
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Xie, H.; Fei, S.; Yan, Z.; Xiao, Y.
SofitMix: A Secure Offchain-Supported Bitcoin-Compatible Mixing Protocol

Published in:
IEEE Transactions on Dependable and Secure Computing

DOI:
10.1109/TDSC.2022.3213824

Published: 01/09/2023

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY

Please cite the original version:
Xie, H., Fei, S., Yan, Z., & Xiao, Y. (2023). SofitMix: A Secure Offchain-Supported Bitcoin-Compatible Mixing
Protocol. IEEE Transactions on Dependable and Secure Computing, 20(5), 4311-4324.
https://doi.org/10.1109/TDSC.2022.3213824

https://doi.org/10.1109/TDSC.2022.3213824
https://doi.org/10.1109/TDSC.2022.3213824

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

SofitMix: A Secure Offchain-Supported
Bitcoin-Compatible Mixing Protocol

Haomeng Xie, Shufan Fei, Zheng Yan∗, Senior Member, IEEE, and Yang Xiao, Graduate Student
Member, IEEE,

Abstract—Privacy preservation is highly expected in the Bitcoin Network. However, only applying pseudonyms cannot completely
ensure anonymity/unlinkability between payers and payees. Current approaches mainly depend on a mixer service, which obfuscates
payer-payee relationships of transactions. While the mixer service improves transaction privacy, it still suffers from some severe
security threats (e.g., DoS attack and collusion attack), and does not support effective and reliable off-chain payment in a parallel
mode. In this paper, we propose a mixing protocol for the Bitcoin Network based on zero-knowledge proof, called SofitMix. It is the first
mixing protocol that can effectively resist both the DoS attack and the collusion attack. It can also support a set of parallel off-chain
payments in a reliable way no matter whether some payers abort a transaction. We analyze and prove SofitMix security following the
Universal Composability model with regard to fair exchange, unlinkability, collusion-resistance, DoS-resistance and Sybil-resistance.
Through a proof-of-concept implementation, we demonstrate its validity and fairness. We also show its advance on off-chain payment
reliability and DoS attack resistance, compared to TumbleBit.

Index Terms—Secure Mixer, Blockchain, Bitcoin, Zero-Knowledge Proof, Anonymity.

✦

1 INTRODUCTION

B ITCOIN, a digital currency platform created by
Nakamoto in 2008 [1], has profoundly shaped the fi-

nancial industry and our society. Behind Bitcoin’s huge
popularity [2], [3], [4], anonymity is one of its most ap-
pealing features to preserve transaction privacy. Bitcoin’s
anonymity mainly relies on pseudonyms to theoretically
cuts off the connection between transactions and the real
identities of involved parties. Moreover, payers and payees
can change their pseudonyms from time to time to disguise
their identities.

However, an increasing amount of research [5], [6], [7]
has shown that the actual anonymity of Bitcoin is much
weaker than our thoughts. The blockchain of Bitcoin is
a public ledger storing all transactions that indicate the
movement of funds from payers to payees, which could
disclose the linkage between their pseudonyms. Once a
pseudonym is linked to the real identity of a party, all
related pseudonyms and transactions can be linked to that
party, leading to collapse of anonymity.

To improve the anonymity of cryptocurrency, some types
of new anonymous cryptocurrency (e.g. Zerocash [8] and
Monero [9]) were proposed and achieved completely un-
linkability. However, they are not compatible with Bit-

• Z. Yan (corresponding author) is with the State Key Lab of ISN, School of
Cyber Engineering, Xidian University, Xi’an, China, and the Department
of Communications and Networking, Aalto University, Espoo, Finland.
E-mail: zyan@xidian.edu.cn; zheng.yan@aalto.fi.

• H. Xie is with the State Key Lab of ISN, School of Cyber Engineering,
Xidian University, Xi’an, China.
E-mail: haomengxie@foxmail.com.

• S. Fei is with the State Key Lab of ISN, School of Cyber Engineering,
Xidian University, Xi’an, China.
E-mail: shufanfei@gmail.com.

• Y. Xiao is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, VA, USA.
E-mail: xiaoy@vt.edu.

coin and have a risk of liquidity squeeze. Optionally, an
anonymity-enhancing service which is compatible with Bit-
coin called mixer has emerged. In a nutshell, a mixer is a
party in the Bitcoin Network that is responsible for receiving
bitcoins (BTCs) from a set of payers and then obfuscating the
relationships between transaction parties before re-sending
BTCs to final payees. In this way, Bitcoin analysts cannot
infer the linkage between a payee and an actual payer from
a series of transactions in the public Bitcoin blockchain.

While the introduction of the mixer into Bitcoin sheds
light on anonymity and unlinkability solutions, its applica-
tions in practice still confront several security and perfor-
mance challenges that have not yet been well addressed.

First, existing mixer services [10], [11], [12], [13], [14],
[15], [16] suffer from DoS attacks. As we know, the process
of recording a transaction on the Bitcoin blockchain needs
to consume a transaction fee (Ftran) to reward miners.
However, some existing schemes require the mixer to first
escrow α BTCs on the blockchain for a specific period (∆t)
before mixing a payment. Thus, a powerful well-funded
attacker (i.e., a payer/payee) can repetitively join and then
intentionally abort a mixing protocol at a cost of insignifi-
cant Ftran, which could lock the mixer’s limited amount of
BTCs for a long time and cause a specific DoS attack.

Second, collusion attack, a situation when a malicious
party (payer/payee) colludes with the mixer to defraud
its counterparty (payee/payer), has not been well resisted.
Although the state-of-the-art protocol, TumbleBit [10], care-
fully discusses this problem and offers a partial solution, it
does not consider such a problem that a malicious payer
may lie to a payee that it has sent the payee a token that
can be used to claim α BTCs from the mixer, so that the
payee cannot acquire its BTCs eventually. Vice versa, a
malicious payee could lie to the payer that it never received
the token and require the payer to pay it again. Although

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

the mixer can be sued when it colludes with other parties,
victims cannot provide any evidence to verify the above
described malicious behaviors. Thus, it is difficult to ensure
fair exchange when honest parties suffer from a collusion
attack.

Third, current state-of-the-art solutions of Bitcoin trans-
action privacy typically yield cumbersome on-chain trans-
action overhead. We note that an established practice to
solve this scalability issue is off-chain payment [17], [18]
that utilizes limited transactions recorded on the blockchain
to replace a vast amount of payments between two parties.
However, previous mixing protocols [11], [12], [13], [14],
[15], [16], [19] only support a classic model in which all
transactions are recorded on-chain in an epoch. Although
TumbleBit [10] states that it can support an off-chain model
in which payers can process multiple payments in an epoch
in an off-chain fashion, we found that off-chain payments of
payees have a strong coupling relation. It can only be exe-
cuted sequentially, and the execution of subsequent offchain
payments depends on the success of previous offchain
payments. Thus, payment efficiency cannot be effectively
guaranteed in practice. In addition, the payee may fail to
acquire all BTCs if one of the payers aborts the protocol in a
parallel execution mode. Therefore, a highly reliable mixing
protocol that can support parallel off-chain payments is
needed.

Based on the above discussion, we can see that the
current Bitcoin Network highly expects a secure and reliable
mixing protocol that can resist both DoS and collusion
attacks, stably support parallel off-chain payments and offer
fair exchange to all involved parties including the mixer.

In this paper, we present a novel Secure off-chain-
enabled bitcoin-compatible Mixing protocol, named Sofit-
Mix. SofitMix re-constructs the order of transactions to
mitigate the DoS attack by tactfully utilizing the hash-
time-lock transaction. It applies signatures and transactions
recorded on the blockchain to effectively prevent the col-
lusion attack. At the same time, it employs the multiple-
input and multiple-output (MIMO) transaction of Bitcoin
to decouple off-chain payments, which then can be oper-
ated in parallel and efficiently. Different from the puzzle-
promise protocol used in TumbleBit, SofitMix employs zero-
knowledge proofs to guarantee unlinkability. To the best of
our knowledge, SofitMix is the first Bitcoin mixing protocol
that addresses all the aforementioned challenges. SofitMix
operates in epochs (i.e., mixing periods) and realizes trans-
action anonymity with zero-knowledge proofs. After start-
ing a new epoch, a payer can join in the SofitMix by firstly
escrowing enough BTCs in an escrow transaction recorded
on-chain. In the above process, the payer needs to pay a
Ftran to miners following the transaction rules in the Bitcoin
network. When the payer makes a payment to the mixer, it
also generates a token and provides the corresponding to-
ken evidence to a target payee. Correspondingly, the mixer
will escrow an equal value of BTCs on the blockchain. These
BTCs should be paid to the payee, once the payee can prove
that it knows the token generated by the payer without
disclosing its real identity through a zero-knowledge proof.
In case that the mixer does not transfer the payment to the
payee as the payer’s expectation, the payer can cancel its
payment by revealing the token to reclaim its BTCs. If the

payer reclaims its BTCs after the mixer transferred BTCs
to the payee, the mixer can also utilize the revealed token
to reclaim equal BTCs at once, which avoids its BTCs to
be locked for a long time. In one epoch, SofitMix allows
the mixer to process a large amount of payments between
a payer and a payee with only four transactions recorded
on-chain, thus significantly improves its throughput and
releases congestion of the Bitcoin network.

Specifically, SofitMix is designed to resist both the DoS
attack and the collusion attack. Since the payer is required
to pay a Ftran to Bitcoin miners to join in the protocol,
malicious payers who attempt to mount a DoS attack need
to lock their BTCs for time ∆t and pay an extra Ftran, which
degrades the incentive to raise the DoS attack. In addition, if
a party colludes with the mixer to defraud its counterparty,
evidence (i.e., the token, transactions on-chain and signed
messages during SofitMix protocol execution) can be used to
disclose malicious parties, which discourages malicious col-
lusion behaviors in SofitMix. We declare that SofitMix is not
contradictory to using mixing to protect privacy. Because
the signed messages are only kept by the payer and the
payee. Anyone except for the payer and the payee cannot
disclose the linkage and the real identities of theirs. Thus,
SofitMix can be used in such a situation that two parties who
know but do not fully trust with each other intend to make
privacy-preserving payments with BTCs. Besides, SofitMix
not only supports parallel off-chain payments, but also uses
a multiple input and multiple output (MIMO) mechanism
to separate payments from each other and allows involved
parties to make independent decisions on payments. Even
some payers abort the protocol, the failure of their payments
has no effect on payees’ redemption of other related pay-
ments. Therefore, SofitMix offers high reliability in off-chain
payments.

In summary, this paper has the following contributions:

• We propose SofitMix, the first Bitcoin mixing pro-
tocol that can resist DoS attack and support fair
exchange when suffering from collusion attacks. It
can also reliably support parallel off-chain payments
even if some payers abort the SofitMix protocol.

• We perform both security analysis and formal proof
under the Universal Composability (UC) model [22]
to show its security and privacy in terms of fair
exchange, unlinkability, and resistance on collusion,
DoS attacks, and Sybil attacks.

• We implement SofitMix in the Bitcoin network. Per-
formance evaluation shows that its transaction size
is smaller than that of TumbleBit [10]. In addition,
we demonstrate its validity and fairness and show
its advance on parallel off-chain payment reliability
and DoS resistance, compared also with TumbleBit.

The rest of this paper is organized as follows. Section 2
provides background knowledge and reviews related work.
Section 3 introduces the system model and security model
of SofitMix, as well as specifies its design goals. In Section
4, we describe SofitMix in detail. Section 5 analyzes the
security and privacy of SofitMix proves its security based
on the Universal Composability model, followed by Sofit-
Mix implementation and performance evaluation results in
Section 6. Finally, we conclude our paper in the last section.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

TABLE 1: A Comparison of Bitcoin Mixing protocols

Protocol Fair
Exchange Anonymity

DoS Attack
ResistanceA

Sybil Attack
Resistance

Bitcoin
Compatibility

Supported
ModelsC

Parallel
Off-chain
Payments

CoinSwap [11] ✗ ✗ Ftran ✓ ✓ CM ✗
MixCoin [19] ✗ ✗ ∞ ✓ ✓ CM ✗
Blindcoin [20] ✗ ✓ ∞ ✓ ✓ CM ✗
BSC [12] ✗ ✓ Ftran ✓ ✗ CM ✗
TumbleBit [10] ✗ ✓ Ftran ✓ ✓ CM & OM ✗
CoinJoin [13] ✓ ✓ 0 ✗ ✓ CM ✗
CoinShuffle [14] ✓ ✓ 0 ✗ ✓ CM ✗
CoinShuffle++ [15] ✓ ✓ 0 ✗ ✓ CM ✗
Coinparty [21] ✗ ✓ ∞ ✓ ✓ CM ✗
Xim [16] ✓ ✓ Ftran ✓ ✓ CM ✗

SofitMix ✓ ✓ n · (Ftran + α ·∆t)B ✓ ✓ CM & OM ✓
A A larger value implies a stronger ability to resist the DoS attack.
B n is the number of payments included in a transaction.
C CM: Classic Model, OM: Off-chain Model.

2 BACKGROUND AND RELATED WORK

2.1 Bitcoin Transactions

We first overview how Bitcoin works by introducing its
transaction structure.

Transactions: Transactions in Bitcoin record the move-
ment of funds from an original transaction Torigin to a
fulfilling transaction Tfulfill. The redeem condition in the
original transaction stipulates a condition that must be met
in order to spend BTCs in this transaction. The fulfilling
transaction provides script data that meets the redeem
condition in the original transaction, which results in BTCs
transformation from the original transaction to the fulfilling
transaction. Each transaction can include multiple inputs
and multiple outputs (MIMO). In the Bitcoin network, the
funds in an output of the original transaction can only be
transferred to an input of the fulfilling transaction. Next, we
review common redeem conditions used in current Bitcoin
transactions.

Hashlock Condition (h(a)): Hashlock condition h(a) in
the original transaction stipulates that the fulfilling transac-
tion that intends to spend the BTCs in the original transac-
tion needs to reveal the preimage of the hash (h(a)).

Timelock Condition (T): The BTCs in the original trans-
action with a timelock condition will be locked for a period
of (T). The funds cannot be claimed until the time T expires.

Signing Condition (X): This condition stipulates that
the fulfilling transaction needs to be signed by a specific user
(X) with secret key (SKX) under the Elliptic Curve Digital
Signature Algorithm (ECDSA) over a Secp256 elliptic curve.

2-of-2 Escrow Condition (X ∧ Y): This condition in the
original transaction stipulates that a fulfilling transaction
needs to be signed by two parties (X,Y) cooperatively.
Actually, in case that one party is out of work and they can-
not build a fulfilling transaction cooperatively, an original
transaction with a 2-of-2 escrow condition (i.e., an escrow
transaction) often has a timelock condition (T), with which
the other party can reclaim all BTCs after time T elapses. We
heavily rely on the transaction with this type of condition to
construct a payment channel that is necessary for off-chain
payments [17], [18] between two parties (X,Y). An off-chain
payment usually proceeds in three phases: (1) Escrow Phase
in which one party X opens a payment channel with the

other party Y by escrowing enough BTCs in a 2-of-2 escrow
transaction posted on the blockchain; (2) Payment Phase in
which one party X pays the other party Y via off-chain
transactions that are not recorded on-chain. Every time X
intends to transmit a new payment to Y, X reconstructs
and signs a new off-chain transaction with a value that
is the sum of all previously generated payments and the
underlying payment. Y keeps these off-chain transactions
locally and does not post them on-chain. We note that all off-
chain transactions kept by Y are all fulfilling transactions of
the escrow transaction, and only one off-chain transaction
can be confirmed on blockchain eventually; (3) Decision
Phase: before time T elapses, X and Y can cooperatively sign
and post a new fulfilling transaction that re-allocates the
funds in the escrow transaction, or Y can independently sign
and post the last off-chain transaction from which Y can get
the last specified amount of BTCs. In addition, X can reclaim
all BTCs from the escrow transaction after time T elapses. In
this way, performing two on-chain transactions can process
a large number of payments between two parties in a
payment channel, which dramatically improves payment
velocity and volume in the Bitcoin Network.

Hash-time-lock Condition (h(a)∨T): A transaction with
this condition includes a hashlock condition h(a) and a
timelock condition T , which stipulates one party can claim
the payment prior to the deadline by revealing the preimage
of the hash h(a), or forgive the funds and return them to the
other party after the time T expires.

2.2 Mixer Services in Bitcoin

In this subsection, we review recent centralized and decen-
tralized mixer services in Bitcoin. We overlook the zero-
knowledge contingent payment protocol [23] and the pay-
ment channel network [24] because they focus on different
payment scenarios.

Mixer was first introduced in 1981 [25] and originally ap-
plied in anonymous communications. In recent years, it has
been integrated into blockchain to mitigate de-anonymity
attacks [26].

Maxwell first attempted to introduce the mixer into
Bitcoin and proposed a centralized mixing protocol called
CoinSwap [11]. However, a curious mixer can disclose the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

linkage between payers and payees. Mixcoin [19], proposed
by Bonneau, cannot completely restrict the mixer from steal-
ing BTCs. An improved mixing protocol called Blindcoin
[20] was then proposed by Valenta et al. to solve the unlink-
ability problem against a curious mixer. However, like Mix-
coin, the mixer’s misbehaviors are only auditable. Blindly
Signed Contracts (BSC) [12] provides anonymity against the
mixer and can completely prevent the mixer from stealing
BTCs. Unfortunately, this protocol is not Bitcoin-compatible.
TumbleBit [10] is a notable mixing protocol that achieves
Bitcoin compatibility and unlinkability. Although it was
claimed that Tumblebit can support fair exchange when
suffering from collusion attack, we note that an honest
party has no evidence to prove malicious behaviors of its
counterparty.

Maxwell developed a prototype of a decentralized mixer
in Bitcoin called CoinJoin [13]. To achieve unlinkability,
CoinShuffle [14] and its variant CoinShuffle++ [15] were
proposed. These decentralized mixing protocols perform
mixing in a single transaction. The transaction size of Bit-
coins restricts the number of users to 538 per mix. In addi-
tion, they are not secure enough to resist DoS attacks and
Sybil attacks. These threats were considered in Coinparty
[21]. However, it cannot support fair exchange when mixers
collude. Xim [16] is a totally different protocol that can resist
the DoS attack. However, it takes a long waiting time in a
round of mixing. Although decentralized mixer can use one
on-chain transaction to complete Bitcoin mixing for n users,
it has a inherent disadvantage that all payments have strong
coupling relationship. If one party aborts the protocol, then
all parties cannot complete the mixing in this epoch.

In Table 1, we compare the related works with SofitMix
in terms of fair exchange, anonymity, DoS attack resis-
tance, Sybil attack resistance, Bitcoin compatibility, sup-
ported models, parallel off-chain payments. We can see that
SofitMix offers more advanced functionalities than other
works. It is a bitcoin-compatible mixing protocol. It not only
addresses the anonymity problem, but also supports parallel
off-chain payments and fair exchange even confronting col-
lusion attack. It can also effectively mitigate the DoS attack
and resist the Sybil attack.

3 PROBLEM STATEMENT

3.1 System Model
There are three types of parties involved in SofitMix, named
mixer, payer and payee. The mixer is responsible for trans-
ferring BTCs from payers to payees and is compensated
with mixing fees (Fmix). Each party involved in this proto-
col has a pair of long-term keys (PKp,SKp) that are related
to its real identity. As a for-profit party represented by
PKM , each mixer is motivated to maintain its reputation.
For payers and payees, their long-term keys are indepen-
dent from the Bitcoin’s key-pair system. These long-term
keys are only used for off-chain payment signing processes
as evidence to deal with the collusion attack. We assume
that payees always choose fresh and ephemeral addresses to
receive payments in each epoch for enhancing their privacy.
We further assume that multiple mixers {Mi} could exist in
the system and each mixer is equipped with multiple back-
up servers in order to avoid single point failure.

3.2 Security Model
We first assume that all parties are rational, selfish and
potentially malicious. They may attempt to steal BTCs and
deviate from the mixing protocol in order to pursue their
biggest profits. In addition, the mixer may de-anonymize a
target transaction, or attempt to launch Sybil attack by forg-
ing identities of transaction parties to reduce the proportion
of real parties in an anonymity set and lower the anonymity
level during a mixing round. Payers or payees may mount
DoS attacks by intentionally aborting the SofitMix protocol
to break the capability of the mixer. Either payers or payees
may collude with the mixer to defraud its counterparty to
steal BTCs.

In our research, we assume that a payer and a payee
communicate with each other via a secure and anonymous
channel. The mixer can gain neither communication infor-
mation between other parties nor their network information
(IP addresses) with the help of anonymous communication
techniques (e.g., Tor anonymity networks). In reality, this
anonymous communication technique can be replaced by
reliable encrypted communication software (e.g., Telegram).
We further assume that as a for-profit party, the mixer
would not intentionally abort transactions to decrease the
anonymity level since such a behavior would undermine its
reputation.

3.3 Design Goals
The design goals of SofitMix with regard to security and
privacy are listed below:

Unlinkability: A mixing protocol holds unlinkability if
no one rather than the pair of payer and payee can tell which
payer paid to which payee in an epoch. Note that we assume
the mixer does not collude with any party when considering
this property.

Fair Exchange: A mixing protocol holds fair exchange
if and only if 1. the protocol either ensure that all honest
parties receive BTCs as expected (i.e. stipulated by the
payment phase), or release no valid payment requests; 2.
the protocol terminates after a fixed time.

DoS Attack Resistance: A mixing protocol is DoS attack
resistance if all parties have an effective method to prevent
attackers from intentionally aborting the protocol to lock
their limited amount of BTCs for a long time.

Sybil Attack Resistance: A mixing protocol is Sybil
attack resistance if the protocol can effectively prevent a
malicious party from creating many different pseudonyms
to shrink the proportion of real parties in the anonymity set
and de-anonymize a target party.

4 SOFITMIX DESIGN

In this section, we first introduce the preliminary and
Notations used in SofitMix. Then, we overview SofitMix
by summarizing its key ideas, followed by the details of
SofitMix design.

4.1 Preliminary and Notations
Non-Interactive Zero-Knowledge Proof (NIZK): Let R ⊆
{0, 1}∗ × {0, 1}∗ → {0, 1} be an NP relation that consists
a pair of the form (x,w), where w is a witness (private

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

TABLE 2: The Description of Notations

Notation Description
TX
fulfill(X,Y)

a fulfilling transaction between X and Y signed by X

Tescrow(X,Y) an escrow transaction between X and Y
Tfund(X,Y) a funding transaction with a hash-time-lock redeem condition that performs the 2-of-2 escrow condition of Tescrow(X,Y)

Trefund→escrow(X,Y) a refund transaction that performs the timelock condition of Tescrow(X,Y) to refund BTCs to X
Trefund→fund(X,Y) a refund transaction that performs the hash condition of Tfund(X,Y) to refund BTCs to X
Tcash→escrow(X,Y) a cash-out transaction that performs the 2-of-2 escrow condition of Tescrow(X,Y) to redeem BTCs to Y
Tcash→fund(X,Y) a cash-out transaction that performs the timelock condition of Tfund(X,Y) to redeem BTCs to Y

∗ Note that the escrow phase of payee (B) partially overlaps
with the payment phase of payer (A) because the mixer
(M) should construct a payment channel by posting an
escrow transaction after A has generated valid payments
and locked BTCs in the blockchain to resist the DoS attack.
∗ Decision phase includes cash-out phase or refund phase.

Fig. 1: Protocol Overview

input) and x is a statement, (e.g., R = {(x,w)|x =
SHA256(w)}). Let L be a set of positive instances of R (i.e.,
L = {x|∃w, s.t. R(x,w) = 1}). The NIZK lets a prover P
take the (x,w) as input and generate a single message π.
A verifier V can be convinced that R(x,w) = 1 without
revealing the witness w if π is correct. We declare the NIZK
has the following properties:

• Completeness: The verifier always accepts an
honestly-computed proof π for a statement x ∈ L;

• Soundness: The verifier always rejects a proof π for
a statement x /∈ L, only except with a negligible
probability;

• Zero-Knowledge: A correct proof π cannot reveal
any information about the secret w.

Besides, for ease of understanding, we describe the no-
tations of all types of transactions used in the SofitMix in
Table 2.

4.2 SofitMix Overview

We provide an overview of the SofitMix protocol with an
assumption that every payment has the same value of α
BTCs. At its core, SofitMix utilizes zero-knowledge proof π
to convince the mixer that a payer intends to pay the proof
holder (a payee) α BTCs and has already paid the mixer
the same value of BTCs. The mixer will pay the payee α
BTCs after receiving such a zero-knowledge proof π from
the payee.

∗(X,Y, T̄ , t̄, h) represents (A,M, T1, t1, h1) in the payment channel
C(A,M), and represents (M,B, T2, t2, h2) in the payment channel
C(M,B), in which T1 < t1 < T2 < t2, h1 = H(a), h2 = H(a⊕ b).
∗There is no Fmix in the payment channel C(M,B).
∗If all parties process correctly, M and B can obtain BTCs through
the path 1⃝. If A or M is unwilling to cooperate to close the payment
channel, M or B can obtain BTCs through the path 2⃝. If there is no
payment after creating the payment channel C(A,M) or C(M,B), A
or M can reclaim all BTCs through the path 3⃝ after time T1 or T2. If M
or B aborts the protocol after A generates a payment, A can reclaim its
BTCs through the path 4⃝. However, if A maliciously reclaims its BTCs
after M generates a payment, M can immediately reclaim its BTCs
through the path 4⃝ in the same way.

Fig. 2: Cases of Possible Transactions

Fig. 1 shows the process of making payments between
a payer A and a payee B through a mixer M. The Sofit-
Mix protocol executes in three phases in an epoch. In the
Escrow Phase, a number of payers and the mixer escrow
BTCs on the Bitcoin blockchain. A payer A first opens
a payment channel with the mixer M by generating an
on-chain original transaction that escrows Q BTCs. The
mixer also opens a payment channel with the correspond-
ing payee B and escrows P BTCs after the corresponding
payee B provides an ephemeral address AddrB and p zero-
knowledge proofs π to it, where P = p× α. In the Payment
Phase, the payer/mixer can make off-chain payments to
the mixer/payee. The payer can transfer up to q off-chain
payments (q = 1 in the classic model and q ≥ 1 in the off-
chain model) to the mixer and the value for each payment
is α + Fmix BTCs (q × (α + Fmix) ≤ Q). Following each
above payment, the payer A transfers an encrypted token
H(Tn) to the mixer M. Meanwhile, the payer A provides the
payee B a zero-knowledge proof π(Tn) on Tn, which can be
used to convince the mixer that it knows such a token but
does not indicate which one. The mixer M will provide the
payee B α BTCs after receiving such a proof from the payee
B. In the Decision Phase, all involved parties claim BTCs.
This phase includes two sub-phases named cash-out phase

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

(a) Escrow Phase and Payment Phase

(b) Cash-out Phase (c) Refund Phase

Fig. 3: The Detailed SofitMix Protocol

and refund phase, respectively. If every party processes
normally, the cash-out phase will be activated. The mixer
closes the payment channel and claims q× (α+Fmix) BTCs
from A, while the payee B also closes payment channels
with M and claims p × α BTCs with the help of p zero-
knowledge proofs. However, if the payee B does not receive
the payment from M within a specific period, the payer A
will proceed the refund phase and reclaim BTCs by posting
a refund transaction in which the token Tn is revealed to
the mixer. If the payer maliciously reclaim BTCs, the mixer
can reclaim its corresponding BTCs immediately by using
the revealed token Tn.

4.3 The SofitMix Protocol

In this section, we describe the SofitMix protocol in detail.
Fig. 2 show the cases of possible transactions involved
in this protocol. In this figure, the input in a transaction
denotes the script data and the output denotes the amount
of funds with its redeem condition. An arrow points from
an original transaction to a fulfilling transaction. Only when
the input in the fulfilling transaction satisfies the redeem
condition in its corresponding original transaction, funds in
the original transaction can be transferred to the fulfilling
transaction. For easy understanding, we ignore the transac-
tion fee rewarding to a miner in the figure.

As shown in Fig. 3, the mixer initiates the system by
setting a security parameter λ and time points T , T1 and T2

according to block height, in which T < T1 < T2. T is used
to restrict the off-chain payment period between payers and
the mixer. T1 and T2 are used to stipulate the period for
which funds need to be locked in escrow transactions. Then,

it creates a set Λ to record zero-knowledge proofs on the
used payments. The mixer also stipulates two different hash
functions H(·) and G(·), in which H(·) is collision-resistant.
These parameters (T , T1, T2, H(·), G(·), λ) are open to the
public. This step is only executed once during the setup of
the mixer. And the set Λ will be reset when starting a new
epoch.

Phase 1: Escrow. Each payer or payee that wants to trans-
fer or receive BTCs via the mixer in the upcoming epoch
constructs a 2-of-2 escrow transaction with the mixer in this
phase. At the beginning of an epoch, a payer A first gets
parameters T , T1, H(·), G(·) and λ from the mixer’s server
and opens a payment channel with the mixer by depositing
Q BTCs in a 2-of-2 escrow transaction Tescr(A,M). Then A
can make up to q payments in the following payment phase,
in which Q ≥ q×(α+Fmix) where q = 1 if the mixing model
is classic and q ≥ 1 if the off-chain model is adopted. Funds
in this transaction can be redeemed by a fulfilling transac-
tion signed by both A and M , or by A after time T1 elapses.
Similarly, a payee B gets parameters T , T2, H(·), G(·) and
λ from the mixer’s server and requires the mixer to open
a payment channel after receiving a zero-knowledge proof
generated by a payer in the following payment phase. We
note that M executes the escrow phase when A proceeds in
the payment phase. For ease of understanding, we describe
the process of constructing a payment channel between M
and B in the following phase.

Phase 2: Payment. After the escrow transaction
Tescr(A,M) is confirmed on the Bitcoin blockchain, A can
make payments to the mixer through off-chain transactions
before time T expires, where T < T1 because off-chain
payments need to be executed during the period when the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

Algorithm 1: GProof

Input: G(·), H(·), a, h1,MTree
Output: π, b, g, h2

1 Generate an authentication path MPath for h1

according to MTree;
2 Randomly pick b ∈ {0, 1}λ and compute

h2 = H(a⊕ b);
3 Compute g = G(a);
4 Generate the proof π ← P(x =
{G(·), H(·), b, g, h2,MRoot}, w = {a,MPath});

5 Return π, h2, g, b

channel is open. When A intends to make a new payment
to the mixer, A produces a hash value h1(j) = H(aj) on
a new random value aj ∈ {0, 1}λ, where j ∈ [1, q] and
j − 1 is the number of payments it has generated. Here,
aj is the token Tn that has been described in the SofitMix
overview. Then A constructs and signs a new off-chain ful-
filling transaction named funding transaction TA

fund(A,M)(j)
that points to the Tescr(A,M) and includes j outputs. These
outputs are corresponding off-chain payments sent by A,
each of which includes α + Fmix BTCs and is stipulated by
the hash-time-lock condition. Each output can be claimed
by an independent fulfilling transaction signed by A with
the preimage of hash h1(i) in which i ∈ [1, j], or by
M after time t1. Then, A will transfer TA

fund(A,M)(j) and
h1(j) to the mixer. Here we let T1 < t1, which reserves a
deadline cushion for A to decide whether to reclaim these
payments after the TA

fund(A,M)(j) posted on-chain in case
M aborts the protocol. Otherwise, M can sign and post the
TA
fund(A,M)(j) after t1 elapses to gain BTCs from A but does

not generate payments to B, which causes a property loss to
A. After receiving TA

fund(A,M)(j), the mixer checks whether
the transaction can be claimed by itself. If not, the mixer
discards h1(j).

The mixer will stop accepting off-chain payments from
the payers after time T elapses. Then, the mixer discloses
all valid hash values received from the payers in this epoch
and construct a Merkle Tree (MTree) with a root (MRoot).
The mixer signs the MTree as well as a timestamp in-
dicating the epoch number with its signing key SKM .
Then the mixer publishes the MTree with the signature
SigM (MTree, timestamp) on all available public resources
such as the Internet and blockchain (e.g., IPFS [27]). Then,
all payers can access the MTree and audit its correctness
according to the transactions posted on-chain.

After receiving the MTree, A first checks whether all
target hash values h1(i) (i ∈ [1, j]) have been included
in the MTree. If not, A will terminate the protocol and
revoke its BTCs after the TA

fund(A,M)(j) posted on-chain.
Otherwise, A runs the GProof algorithm to constructs j
zero-knowledge proofs, and for each proof πi, M can be
convinced that:

1. A payer has already sent it a payment through
TA
fund(A,M)(j);

2. The corresponding output of this payment in
TA
fund(A,M)(j) has not been used by other parties;

3. After it promises to transfer α BTC to B, it can re-

Fig. 4: The Structure of Zero Knowledge Proof

claim its BTCs immediately if the payer behaves ma-
liciously to revoke this payment from TA

fund(A,M)(j).

To generate such a proof, A first constructs an au-
thentication path MPath = {(s1, r1), (s2, r2)...(sm, rm)}
for a hash value h1(i) according to the MTree [28], in
which sl (l ∈ [1,m]) denotes a sibling of h1(i)’s ancestor,
rl ∈ {′right′,′ left′} denotes the position of the sibling and
m = log(n) denotes the depth of the MTree, where n
is the number of payments in an epoch. Then, A picks a
random value bi ∈ {0, 1}λ and computes the hash value
h2(i) = H(ai ⊕ bi) that will be used to construct an off-
chain payment between M and B. A further computes an
identification number of the payment sent to M , denoted
as g(i) = G(ai). The mixer can use g(i) to check whether
the corresponding output of this payment in the TA

fund(A,M)
has been used or spent by other parties. Finally, A will
generate the zero-knowledge proof πi for the following NP
statements without revealing ai and h1(i):

“Given bi, hash value h2(i), the identification number
g(i) and the Merkle root MRoot, I know a value ai such
that:

1. H(ai) is a leaf of the MTree with the root MRoot;
2. g(i) is computed correctly: g(i) = G(ai);
3. h2(i) is well-formed: h2(i) = H(ai ⊕ bi).”

The structure of our zero knowledge proof scheme is de-
scribed in Fig. 4, in which b is the public input, (a,MPath)
is the witness, and (G(·), H(·), g, h2,MRoot) is the output.
Then the language L of our zero knowledge proof has
the following expression, where the verification algorithm
V Path [28] takes a tuple (MRoot,MPath,H(a)) as input
and outputs 1 denoting the MPath is valid for the hash
value h1 according to the MRoot.

L ={G(·), H(·), b, g, h2,MRoot)|∃(a,MPath),

s.t. h2 = H(a⊕ b), g = G(a),

V Path(MRoot, MPath, H(a)) = 1}

After generating the proof, A signs the hash value h2(i)
using its signing key to construct an evidence SigA(h2(i))
that denotes the corresponding payment generated by A.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

Algorithm 2: V Proof

Input: πk, g(k),Λ
Output: 0 or 1

1 if πk is correct and g(k) /∈ Λ then
2 return 1;
3 else
4 return 0;
5 end

Then, A sends the tuple (bi, g(i), h2(i), πi, SigA(h2(i))) to
B. We note that each payee receives only one proof in
the classic model or more than one proofs in the off-chain
model. After receiving p zero-knowledge proofs from A,
B requires M to open a payment channel that escrows
p×α BTCs by sending an ephemeral address AddrB and all
proofs (bk, g(k), h2(k), πk) in which k ∈ [1, p] to M , where
p is the number of payments the payee B receives in an
epoch, and p = 1 if the classic model is applied and p ≥ 1
if the off-chain model is executed. Note that these p zero-
knowledge proofs could come from the same or different
payers. After receiving the proofs from the payees, M runs
the V Proof algorithm to check whether these proofs are
valid. If for k ∈ [1, p], it satisfies V Proof(πk, g(k),Λ) = 1,
M opens a payment channel with B by depositing p × α
BTCs in a 2-of-2 escrow transaction Tescr(M,B) timelocked
by T2. With the escrow transaction Tescr(M,B), B can claim
BTCs before T2 with the assistance of M , which improves
the efficiency of the SofitMix protocol. Then, M updates the
set Λ by appending the element g(k): Λ = Λ ∪ {g(k)}.

To resist the DoS attack, B is required to sign and send
an off-chain funding transaction TB

fund(M,Bk)
to the mixer

first. TB
fund(M,B) is a transaction with p outputs. Each output

in the TB
fund(M,B) including α BTCs can be claimed by a

fulfilling transaction signed by M with the preimage of hash
h2(k), or by B after time t2. If A maliciously revokes its
BTCs back and reveals the preimage of hash h1(k) = H(ak),
M can compute the preimage of hash h2(k) = H(ak ⊕ bk)
and reclaim its BTCs from the TB

fund(M,B) immediately.
After getting the TB

fund(M,B), M signs and transfers a
similar funding transaction TM

fund(M,B) to B. Here we let
t1 < T2 < t2. We set T2 < t2 due to the similar reason to
T1 < t1. Naturally, t2 > t1 then B cannot get payments
until M received BTCs from the TA

fund(A,M), which pro-
tects M from losing BTCs. After receiving TM

fund(M,B), B
makes a signature on the funding transaction denoted by
SigB(T

M
fund(M,B)) to generate a reply message to A, which

tells A that it has already received a payment from M .
Phase 3: Decision. Decision phase is initiated by M

when it intends to claim BTCs from the Tescr(A,M) during
the period between T and T1. In this phase, every party
closes the payment channel and re-allocates BTCs based on
payments. There would be four different results according
to different choices of parties.

In normal case, if parties A, B and M process correctly,
they will reach the cash-out sub-phase (as shown in Fig.
3(b)). The mixer first requires A to cooperatively generate
a cash-out transaction Tcash→escr(A,M), which is pointed to
the Tescr(A,M) and transfers j×(α+Fmix) BTCs to M before

T1. With this single transaction, M can gain all BTCs imme-
diately. Similarly, before time T2 expires, B can cooperate
with M to generate a cash-out transaction Tcash→escr(M,B)

that transfers p × α BTCs to B immediately. This process
requires four transactions (i.e., Tescr(A,M), Tcash→escr(A,M),
Tescr(M,B) and Tcash→escr(M,B)) on-chain.

If A is unwilling to cooperate, M can sign and post
the latest Tfund(A,M)(j) first. Then, M generates a cash-
out transaction Tcash→fund(A,M)(j) to claim j × (α+ Fmix)
BTCs after time t1. Similarly, in case that M does not
cooperate, B can claim BTCs by itself after time t2 by
posting TM

fund(M,B) and Tcash→fund(M,B). Considering that
it is capable for M to post the TB

fund(M,B) anytime, which
may let TM

fund(M,B) be a double-spending transaction, B
needs to monitor the mempool of Bitcoin in real time.
If it finds TB

fund(M,B) is posted on blockchain, it should
construct a similar cash-out transaction which points to the
TB
fund(M,B) and post it after time t2. B can claim BTCs

no matter which funding transaction is finally confirmed
on the Bitcoin blockchain. This process requires six trans-
actions (i.e., Tescr(A,M), Tfund(A,M)(j), Tcash→fund(A,M)(j),
Tescr(M,B), Tfund(M,B) and Tcash→fund(M,B)) on-chain.

In abnormal case, if A, B or M aborts the protocol
after creating a payment channel, they will reach the refund
sub-phase (as shown in Fig. 3(c)). If no payment between
A and M before T1, A can generate and post a refund
transaction Trefund→escr(A,M) to reclaim all BTCs escrowed
in Tescr(A,M). Similarly, if no funding transactions and cash-
out transactions are published on-chain before T2, M can
post a refund transaction Trefund→escr(M,B) to reclaim α
BTCs from the Tescr(M,B). This process requires four trans-
actions (i.e., Tescr(A,M), Trefund→escr(A,M), Tescr(M,B) and
Trefund→escr(M,B)) on-chain.

However, if A does not receive a reply message
SigB(T

M
fund(M,B)) from B before time t1 or any h1(i) is not

included in the MTree, A can reclaim its BTCs by post-
ing a refund transaction denoted by Trefund→fund(A,M)(j),
which reveals the preimage of hash h1(i). We note that a
rational mixer should always post the latest TA

fund(A,M)(j)
on the Bitcoin blockchain if A did not cooperate to close
the payment channel. Otherwise, M has no chance to get
any payments from A. On the other hand, if A behaves
maliciously to reclaim its BTCs from the TA

fund(A,M)(j) after
it got the reply from B, the mixer can get the preimage
of h1(k) and thus can compute the preimage of h2(k).
Therefore, the mixer can immediately reclaim its BTCs
by signing and posting the TB

fund(M,B) and a correspond-
ing refund transaction Trefund→fund(M,B). Thus, anyone
who intends to lock the mixer’s funds for the value of
α BTC for the period ∆t needs to pay Ftran + α · ∆t,
which is more harm than good. Similarly, the mixer is
required to monitor the mempool in real time, in case a
double-spending transaction TM

fund(M,B) posted by B in-
validates its redemption.This process requires six transac-
tions (i.e., Tescr(A,M), Tfund(A,M)(j), Trefund→fund(A,M)(j),
Tescr(M,B), Tfund(M,B) and Trefund→fund(M,B)) on-chain.
In addition, we can find that every party is not required
to must comply the protocol in order to guarantee the
fair exchange, because outputs in funding transactions are
mutually independent. Thus, if A aborts the protocol and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

reclaims a part of BTCs from the Tfund(A,M)(j), M can
reclaim equal number of BTCs from the funding transaction
TB
fund(M,B)/T

M
fund(M,B) immediately. BTCs in the remain-

ing outputs of Tfund(A,M)(j) and TB
fund(M,B)/T

M
fund(M,B)

can be finally claimed by M and B, respectively.
We note that the escrow transaction Tescr(M,B) is unnec-

essary in this protocol because only one payment included
in this transaction. Optionally, M can directly post the fund-
ing transaction TB

fund(M,B) on-chain after receiving p valid
proofs and an ephemeral address AddrB from B. With this
method, B can always use two transactions (i.e., TB

fund(M,B)
and Tcash→fund(M,B)) to claim BTCs after time t2, while
M can always use two transactions (i.e., TB

fund(M,B) and
Trefund→fund(M,B)) to reclaim BTCs. However, without the
transaction Tescr(M,B), B cannot cooperate with M to claim
BTCs before T2, which reduces the efficiency of the protocol.

5 ANALYSIS AND PROOF OF SECURITY AND PRI-
VACY

In this section, we first analyze the security and privacy of
our protocol according to the security and privacy goals de-
fined in Section 3.3. We then prove its security and privacy
in a formal way by following the UC-security model.

5.1 Security and Privacy Analysis

5.1.1 Fair Exchange
First, SofitMix executes in epoch, thus it always terminates
after a fixed time. Then we show SofitMix ensures that all
honest parties receive BTCs as expected (i.e. stipulated by
the payment phase) or release no valid payment requests
even if a party is malicious or multiple parties are collusive.

Case 1: suppose all parties are honest. Because t2 > t1,
B can claim a payment if and only if M gains α BTCs from
A. Thus, all honest parties can receive BTCs as expect in this
case.

Case 2: suppose A is malicious. A malicious A can
revoke a payment after the mixer provides a funding trans-
action TM

fund(M,B) to B. However, M can get the preimage
of h2, by which it can reclaim α BTCs from a funding
transaction TM

fund(M,B). Thus, the honest mixer and payee
release no valid payment requests in this case.

Case 3: suppose B is malicious. A malicious B can abort
at the beginning of the protocol. Then A will reclaim its
BTCs after time T1. In this case, an honest payer and the
mixer release no valid payment requests.

Case 4: suppose M is malicious. On one hand, If M does
not provide a funding transaction TM

fund(M,B) to B after
receiving off-chain payments from A, A reclaims its BTCs in
the decision phase and B can require A to resend a payment
in the next epoch. In this case, M cannot obtain any BTCs
in the decision phase because there is no transaction can be
utilized to reclaim BTCs between M and B. Meanwhile, as
a for-profit entity, M has no motivation to abort the protocol
intentionally since such a behavior could undermine its
reputation. On the other hand, after providing TM

fund(M,B) to
B and claiming BTCs from A, M cannot prevent BTCs in the
TM
fund(M,B) from being claimed by B after time t2 because it

does not have the token ak. Thus, the honest payer releases

no valid payment requests or the honest payee receives
BTCs as expected.

Case 5: suppose A and M collude. If A and M col-
lude to lie that they have already successfully offer a
payment to B, B can expose the lie by requiring A to
show the reply message SigB(T

M
fund(M,B)). In addition, if

A helps M reclaim BTCs, B can show the refund transac-
tion Trefund→fund(M,B), the hash value h2 constructing the
funding transaction and the signature SigA(h2) provided
by A to prove that M gets the primage of hash h2 with the
help of A and reclaims BTCs paid by A. Considering the
hash function H(·) is collision resistant, it is impossible for
M to compute the preimage of hash h2 by itself. Thus, B
can require A to resend a payment and an honest B receives
BTCs as expected.

Case 6: suppose B and M collude. If B pretends not to
receive a payment from M and requires A to resend BTCs
before replying SigB(T

M
fund(M,B)) to A, A can reclaim the

BTCs and resend a new payment to B. If B requires A to
resend BTCs after replying the signature message to A, A
will show the reply message SigB(T

M
fund(M,B)) and refuse

its request. In either case, an honest A will receives BTCs as
expected.

Case 7: suppose A and B collude. A and B may intend to
forge a proof or utilized a used proof π to defraud the mixer.
Because M will provide B a payment only when it receives
a new correct proof π from B. With the soundness of the
zero-knowledge proof, the probability that M accepts an
incorrect π is negligible. M also verifies whether π correlates
to a used payment by checking whether g /∈ Λ. Thus, any
parties can neither fake a new proof, nor reuse an old proof.
Thus an honest M releases no valid payment request in this
case.

Case 8: suppose A, B and M collude to impair other
honest parties. This case can be reduced to one of the case
from case 4 to case 6, because an honest party only interacts
with M as well as its counterparties, and the outputs in
funding transactions are mutually independent.

5.1.2 Unlinkability
First, the mixer cannot correlate to the specific payer from
the zero-knowledge proof π which does not reveal the token
a. Since every payment in the protocol has the same value
and payees could receive multiple payments from the same
or different payers, the mixer cannot infer the relationship
between payers and payees by analyzing the values in the
transactions. On the other hand, the payee can also use
different ephemeral addresses for each payment to improve
its unlinkability when receiving all payments from a payer.
In addition, if the anonymity set size is smaller than the
expectation of involved parties (payers/payees), they can
join in the mixing protocol again in the next epoch. Further-
more, since the payee uses different ephemeral addresses
to receive payments in different epochs, any one cannot
derive the linkage between the payer and the payee from
their addresses, even if this pair of payer and payee join
in the protocol in multiple epochs. Moreover, our protocol
proceeds in epochs and phases. All payers open their pay-
ment channels and finish off-chain payments before time
T elapses, while all payees open payment channels and
process off-channel payments after time T elapses. In the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

cash-out phase, B claims BTCs after M claims all BTCs from
A. It prevents M intentionally accelerating or delaying the
interaction with A to achieve behaviors of corresponding B.

5.1.3 DoS Attack Resistance
A malicious payer may intend to lock the mixer’s funds,
which makes the mixer out of work. Compared with previ-
ous protocols [10], [11], [12], [13], [14], [15], [16] our protocol
not only requires a payer A to pay a transaction fee, but also
locks its BTCs when it initiates the protocol. In addition, if
A aborts the protocol, it will reveal the token a to M , with
which M can reclaim its BTCs immediately. Our protocol
heavily increases the cost of DoS attack and thus effectively
secures the mixer. Notably, our protocol only increases the
cost of attackers, but does not increases the deposit of
parties. In other hand, as a for-profit party, the mixer has
no motivation to launch DoS attacks to payers, which may
cause it losing reputation.

5.1.4 Sybil Attack Resistance
The mixer can forge identities of transaction parties and con-
structing transactions by itself to reduce the proportion of
real parties in the anonymity set and de-anonymize a target
party. We resist this attack by applying transaction fee. In
addition, The mixer could also forge hash values in MTree.
Our protocol can resist this attack because all parties can
check the correctness of the SigM (MTree, timestamp) and
MTree by verifying the difference between the number of
payments included in all Tescr(A,M) and Trefund(A,M). As a
rational and for-profit party, the mixer has no motivation to
forge MTree, which may cause it losing reputation.

5.2 Security Proof Based on UC-Security Model
In this part, we further prove that our protocol captures
all security and privacy goals proposed in Section 3.3 by
applying the UC-Security model.
Definition (UC-Security): EXECΠ,A,E denotes the ensem-
ble of outputs of the environment E when interacting with
an adversary A and parties running a protocol Π. The
protocol Π UC-realizes a ideal functionality F if for any
polytime adversary A, there exists a polytime simulator S
such that for any polytime environment E , the ensembles
EXECΠ,A,E and EXECF,S,E are computationally indis-
tinguishable (EXECΠ,A,E ≈ EXECF,S,E).

Thus, to prove that the SofitMix protocol is secure ac-
cording to the UC-Security model, we first need to construct
an ideal functionality F based on its design and show that
the ideal functionality F captures all security and privacy
goals. We then model a simulator S that runs the adversary
A and simulates the real world SofitMix protocol execution
while interacting with the ideal functionality F .

5.2.1 Ideal Functionality F
Parties involved in the SofitMix protocol are modeled as in-
teractive Turing machines that communicate with a trusted
centralized functionality F via secure and authenticated
channels F l

SMT [22]. We model the Bitcoin blockchain BC
as a trusted append-only bulletin board with the ideal
functionality FBC , as proposed in [29]. FBC holds BC locally
and updates BC according to newly constructed transactions

from parties. All parties in the system can access FBC , which
then returns the whole records of BC. The number of blocks
on the blockchain is denoted by |BC|. Time t in our model
is absolute time that corresponds to the order number of
a block on the blockchain, e.g., t = |BC| ± i, in which
i is a natural number. We emphasize that F uses F l

SMT

and FBC as subroutine, i.e., our protocol is specified as a
(F l

SMT ,FBC)-hybrid model.
We use (C(u1, u2), v, t) to denote a payment chan-

nel constructed between two parties (u1, u2), in which
C(u1, u2) is a channel identifier, v is the fund capacity
of this channel, and t is the expiration time of the chan-
nel. For ease of notation, C(u1, u2) is also used to de-
note the identifier of involved parties u1 and u2. We use
(C(u1, u2), (v

′, u′),msg, c) to denote a transaction to close
the channel where v′ and u′ are the funds allocated to
u1 and u2, respectively, msg denotes an additional mes-
sage, and c denotes the type of a transaction, in which
c = 0 denotes a funding transaction and c = 1 de-
notes a refunding transaction. The ideal functionality F
also maintains two lists C and L, as well as two sets S
and R locally, where C records closed channels, and L is
distinguished to different users and is used to record off-
chain payments. (C(u1, u2), (v1, v2), h) denotes the entries
in L, where C(u1, u2) is the channel identifier, v1 and v2
are the funds allocated to u1 and u2 in this payment, h
is a one-way-function value representing the unique iden-
tifier of this payment. C(u1, u2) denotes the entries in C.
Elements in S are denoted as A : (B1 : n1, B2 : n2...Bl : nl)
that represents the amount of payments allocated to each
payee from a payer. Elements in R are denoted as
A : (B1 : m1, B2 : m2...Bl : ml) that represents the amount
of refunds initiated by payer A from each payee B.

We describe operations of F in Table 3. Our ideal func-
tionality F can capture all security and privacy require-
ments proposed in Section 3.3. As a trusted third party,
F can resist collusion attacks. In the payment phase, the
payment information s′ sent from F to the mixer M does
not disclose any information of the payer. In addition, F
locally updates S and R, which stipulate how to allocate
BTCs in the close channel phase according to the payments
from payer A. Thus, the mixer and the payee cannot get
more bitcoins than what is dictated in S andR. As in Section
5.1 that provides informal security analysis,F can also resist
the Sybil attack by using transaction fees, as well as the DoS
attack because any one who intends to launch the DoS attack
has to pay an extra cost.

5.2.2 Simulator S
We model the simulator S that impersonates the behaviors
of an adversary Adv and simulates the real world SofitMix
protocol execution while interacting with the ideal function-
ality F .
Open Channel: Two parties construct an escrow transaction
with their identities C(u1, u2), the initial capacity of the
channel v, the expired time of the channel t in real world. Let
u1 be the initiator of the payment channel. We then model
the simulator S when u1 is malicious:
S parses an escrow transaction Tescr(u1,u2) which is sent

from an adversaryAdv on behalf of u1 as (C(u1, u2), v, t). If
u1 is a payer, S transfers a request (open, sid, C(A,M), v, t)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

TABLE 3: Ideal Functionality F for SofitMix

Open Channel: On input (open, sid, C(u1, u2), v, t) from a party u1, F processes as follow:

1. F first checks whether the addresses of parties are valid and u1 has enough bitcoins. If it is the case, continue;
2. If u1 is a payer and t < T , or u1 is the mixer and t > T , F appends tuple (C(u1, u2), v, t) on BC, and appends tuple (C(u1, u2), (v, 0), h)

on L with a random value h. Otherwise, F aborts.

Payment: The ideal functionality F has different payment executions against C(A,M) and C(M,B).
Upon receiving (pay, sid, C(u1, u2), n, t′) from a party u0, F processes as follow:

1. F checks whether there is a tuple (C(u1, u2), v, t) on BC. If it is not the case, F aborts. Otherwise, continue;
2. (1) If u1 is a payer and t′ > t, F sets u′ = n × (α + Fmix) and v′ = v − u′. F queries u1 with n and gets a reply s =

A : (B1 : n1, B2 : n2...Bl : nl) in which
∑l

i=1 ni = n. F adds the entry s in S. Then, F sends s to B and s′ = (B1 : n1, B2 : n2...Bl : nl)
to M via an anonymous channel.
(2) If u1 is the mixer, t′ > t and n = n′ where u2 : n′ is an entry in s′, F sets u′ = n× (α) and v′ = v − u′. Then, F samples a random
value h′ and updates L as (C(u0, u1), (v′, u′), h′).

3. If any above conditions are not met, L rolls back to the last state and F aborts.

Close Channel: On input (close, sid, uid, C(u1, u2),msg, c) from a party, F processes as follow:

1. F first parses BC as (C(u1, u2), v, t) and parses L as (C(u1, u2), (v′, u′), h). If C(u1, u2) ∈ C, then aborts. Otherwise, continue;
2. (1) If c = 0, uid = u1 and |B| > t, F sets u′ = 0 and v′ = v, and puts the tuple (C(A,M), (v′, u′),msg, 0) on BC and C(A,M) on C. F

then terminates.
(2) If c = 0, uid = u2 and |B| < t, F puts the tuple (C(A,M), (v′, u′),msg, 0) on BC and C(A,M) on C. F then terminates.
(3) If c = 1, continue;

3. F queries A with n and gets a reply r = A : (B1 : m1, B2 : m2...Bl : ml), in which m =
∑l

i=1 mi and m < n. F adds r to R, and
sets u′ = u′ − m × α and v′ = v′ + m × α. F then puts the tuple (C(A,M), (v′, u′),msg, 1) on BC. F traverses the set R to query for
values with Bi as the key and queries M with (Bi : mi). M can reply with mi within time t′ representing a refund requirement. Upon
receiving mi from M , F checks whether there is a tuple (Bi : ni) with A as the key in the set S in which ni > mi. If it is the case, F sets
u′ := u′ −mi × α and v′ := v′ +mi × α. F then puts the tuple (C(M,B), (v′, u′),msg, 1) on BC and C(A,M) on C.

to the ideal functionality F . If u1 is the mixer, S checks
whether V Proof(π, g,Λ) = 1. S transfers the request
(open, sid, C(A,M), v, t) to F if the verification result is
correct.
Payment: Users make a payment with their identities
C(u1, u2), the value of the payment n and the time t′. Let
u1 be the user who initiates the payment request. We then
model the simulator S when u1 is malicious:

Upon receiving a payment request from the adver-
sary Adv on behalf of u1, S parses the request as
(C(A,M), b, g, h2,MRoot, e, π, n, t′) if u1 is a payer while
parses the request as (C(M,B), n, t′) if u1 is the mixer. S
then sends (pay, sid, C(u1, u2), n, t

′) to F .
Close Channel: The parties close the channel with their
identities C(u1, u2), the final bitcoin balances (v′, u′) and
an additional message m = (a, a ⊕ b) if needed in the real
world. Let u1 be the party that initiates the execution. We
then model the simulator S in two cases:

1. When u1 is malicious:
(a) On receiving a refund transaction Trefund→escr

from the adversary Adv on behalf of u1, S sends
(close, sid, u1, C(u1, u2),−, 0) to F ;
(b) On receiving a funding transaction Tfund from
the adversary Adv on behalf of u1, S sends
(close, sid, u1, C(u1, u2),−, 0) to F ;
(c) On receiving a refund transaction Trefund→fund

from the adversary Adv on behalf of A, S first
checks whether it holds h1 = H(a) and h2 =
H(a ⊕ b). If it is the case, S randomly selects
x1 ∈ {0, 1}λ and computes y1 = H(x1), and
sends (close, sid,A,C(A,M), (x1, y1), 1) to F . If S
receives an element a′ such that h1 = H(a′) but
h2 ̸= H(a′ ⊕ b), S aborts.
(d) On receiving a notification that M is malicious
with a message MalM from F , S queries Adv

with (C(A,M), π,H(a), H(a ⊕ b). If Adv can out-
put a value c = a′ ⊕ b such that H(a ⊕ b) =
H(a′ ⊕ b), S aborts. Otherwise, S randomly selects
x2 ∈ {0, 1}λ and computes y2 = H(x2), and sends
(close, sid,A,C(A,M), (x2, y2), 1) to F .

2. When u2 is malicious:
(a) On receiving a funding transaction Tfund from
the adversary Adv on behalf of u2, S sends
(close, sid, u2, C(u1, u2),−, 0) to F ;
(b) On receiving a cash-out transaction Tcash→fund

from the adversary Adv on behalf of u2, S sends
(close, sid, u2, C(u1, u2),−, 1) to F .

5.2.3 Security Proof

We now argue that the view of the environment in the
simulation is indistinguishable with the execution in the real
world. We note that the indistinguishable argument in the
open channel phase and the payment phase is trivial, thus
we only analyze the indistinguishability in the close channel
phase in detail.

First, we assume that the simulator never aborts. If the
parties execute refund operations when closing the chan-
nel, there are entries (a, h1) and (a ⊕ b, h2) on the real
blockchain. However, the parties’ view of BC in the ideal
world contains entries (x1, y1) and (x2, y2). In this case,
we note that the following distribution is statistically close:
((a, h1), (a⊕ b, h2)) ≈ ((x1, y1)(x2, y2)).

Then, we show that the probability of the simulator to
abort is negligible. Let AbortA denote that S aborts in the
case that A executes a refund operation. Let AbortM denotes
that S aborts in the case that M executes a refund operation.
By applying basic probability rules, we have P (Abort) ≤
P (AbortA) + P (AbortM). We now prove that P (Abort) ≤
ε(λ), where ε(λ) is a negligible function with the security
parameter λ.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

We first consider AbortA. In this case, the adver-
sary can generate a valid zero-knowledge proof over
(G(·), H(·), b, g, h2,MRoot) and an element a′ such that
h1 = H(a′) but h2 ̸= H(a′ ⊕ b). By the completeness
of the zero-knowledge proof, we can have an element
w ∈ {0, 1}λ such that h1 = H(w) and h2 = H(w ⊕ b).
Thus, H(w) = H(a′), which implies w = a′ because Adv
can only query the random oracle for polynomial-degree
times. However, H(w ⊕ b) ̸= H(a′ ⊕ b) implies that w ̸= a′

since H is a deterministic function. The contradiction here
indicates that for all PPT Adv, we have P (AbortA) = 0.

We then prove that the probability of AbortM is negli-
gible. AbortM happens when the Adv can output a valid
preimage of hash H(a⊕ b) without knowing a. Considering
a is a randomly selected value over the range of {0, 1}λ
and the Adv is polynomial time bounded, thus Adv can
output a valid preimage of hash H(a ⊕ b) with a negli-
gible probability ε(λ). Thus, we conclude our proof that
EXECΠ,A,E ≈ EXECF,S,E .

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation and Experimental Settings

We implemented SofitMix with Python as a client-server
system based on the Bitcoin test network over a desktop
running Linux 16.04 operating system and equipped with
2.3 GHZ Intel Core i5 Quad-CUP and 8.0G RAM, where we
ran simulated 200 payers and 200 payees, as well as a mixer
with multiple threads. Following the design of the SofitMix
protocol, we built the client and the server by utilizing a
Bitcoin network API called Bitcoinlib [29]. The mixer acted
as a server that sets up the protocol and public parameters.
The payers or payees acted as clients that join the protocol
and automatically process transactions by interacting with
the mixer. In total, there were 29 payments initiated by the
payers and transferred to the payees through the mixer by
following our protocol. To test the fairness of SofitMix, we
arranged 4 malicious payers and 3 malicious payees who
generated or transmitted abnormal transactions.

We constructed transactions with the P2SH [30] format
in our implementation. In the zero-knowledge proof, we
instantiated hash functions H(·) and G(·) with SHA-256
and SHA-1, respectively. Because of ZKBoo scheme [31],
[32] is the most efficient scheme regarding computation, we
implement the zero-knowledge proof by using the ZKBoo in
C language at payers and the mixer. Herein, because of the
soundness error of ZKBoo is 2/3 per execution, we set 136
repetitions to achieve the soundness error as below 2−80.

6.2 Performance Evaluation

We first evaluated the communication and computa-
tion overhead of SofitMix. Then, we executed a num-
ber of payments to test transaction size, validity, fair-
ness, off-chain payment reliability and DoS resistance
of SofitMix. All transactions happened in our tests can
be found on the blockchain of the Bitcoin test net-
work. All transaction IDs were recorded in the website:
http://www.mixertransactiondata.tk/.

(a) Communication Overhead (b) Computation Overhead

Fig. 5: Performance of SofitMix on NIZK.

6.2.1 Computation and Communication Overheads for
Cryptographic Algorithm

We note that the main computation and communication
overhead of SofitMix come from the zero-knowledge proof.
We first simulate the mixer to analyze and test the com-
munication/computation overhead of receiving/verifying
the zero-knowledge proof. We find that the result is only
related to the number of payments, and independent from
the behavior of the mixer (i.e., normal case or abnormal
case). Fig. 5 shows that both of them increase logarithmically
with the number of payments in an epoch. The computation
complexity and communication complexity of SofitMix for
one payment are both O(log(n))), where n is the number
of payments received by the mixer. This result is consistent
with our design of zero knowledge proof, because the depth
of the MTree increases logarithmically with the number of
payments in an epoch.

As TumbleBit is the only implemented anonymous mix-
ing protocol, we compared the performance of our protocol
with TumbleBit. Different from SofitMix, TumbleBit designs
a puzzle-promise protocol that utilizes RSA encryption al-
gorithm to achieve unlinkability. Its communication and
computation overheads are fixed and not related to the
number of payments. It requires 327KB of data transmission
on a wire and spends 398ms to perform a payment. In Sofit-
Mix, the communication and the computation overheads
increase logarithmically with the number of payments. It
has a lower computation cost than that of TumbleBit when
the number of payments is smaller than 382. In addition,
the communication cost for a payment is 8.5 MB and the
computation cost for a payment is 378ms when there are
29 payments in an epoch. Although our protocol requires
much higher bandwidth to transfer data than TumbleBit,
it is acceptable considering the high-performance network
nowadays. Notably, we demonstrate it is more reliable and
secure than TumbleBit at the end of this section.

6.2.2 Transaction Size

Table 4 shows that the size of all transactions involved in our
protocol. The result shows that the size of transactions in the
classic model (i.e., j = 1) of our protocol is much smaller
than that in TumbleBit. It helps reduce the transaction fee
and improve the throughput of the Bitcoin network. Because
of the mutually independent outputs in the funding trans-
action, the size of some transactions in the off-chain model
(i.e. j > 1) increases linearly in our protocol. However, it

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

TABLE 4: Comparison of Transaction Size (Bytes)

Protocol Tescr Tcash→escr Trefund→escr Tfund(A,M) Tfund(M,B) Tcash→fund Trefund→fund

SofitMix 191 348 273 347 + 32j 348 278 348
TumbleBit 191 447 373 447 - 907 651
j denotes the number of payments a payer has generated.

Fig. 6: Payment Test in Normal Case

can guarantee payees to gain expected BTCs even though
some malicious payers abort the protocol.

6.2.3 Validity
We tested the validity of our protocol by requiring all parties
to follow our protocol without aborting. We successfully
mixed 2× 29 payments between 200 payers and 200 payees
in the Bitcoin Test network, resulting 1424 transactions
included in 3 blocks, as illustrated in Fig. 6. The protocol
started at the 1906228th block and ended at 1906230th

block. Transactions Tescr(A,M) were posted on-chain and
all payers finished the payment phase with the mixer in
the 1906228th block. Transactions Tescr(M,B) were posted
on-chain and all payees finished the payment phase with
the mixer in the 1906229th block. All parties cooperatively
finished the decision phase in the 1906230th block.

6.2.4 Fairness
We tested our protocol by showing that fair exchange can be
guaranteed in case that malicious or uncooperative parties
exist. We ran 3 payers Ai(i = 1, 2, 3) and 4 payees Bj(j =
1, 2, 3). Every payer intended to make 4 payments. Escrow
transactions Tescr(A,M) and Tescr(M,B) were timelocked for
2 blocks and 4 blocks respectively, while funding trans-
actions Tfund(A,M) and Tfund(M,B) were timelocked for 3
and 5 blocks respectively. The mixer and the payees used
an available API [33] to monitor the mempool of Bitcoin
network in real time with 3KB bandwidth consumption. We
show the timeline of the fairness test according to the block
height when transactions confirmed on the blockchain in
Fig. 7 regarding the following four cases.

Case 1: A1 refused to cooperate with M in the de-
cision phase even though the payment phase was suc-
cessfully completed. In this case, M posted Tfund(A1,M)(4)

(in the 1906108th block in Fig. 7) first and afterwards
Tcash→fund(A1,M)(4) (in the 1906110th block in Fig. 7) by
itself to claim BTCs. In case that the mixer M refused to
cooperate with B, B1 claimed its BTCs by posting four
funding transactions Tfund(M,B1

k)
(refer to the 1906110th

block’s Case 1) and afterwards Tcash→fund(M,B1
k)

(refer to
the 1906112th block’s Case 1) by itself to claim BTCs, where
k ∈ [1, 4].

Case 2: M refused to provide payments to the payee
B2 after A2 completed payments to M . Herein, A2 waited
for M to post Tfund(A2,M)(4) on the blockchain and then

(a) Transactions of SofitMix

(1) Sequential Mode

(2) Parallel Mode

(b) Transactions of SofitMix

Fig. 7: Payment Test in Abnormal Cases

created Trefund→fund(A2,M)(4) to reclaim its BTCs (shown
in the 1906108th block).

Case 3: A3 maliciously reclaimed its BTCs after the
mixer completed payments with the payee B3 by us-
ing Tfund(A3,M)(4) and Trefund→fund(A3,M)(4) (refer to the
1906108th block’s Case 3). The mixer got tokens from
Trefund→fund(A3,M)(4) posted by A3, and reclaimed its
BTCs by posting four Tfund(M,B3

k)
and its corresponding

refund transaction Trefund→fund(M,B3
k)

, where k ∈ [1, 4]

(refer to the 1906108th block).
From Fig. 7a, we can see that SofitMix can ensure fair-

ness for all involved transaction parties even though some
parties behave abnormally.

6.2.5 Reliability of Off-chain Payments
We tested reliable off-chain payments by showing that even
if some payers abort, the payee can still claim remaining
BTCs. Following the execution of Case 3 in the fairness test,
we required A4 to successfully make 4 off-chain payments
to B3 by Tcash→escr(A4,M) (refer to the 1906108th block’s
Case 4. So there were eight independent funding transaction
Tfund(M,B3

k)
between B and M . We show that the failure

cash-out in Case 3 has no influence on the rest payment
cash out. We can see from Fig. 7a that B3 signed and posted
Tcash→fund(M,B3

k)
to claim BTCs after the timelock expired,

where k ∈ [5, 8] (refer to the 1906112th block’s Case 4).
We also executed similar test on TumbleBit in a sequen-

tial mode and a parallel mode, respectively. In each mode,
M produced eight cash-out transactions Tcash(M,B)(j) and
corresponding eight puzzles zj for a payee B, where j ∈
[1, 8]. We required eight payers Ai (i ∈ [5, 12]) to pay for
M from which Ai can get solutions of these puzzles. In this
test, the first payer A5 was malicious, which aborted the
protocol after receiving a payment request from B. In the
sequential mode, the payee B cannot execute the following
payments without the help of the first payer A5. Thus,
refund transactions were posted on the blockchain when
payment channels are closed (shown in the 2133219th and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

2133221st block in Fig. 7b (1)). In the parallel mode, the
remaining payers paid for M and got solutions from M by
using Tcash→escr(Ak,M) (shown in the 2133218th block in
Fig. 7b (2)), where k ∈ [6, 12]. However, claiming BTCs from
any cash-out transaction Tcash(M,B)(j) requires the solution
of the first puzzle. Thus, M reclaimed all BTCs by posting
Trefund→escr(M,B) after the timelock expired (shown in the
2133221st block), while B cannot claim any BTCs and fair
exchange cannot be guaranteed when A5 aborts.

Compared with TumbleBit, we can see SofitMix supports
parallel off-chain payments even if some payers abort the
protocol, which can enhance the reliability and improve the
efficiency of off-chain payments.

6.2.6 Verification of DoS Attack Resistance
We performed a test to show that our protocol can resist
DoS attack more effectively than TumbleBit by comparing
the cost of an attacker. In this test, we set the capacity
of both mixers as each can support ten payments in an
epoch, and BTCs in the escrow transaction Tescr(M,B) will
be locked for three blocks in both protocols. Meanwhile, a
payer A, who intends to launch the DoS attack, pretends to
transfer ten payments to a payee B. B requires the mixer
to open a payment channel that escrows 10 · α BTCs in
the Tescr(M,B). In TumbleBit, A only consumes one Ftran

to lock all mixer’s BTCs in the Tescr(M,B) for three blocks.
However, in SofitMix, A is required to consume 10 · Ftran

to initiate a escrow transaction Tescr(A,M) that includes ten
payments, and also needs to lock 10 · α BTCs for three
blocks in a Tfund(A,M). Afterwards, M can reclaim all BTCs
immediately after A reclaims its BTCs from the Tfund(A,M).
Obviously, the attacker’s cost to raise the DoS attack in Tum-
bleBit is much lower than that in SofitMix, which implies
that SofitMix is more robust than TumbleBit to resist the
DoS attack.

7 CONCLUSION

In this paper, we proposed SofitMix. It is the first mixing
protocol that can effectively resist both DoS attacks and
collusion attacks. With SofitMix, it is hard for an adversary
to make the mixer out of work and a malicious party cannot
defraud its counterparties by colluding with the mixer.
SofitMix can also reliably supports a set of parallel off-chain
payments with fair exchange. It not only realizes anonymity
in a Bitcoin-compatible way, but also significantly reduces
transaction sizes compared with TumbleBit.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant 62072351; in part
by the Academy of Finland under Grant 308087, Grant
345072, and Grant 350464; in part by the open research
project of ZheJiang Lab under grant 2021PD0AB01; and in
part by the 111 Project under Grant B16037.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
https://bitcoin.org/bitcoin.pdf, 2008.

[2] Z. Yan and L. Peng, “Trust evaluation based on blockchain in
pervasive social networking,” IEEE Blockchain Newsl., pp. 1–4,
2018.

[3] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communica-
tions Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[4] W. Feng, Z. Yan, L. T. Yang, and Q. Zheng, “Anonymous authenti-
cation on trust in blockchain-based mobile crowdsourcing,” IEEE
Internet of Things Journal, 2020.

[5] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin
system,” in Security and privacy in social networks, pp. 197–223, 2013.

[6] M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and
anonymity of the bitcoin transaction graph,” Future internet, vol. 5,
no. 2, pp. 237–250, 2013.

[7] L. Peng, W. Feng, Z. Yan, Y. Li, X. Zhou, and S. Shimizu, “Pri-
vacy preservation in permissionless blockchain: A survey,” Digital
Communications and Networks, 2020.

[8] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash : Decentralized anonymous payments
from bitcoin,” in 2014 IEEE Symposium on Security and Privacy,
pp. 459–474, 2014.

[9] S. Noether, “Ring signature confidential transactions for monero,”
IACR Cryptol. ePrint Arch, vol. 2015, 2015.

[10] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous pay-
ment hub,” in Network and Distributed System Security Symposium,
2017.

[11] G. Maxwell, “Coinswap: Transaction graph disjoint trustless trad-
ing,” Bitcoin Forum, 2013.

[12] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed
contracts: Anonymous on-blockchain and off-blockchain bitcoin
transactions,” in International conference on financial cryptography
and data security, pp. 43–60, 2016.

[13] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” 2013.
[14] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical

decentralized coin mixing for bitcoin,” in European Symposium on
Research in Computer Security, pp. 345–364, 2014.

[15] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2p mixing and
unlinkable bitcoin transactions.,” in Network and Distributed System
Security Sym-posium (NDSS), pp. 1–15, 2017.

[16] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore, “Sybil-
resistant mixing for bitcoin,” in Proceedings of the 13th Workshop on
Privacy in the Electronic Society, pp. 149–158, Nov. 2014.

[17] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 455–471, 2017.

[18] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” https://www.bitcoinlightning.com/wp-
content/uploads/2018/03/lightning-network-paper.pdf, 2016.

[19] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and
E. W. Felten, “Mixcoin: Anonymity for bitcoin with accountable
mixes,” in International Conference on Financial Cryptography and
Data Security, pp. 486–504, 2014.

[20] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes
for bitcoin,” in International Conference on Financial Cryptography
and Data Security, pp. 112–126, 2015.

[21] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle,
“Coinparty: Secure multi-party mixing of bitcoins,” in Proceedings
of the 5th ACM Conference on Data and Application Security and
Privacy, pp. 75–86, 2015.

[22] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pp. 136–145, IEEE, 2001.

[23] W. Banasik, S. Dziembowski, and D. Malinowski, “Efficient
zero-knowledge contingent payments in cryptocurrencies without
scripts,” in European symposium on research in computer security,
pp. 261–280, Springer, 2016.

[24] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 455–471, 2017.

[25] D. L. Chaum, “Untraceable electronic mail, return addresses, and
digital pseudonyms,” Communications of the ACM, vol. 24, no. 2,
pp. 84–90, 1981.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

[26] Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A survey
on privacy protection in blockchain system,” Journal of Network and
Computer Applications, vol. 126, pp. 45–58, 2019.

[27] J. Benet, “Ipfs-content addressed, versioned, p2p file system,”
arXiv preprint arXiv:1407.3561, 2014.

[28] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 967–984,
2018.

[29] Python-Bitcoinlib, https://github.com/petertodd/python-
Bitcoinlib.

[30] https://github.com/bitcoin/bips/blob/master/bip-
0016.mediawiki.

[31] ZKBoo, https://github.com/Sobuno/ZKBoo.
[32] I. Giacomelli, J. Madsen, and C. Orlandi, “Zkboo: Faster zero-

knowledge for boolean circuits,” in 25th USENIX Conference on
Security Symposium), pp. 1069–1083, Aug. 2016.

[33] https://testnet.blockchain.info/api.

H. Xie received the B.Sc. degree in telecom-
munications engineering from Xidian University,
Xi’an, China, in 2016, where he is currently
continuing to pursue the Ph.D. degree in Cyber
security. His research interests are in security,
privacy preservation on blockchain.

S. Fei received his B.Sc. degree from China
University of Mining and Technology in 2017.
He is pursuing his doctorate in the School of
Cyber Engineering at Xidian University. His main
research interests include end-to-end communi-
cation, blockchain, and trusted execution envi-
ronment.

Z. Yan (Senior Member, IEEE) received the
D.Sc. degree in technology from the Helsinki
University of Technology, Espoo, Finland, in
2007. She is currently a Professor in the School
of Cyber Engineering, Xidian University, Xi’an,
China. Her research interests are in trust, secu-
rity, privacy, and security-related data analytics.
Dr. Yan is an area editor or an associate Edi-
tor of IEEE INTERNET OF THINGS JOURNAL,
Information Fusion, Information Sciences, IEEE
Network Magazine, and Journal of Network and

Computer Applications. She served as a General Chair or Program
Chair for numerous international conferences, including IEEE TrustCom
2015, IFIP Networking 2021. She is a Founder Steering Committee
Co-Chair of IEEE Blockchain conference. She received several awards,
including 2021 N²Women: Stars in Computer Networking and Communi-
cations, Distinguished Inventor Award of Nokia, the Best Journal Paper
Award issued by IEEE Communication Society Technical Committee on
Big Data and the Outstanding Associate Editor of 2017 and 2018 for
IEEE Access.

Y. Xiao (Graduate Student Member, IEEE) re-
ceived the B.S. degree from the School of Elec-
trical and Information Engineering, Shanghai
Jiao Tong University, and the M.S. degree from
the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann
Arbor. He is currently pursuing the Ph.D. degree
with the Bradley Department of Electrical and
Computer Engineering, Virginia Polytechnic In-
stitute and State University (Virginia Tech), su-
pervised by Prof. W. Lou. His research interests

include network security, blockchain, and the IoT security.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3213824

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

