIONS AND FUTURE WORK

We have investigated the use of the GPT-2 and GPT-3 language models to generate quest descriptions for RPG games. We built and published a novel quest data set, and employed a strategy for improving learning from limited training data by placeholder substitution similar to [6]. We fine-tuned GPT-2 into the quest description generating Quest-GPT-2 model, and conducted an online user study to evaluate its output.

While our results are encouraging, the quality of the generated descriptions varied greatly. Despite the name substitution strategy, Quest-GPT-2 often makes mistakes related to handling a large number of entities, such as characters, groups, and locations. Moreover, Quest-GPT-2 often generates descriptions with questionable logic, repetition, poor grammar, and unnecessary information. While using our model automatically and online is not yet viable, we have proposed three means on how Quest-GPT-2 can already be used by designers offline.

Based on our case-studies on generating quest descriptions with the vanilla GPT-3 model, we hypothesize that the next generation of language models could be fine-tuned with (an extension of) our quest data set to alleviate the discussed issues. Other potential areas of future work are personalizing
"enemies": [optional] a list of related groups of enemies, mostly used for declaring a set number of enemies for a quest; a group of enemies is defined similarly to a reward.
"items": [optional] a list of related items, e.g. tangible items, or even some more abstract ones like rituals; an item is defined similarly to a reward.
"groups": [optional] a list of related groups, e.g. factions, races, or creatures, where a group is defined { "name": "the name of the group", "description": "a brief, common description of the group" }
"locations": [optional] a list of related locations, where a location is defined { "name": "the name of the location", "description": "a brief, common description of the location" }
"tools": ["important facts related to the quest"],
"description": "the quest description"

ACKNOWLEDGMENTS

We thank our reviewers for their excellent, helpful feedback.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/