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Abstract: Metal matrix-impregnated diamond composites are widely used in diamond tool
manufacturing. In order to satisfy the increasing engineering requirements, researchers have paid
more and more attention to enhancing conventional metal matrices by applying novel methods.
In this work, ZrO2 nanoparticles were introduced into the WC–bronze matrix with and without
diamond grits via hot pressing to improve the performance of conventional diamond composites.
The effects of ZrO2 nanoparticles on the microstructure, density, hardness, bending strength, and
wear resistance of diamond composites were investigated. The results indicated that the hardness
and relative density increased, while the bending strength decreased when the content of ZrO2

nanoparticles increased. The grinding ratio of diamond composites increased significantly by 60% as
a result of nano-ZrO2 addition. The enhancement mechanism was discussed. Diamond composites
showed the best overall properties with the addition of 1 wt % ZrO2 nanoparticles, thus paving the
way for further applications.

Keywords: ZrO2 nanoparticles; metal matrix; hot pressing; diamond impregnated composites;
Orowan strengthening

1. Introduction

Metal matrix-impregnated diamond composites, produced with diamond grits imbedded in
a metal matrix, are widely used in diamond tools fabrication for cutting, grinding, drilling, and
polishing strong materials such as rock and concrete [1,2]. The WC–bronze matrix, a composite
of WC and bronze alloy (Cu-Sn-Zn-Pb), usually serves as the sintered matrix in diamond tool
manufacturing [3]. Moreover, it has high strength and adjustable properties that suit different rocks,
i.e., that make the diamond grits easier to contact the rocks, maintaining an abrasive cutting surface.
It is noted that the performances of diamond composites depend on not only the properties of the
matrix and diamond materials, but also the diamond-holding ability of the matrix [4–7]. Severe
service conditions (impact stresses, hydro-abrasive wear, and elevated temperature) and cost reduction
demand that the mechanical properties and wear resistance be improved [8]. Several kinds of new
metal matrixes have been introduced into impregnated diamond tool fabrication in recent years [9–11].
However, the properties of these metal matrices are difficult to adapt to different rocks and, hence,
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wear out much faster than diamond grits when processing hard and abrasive rocks. This leads to
a short lifetime.

Therefore, it is necessary to enhance the conventional metal matrix in order to meet engineering
demands. In recent years, developments of a metal matrix and alloy reinforced with particles
below 100 nm offer potential and new possibilities in this regard [12–17]. By scaling down to
a nanoparticle size or adding nanosized additive in metal matrices, notable improvements are expected,
and the Orowan strengthening effect was found to play an important role in enhancing the metal
matrix [18,19]. Moreover, nanoparticles (nanotubes) have been introduced into the metal matrix
of diamond composites with novel structures in order to improve the performance of diamond
tools [8,20,21].

It is known that ZrO2 nanoparticles (nano-ZrO2 hereafter) have excellent properties, namely high
hardness, extreme thermal and chemical stability, and good mechanical performance. As a result, it
has been widely used in reinforcing plastic, ceramic, rubber, refractory, and metals [8,22,23]. Therefore,
nano-ZrO2 was chosen in this work for investigation of their influence on sintered WC–bronze-based
diamond composites. The main aim is to seek optimal nano-ZrO2 content to meet the high-performance
demands that is required. The microstructure, mechanical properties, wear resistance, and the related
mechanism of the nano-ZrO2-added composites are investigated and discussed.

2. Materials and Methods

2.1. Sample Preparing

Two series of samples, including matrix samples with and without impregnated diamond, were
conducted for a property test. To obtain a uniform initial WC–bronze mixture, 60 wt % WC (99.8%
pure, an average particle size of 10 µm) and 40 wt % bronze (Cu 85%-Sn 6%-Zn 6%-Pb 3%, an average
particle size of 48 µm) were firstly mixed in a mixer with tungsten carbide balls for 24 h at a speed
of 120 rpm. Different contents of nano-ZrO2 (99.9% pure, average particle size of 50 nm, Beijing,
China) were then mixed with the initial WC–bronze mixtures using a ball-miller for 12 h at the speed
of 120 rpm. The diamond grits (20 vol % concentration, synthetic, 270–325 µm) were added into
the matrix mixture for preparing diamond composite samples through three-dimensional mixing for
2 h. The mixing parameters of the initial matrix mixture and diamond composites are conventional
choices [24], and that of nano-ZrO2 were optimized in preliminary experiments. The designation and
composition of samples are given in Table 1. The mixtures were hot-pressed in graphite molds at
980 ˝C for 5 min. During the sintering and cooling process, a uniaxial pressure of 50 MPa was applied
to the samples.

Table 1. The designation, composition and mechanical properties of samples.

Samples Composition Relative
Density (%)

Hardness
(HRC)

Bending
Strength (MPa)

S0 Matrix 94 37.0 ˘ 1.2 940 ˘ 23
S1 Matrix + 1 wt % nano-ZrO2 93 35.7 ˘ 1.5 898 ˘ 14
S2 Matrix + 2 wt % nano-ZrO2 95 41.7 ˘ 1.6 808 ˘ 27
S3 Matrix + 3 wt % nano-ZrO2 97 44.6 ˘ 1.0 732 ˘ 33

SD0 Matrix + diamond 95 - 700 ˘ 26
SD1 Matrix + diamond + 1 wt % nano-ZrO2 96 - 710 ˘ 25
SD2 Matrix + diamond + 2 wt % nano-ZrO2 96 - 585 ˘ 30
SD3 Matrix + diamond + 3 wt % nano-ZrO2 97 - 484 ˘ 34

2.2. Characterization

The relative density of sample was determined by Archimedes’ method. The microstructure
and composition were investigated by SEM (Hitachi S-4800, Tokyo, Japan) with an energy dispersive
spectrometer (EDS). The phase analysis was evaluated by XRD (Shimadzu XRD6000, Kyoto, Japan).
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The Rockwell hardness scale C (HRC) of samples was measured by a Rockwell hardness tester (Huayin
HRS-150, Yantai, China). Three-point bending strength was applied for the determination of bending
strength of samples (size: 38 ˆ 8 ˆ 5 mm3).

In order to evaluate wear resistance of diamond composites, the grinding ratio was measured [25].
The tests were carried out on a grinding ratio measurement apparatus as illustrated in Figure 1. The
grinding ratio (Rg) is calculated as

Rg “ ∆mg{∆mS (1)

where ∆mg and ∆mS present the weight loss of grinding wheel and sample, respectively.
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3. Results and Discussion

3.1. Compositions and Microstructures

The XRD spectra of samples S0 and S3 are shown in Figure 2. According to X-ray phase analysis
data, the matrix mainly consists of two phases: WC and Cu (bronze). The XRD spectra of samples S1
and S2 are similar to those of S0 and S3. It should be noted that the introduction of nano-ZrO2 does
not lead to a significant change in the lattice parameters of both phases according to the XRD analysis,
indicating little dissolution of the hardening phase appearing in the matrix.
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Figure 3 shows the fractured surface morphologies of samples S0 and S3. In Figure 3a,b, the
0.5–3 µm matrix grains mainly consist of rectangle-shaped grains and smooth round grains. Combined
with the materials composition and EDS element mappings (Figure 4), the rectangle-shaped grains
are WC, and the smooth grains are the bonding phase bronze. It is important to note that there are
many nanosized particles attached to matrix grains in the sample containing nano-ZrO2, while the
matrix grains in the sample without nano-ZrO2 are “clean”. Furthermore, Zr shows clear signals in
EDS element mapping in Figure 4. It is therefore believed that the white nanosized particles are the
added nano-ZrO2. It is also illustrated that the nano-ZrO2 is uniformly distributed in the matrix.
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Fracture surface morphologies of impregnated diamond samples are illustrated in Figure 5.
It shows that the diamond grits were embedded in the metal matrix. The changes in crack width in
diamond/matrix interface are seen in Figure 5b,d, wherein the width decreases from 6.0 µm to 3.6 µm
after adding nano-ZrO2. This means that the stronger metal matrix holds diamond grits more tightly
due to the existence of nano-ZrO2 in the matrix. With a further increase in the content of the added
nano-ZrO2, the influence of nano-ZrO2 content on the crack width is not significant. These structural
features contribute positively to the wear resistance of impregnated diamond composites. Good
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diamond-holding capability of metal matrix is one of the main issues influencing the performance of
the diamond tools. The holding strength at the interfaces between diamond grits and the matrix has to
withstand the complex stresses developed at the individual diamond during cutting, and the diamonds
should not be lost permanently by pulling out [9]. The enhancement mechanism is discussed in detail
in the following section.
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were measured in image processing software.

3.2. Mechanical Properties

Figure 6a,b show the experimental mechanical properties of the tested samples. It can be seen that
the addition of nano-ZrO2 results in an increase of the relative density of samples and the increased
densification, which consequently enhances the hardness. For sample S3, the hardness value was
improved by 20% compared with that of S0. For composites containing fine particles (<100 nm),
strengthening can be attributed to the Orowan mechanism [18,19]. It has been well established that the
presence of a dispersion of fine insoluble particles in a metal can considerably raise the creep resistance,
due to the fact that Orowan bowing is necessary for dislocations to bypass the particles.
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In addition, the mismatch in the coefficient of thermal expansion (CTE) between metal matrix
(bronze > 18 ˆ 10´6 K´1, WC ~6 ˆ 10´6 K´1) and ZrO2 (~10 ˆ 10´6 K´1) should be taken into further
consideration [23,26,27]. During the cooling from the processing temperature (980 ˝C), thermal stresses
around nano-ZrO2 particles cause plastic deformation stresses that reduce quickly as distance from
the interface increases, this generating dislocation defects in the close vicinity of nano-ZrO2 [19]. The
large amounts of nanoparticles are favorable for increasing the dislocation density, thus, resulting in
an increase in the deformation resistance of the matrix.

The testing results also reveal that the bending strength of both matrix samples and impregnated
diamond samples decreases with the increasing content of nano-ZrO2. Since the low wettability
interfacial boundaries between ceramic ZrO2 and the metal matrix metal bronze are initial sources
of fracture, the effective bonding area is reduced [28]. Moreover, more nanoparticles would lead to
an agglomeration effect of nanoparticles and defects in the metal matrix [17], resulting in a drop in
mechanical properties, especially the bending strength.

3.3. Wear Resistance

The results for the grinding ratio of the diamond composites with different nano-ZrO2 amounts
are shown in Figure 7. The grinding ratio is a measurement index for evaluating the wear resistance
and grinding performance of diamond composites. The grinding ratio increased significantly after
adding nano-ZrO2 particles, indicating that nano-ZrO2 plays an important role in wear resistance of
WC–bronze diamond composites. Sample SD1 exhibits a 60% increase in the grinding ratio.
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As the nano-ZrO2 content increases, the grinding ratio shows a decreasing trend in comparison
with the highest value. The grinding ratio of the sample is dependent on the bending strength.
A lower bending strength leads to a weaker support for diamond grits, meaning that diamond grits
would be permanently pulled out of the metal matrix because of a severe stress during cutting.
A similar relationship between bending strength and wear resistance has also been published in the
literature [5,6]. Hence, the grinding ratio of samples decreases with increasing content of nano-ZrO2

since more nanoparticles give rise to a decrease in bending strength.
It should be noted that the grinding ratio of SD2 and SD3 is larger than that of SD0; however,

the bending strength of SD2 and SD3 is smaller than that of SD0. It indicates that other factors have
influence on wear resistance. As shown in Figure 6, the hardness of the matrix increases with the
increase in the content of added nano-ZrO2, and the level of hardness of S2 and S3 is obviously larger
than S0. This implies that the enhancement of the hardness of the matrix also contributes to the
improvement of wear resistance. The interesting thing is that the hardness level of S1 is a little bit lower
than that of S0; meanwhile, the bending strength of SD1 is similar to that of SD0. However, SD1 shows
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a particular increase in wear resistance. As evidenced in Figure 3, nano-ZrO2 particles are attached to
the surface of the matrix grains, and these hard nanoparticles improve the internal friction coefficient in
the matrix as well as the friction between the matrix and the diamond grit during work [10]. Diamond
grits generally exhibit a rotating tendency under the cutting force, which will loosen the diamond
grits. The increase of frictions helps to reduce this rotating tendency and consequently enhances the
diamond retention in the matrix. Combined with an analysis of fracture faces (Figure 5), with the
addition of 1 wt % nano-ZrO2, the width of the crack between diamond and matrix immediately
decreases from 6.0 µm to 3.6 µm, meaning that the increase in diamond retention also benefits the
enhancement of wear resistance.

4. Conclusions

The effects of ZrO2 nanoparticles on the microstructure, density, hardness, bending strength,
and wear resistance of diamond composites were investigated. ZrO2 nanoparticles were found to
attach to matrix grains. An increase in the concentration of nano-ZrO2 led to densification of the
matrix by 2%–3% and a hardness increase by 20%, while the bending strength decreased by 30%.
The grinding ratio of diamond composites increased significantly by 60% as a result of nano-ZrO2

addition. The enhancement mechanism was discussed in detail. The joint influence of hardness,
bending strength, and diamond retention capability on the wear resistance of diamond composites
was revealed. Composites containing 1 wt % nano-ZrO2 exhibited the best overall properties, thus
paving the way for further research and application.
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