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Abstract—This paper presents a pair of reasonably likely 

scenarios for low voltage (LV) electricity consumption and 

distributed generation and investigates how these scenarios will 

impact a realistic approximation of an existing section of LV 

network generated by a distribution network-planning algorithm 

using falsified but realistic existing load data. Some simplifying 

assumptions are made due to the difficulty of modelling the 

consumption of individual customers, but general methodology is 

set up and illustrated that will suit a more fine-grained analysis 

as data becomes available. The scenario loading uses simulated 

consumption time series data for two heating scenarios: EV 

consumption using uncontrolled and sensible charging scenarios, 

and photovoltaic rooftop generation time series data from earlier 

research at Aalto University. The results clearly illustrate that 

smart EV charging can alleviate the need for network 

reinforcements but the network upgrade costs imposed by the 

most pessimistic uncontrolled EV charging are also quantified. 

Keywords—Distributed Generation; EV charging; Expansion 

Planning; Load scenarios 

I.  INTRODUCTION 

Some claim that distributed generation is the power 
system’s answer to the climate crisis and some claim that 
centralized large scale renewable and nuclear is the answer. 
Finland may be seen to favour the latter alternative, but really, 
everything will be required: centralized production, distributed 
production and intelligent consumption and storage, with active 
networks connecting it all. This paper studies the LV side of 
the puzzle, establishing whether at least the primary 
components of an existing LV network are capable of handling 
the load magnitudes and profiles they will experience in the 
near-to-medium future. 

Rooftops are perhaps the least controversial place to put 
photovoltaics (PV), and while the private-car paradigm might 
not be the best way forward in a sustainable future, suburbs in 
Finland are already seeing a rapid increase in electric vehicles 
(EV). Accordingly, this paper puts these two likely phenomena 
together with consumption profiles for two likely heating 
scenarios, district heating and ground-source heat pumps, and 
checks the impact of these radically different and increased 
loading scenarios on existing network, using a 40-year 

planning horizon. A more complete account of this study 
including Matlab coding used for the analysis can be found in 
[1]. 

While this paper simply presents a locally-relevant case 
study, there has been considerable work in recent years 
regarding the hosting capacity of LV feeders, particularly in 
cases where reverse power flows from distributed generation 
impose voltage rise violations. Reference [2] addresses hosting 
capacity both in terms of a literature review, consideration of 
reactive power support from the PV converters and arrives at a 
categorisation of feeders in terms of parameters such as various 
line length and customer proximity data, the ratio of total line 

length to number of loads, kWm and kW, line impedance 
(resistance being the most significant contributor in LV), etc.  
Considerable work on the topic specific to Finland has been 
carried out. For example, [3] considers active and reactive 
power control to increase the hosting capacity of PV in LV 
networks, at least in terms of voltage. The topic of this paper is 
to case-specifically assess the impact of both EV and PV on 
LV feeders, and to this end [4] draws the conclusion that smart 
charging helps EV hosting, but does not help PV hosting much.  

Our case study will investigate a typical suburban case in 
Finland, and discuss the topic more generally in the discussion. 
The aim is to assess a specific realistic existing section of LV 
network in terms of voltage and thermal constraints when 
subject to significant installations of PV and EV charging. 

II. METHODOLOGY 

The LV implementation of a distribution network planning 
algorithm [5], Optimizer, which works as an optional module 
in the commercial network information system software 
TrimbleNIS, was used to produce a realistic present-day low 
voltage network using actual LV customer locations around a 
fictitious secondary (MV/LV) substation, node 0 in the centre 
of Fig. 1.  

Fig. 1 is taken to be a present-day existing network, and the 
scenario simulations in the paper are checked to see if this 
existing network can cope with them. Nodes 1 to 55 are LV 
customer connection points and 56 to 87 are mostly cable 
boxes, from which each LV connection point is connected via a 
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spur feeder. The numbering and feeder layout is clearer in the 
topological depiction of the existing network in Fig. 2. 

 

Fig. 1. The simulated LV network, which forms a close approximation to a 

real existing LV network 

Matlab was used for the scenario modelling in this paper, 
which involved handling hourly-resolution time-series data 
behind every LV connection point, and Excel was used for 
handling smaller amounts of data and for the load summation 
analysis. To estimate the heating load of housing, the Finnish 
National Geoportal (Paikkatietoikkuna) was used, as it can 
calculate the area of user-selected sections from the map 
interface.  

A. Heating Scenarios 

The first scenario corresponds to the suburban LV 
customers keeping their existing heating system, which is 
District Heating, assuming that a way is found to decarbonise 
this technology. The second scenario assumes that all the 
customers change to Ground Source Heating Pumps (GSHP). 
The profiles for the consumption of LV customers based on the 
two heating types were taken from Monte Carlo simulations 
produced in [6]. 

 

 

Fig. 2. A topological view of the “existing” LV network 

 In order to appropriately scale these profiles to each LV 
customer, we used some Direct Electric Heating (DE) data as a 
guideline, assuming that, for example, District Heating houses 
of the same size would have 25% of the annual electricity 
demand (0% for heating) of DE houses. GSHP houses were 
assumed to require 10% of the electrical energy for heating and 
20% for other electrical demand (excluding EV charging), 
making a total energy demand of 30% of a DE house. These 
rather crude empirical assumptions were checked with 
reference to a commercial website [7]. Using such an approach 
gives us reasonably realistic consumption profiles for houses 
taken from a map, relieving us of concerns about infringing 
data protection legislation. The profiles themselves are taken 
from rigorous statistical modelling used to generate 100s of 
years of Monte Carlo simulated data based on real 
measurements.  

Similar to the consumption, the challenge with PV 
modelling is to obtain suitable time-series profiles and to scale 
those profiles suitably to reflect the inclination of the panels. 
Time series data close to the geographic location of the LV 
network under investigation was taken from [8], where the 
nominal value is 100 kW and the panels are assumed to face 

south (i.e., Azimuth angle = 0). While it is true that such 
Monte Carlo simulated time series are only as good as the 
years of measured data they are statistically based on, and 
therefore may not capture extreme behaviour, the extremes of 
significance for dimensioning the lines are peak PV generation, 
which are adequately captured in such simulations. Fig. 3 
shows one such simulated year of PV data. 

The houses in the LV network area (using a more detailed 
map interface than shown in Fig. 1) were analysed to establish 
their most likely Azimuth angles, assuming a given tilt angle of 

about 45 [9]. The relationship of the energy lost when the 

azimuth angle deviates from 0 has been derived from [5] by 
interpolating between data points, see Fig. 4. The energy loss 
percentage for South-East and South-West is 5% which was 
taken directly from [5]. For the East and West, the article did 
not mention a specific value. It did explain how azimuth angle 



deviations of up to 23º have little to no influence on the energy 
losses. However, when azimuth deviation angles increase so do 
the energy losses. With this information, a first approximation 
can be calculated, by representing the known values, and 
estimating the value at the desired angle. 250 W 60 cell solar 
panels were chosen, which have a surface area of 1.66 m2. 
Using the appropriate area for each house and the respective 
energy loss due to Azimuth angle (i.e., when the panels do not 
face south) to appropriately scale the time series data in [8] 
yields one year of hourly resolution solar data for each rooftop 
installation. 

 
Fig. 3. 8760 hours of simulated photovoltaic output (p.u.) at study case 

location. 

 

Fig. 4. Energy loss vs. Azimuth angle at the relevant latitude. 

 This approach lacks a more detailed investigation of 
shading and so is somewhat idealised. The typical PV power 
rating varies from 1 to 4 kVA per rooftop installation, noting 
that at southern Finnish latitudes, the capacity factor for solar 
panels is about 10%. 

B. EV charging 

Two options for home EV charging are explored. The first 
is to assume that a significant number of residents plug their 
car in when they get home from work and that the EV load is 
split evenly between level 1 charging (3.7 kW) and level 2 
charging (11 kW, noting that Finnish households usually have 
3-phase power available). The second option assumes some 
smart coordination of EV charging in a given LV region, by 
dividing the night into five 3-hour periods: 17-20, 20-23, 23-2, 
2-5 and 5-8. Customers fed by the same cable box are given 
different charging periods to lower the summation of loading 
onto the trunk feeders. The assumptions behind the previous 
parametrisation are an assumed average travelling distance per 
work-day of 60 km (noting that we are analysing a suburban 
location, the average distance travelled by car each day is 40 
km in Tampere [10]), and an average battery capacity of 40 
kWh. 

C. Deriving the Relevant Network Parameters 

The time-series PV, relevant load and EV charging data 
must be summed for each node (LV customer connection 
point) and combination of fed nodes at common nodes 
upstream (e.g., cable boxes, branch points and the secondary 
substation). Refer to Fig.2. From the summed time-series data 
at each node, the following parameters are derived: Pmax, Pmin, 
Qmax, Qmin, and Tlosses. The latter parameter Tlosses is used to 
multiply the loss power based on peak loading to approximate 
the annual I2R losses of the relevant line or component n, 
where 

 .   (1) 

Note that in (1), Pn and Qn are themselves summations (for 
every hour of the simulated year) of everything node n feeds. 
For example, node 75 in Fig. 2 feeds nodes 83, 77, 26, 24, 2, 
63, 23, 51, 65, 28, 29, 43, 45 and 52. Sn is calculated from the 
active and reactive power flows in each line section. A power 
factor of 0.95 lagging was assumed when calculating the 
reactive powers at the LV connection points. 

Referring to Fig. 2, the relevant demand, EV and PV time 
series data need to be summed to derive the parameters listed 
above for each of the 55 LV nodes. The time series data from 
all fed nodes then need to be summed when working upstream 
to calculate the parameters in common nodes, such as the cable 
boxes, branch points and ultimately the secondary substation. 

The Excel analysis consists of an active and reactive load 
summation rather than a full load flow, which of course the 
commercial NIS does perform. The maximum currents can be 
derived from the maximum apparent power flowing in each 
line section, and voltages can be calculated from these currents. 
This crude backward-forward sweep converges quickly, but it 
should be noted that if distributed generation is significant, 
then Pmin and Qmin (representing minimum demand, maximum 
generation) should be checked as well, for both thermal loading 
and voltage rise. It should also be mentioned that a 40 year 
time horizon was used for costing, coupled with low load 
growth of 0.12 %/annum (the scenarios imply large step-
changes in growth), and an interest rate of 3 %/annum. 

III. RESULTS 

The results are presented in terms of the two main 
scenarios, GSHP and District Heating. Each scenario entails 
summing the data for each of the 8760 hours of the simulated 
year. Only typical mid-winter day and mid-summer day results 
will be shown. It turns out that although the consumption 
profiles vary considerably between the two heating types, the 
EV charging and summer PV generation dominate the profiles, 
rendering similar results for the two scenarios. 

A. Ground Source Heat Pump Scenario 

Fig. 5 shows the load profiles of the LV customer 
(prosumer) at node 6 in Fig. 2 for a random day in the winter 
and a random day in the summer. This is the profile of only one 
prosumer node and so the positive peak is dominated by the 
EV charging, with its temporal position dictated by which 
charging period the customer is allocated. It can be seen that 



even with EV charging, the PV generation in the summer can 
match or even exceed the demand when the sun is shining, 
indicated by the demand becoming negative, which implies net 
generation.  

The impact of distributing the prosumers fed by the same 
cable box to different EV charging periods is shown in Fig. 6-
8. Although we use the term smart, this is not really what the 
term means, as smart would imply active control of charging, 
other consumption and DG, taking into account a lot more than 
this paper covers. 

 
Fig. 5. Daily profile for one LV prosumer in the GSHP scenario (node 6) 

To better represent the different possibilities three 
aggregation nodes are shown. Fig. 6 represents a node which 
only has customers with type 1 charging (3.7 kW), Fig. 7 
shows customers with type 2 charging (11 kW) and Fig. 8 
represents customers of both types. The uncontrolled EV 
charging stops charging when the battery is full. This is 
simulated to capture the worst load conditions in the network. 
This means that in customers with type 1 charging, it takes 11 
hours to charge the battery, and with customer type 2 charging 
it takes 4 hours. On the other hand, the smart charging only 
charges the vehicles sufficiently for their prospective use, 60 
km/day, which explains why the area under the plots (i.e., 
energy) is not the same. 

 

 
Fig. 6. Comparison between uncontrolled charging and smart charging at a 

cable box feedeing several prosumers (node 57) in the GSHP scenari 

 

Fig. 7. Comparison between uncontrolled charging and smart charging at a 

cable box feedeing several prosumers (node 65) in the GSHP scenario. 

 
Fig. 8. Comparison between uncontrolled charging and smart charging at a 

cable box feedeing several prosumers (node 65) in the GSHP scenario. 

It can be seen how distributing the EV charging in different 
slots in an aggregation node has a big impact on the power 
load. While it remains outside the scope of this paper, the 
means to invest in smart charging (smarter than the five EV 
charging periods used in this paper) would seem to be worth 
considering.  

B. District Heating Scenario 

Only the daily profile for node 6 is shown for this scenario, 
in Fig. 9, where the non-EV demand can be seen to vary 
somewhat, due to the different heating scenario, but once 
again, the peaks caused by EV charging and PV dominate the 
profile. The next subsection looks at the impact on network 
loading, voltage and upgrade investments for the specific but 
typical suburban LV network depicted in Figs. 1 and 2. 

C. Impact of the Scenarios on Loading and Voltage 

To contain the results and avoid too much repetition in this 
paper, we will focus on the north-west (green) feeder in Fig. 2 
under the loading imposed by the District Heating scenario. 
First, as a reference, we give the base case in Table 1, without 
any EV or PV, just the feeder section with District Heating and 
the nominal load growth of 0.12 %/annum.  

As expected, a very low load growth imposed on an 
existing network does not cause any problems, with voltage or 
thermal loading. We next explore the case with controlled 
(smart) charging, depicted in Table II. It can be seen that 
demand dominates generation in most of the line sections, and 
that voltage drop is acceptable. The main outgoing feeder 



section from the secondary substation, 0-77 has a 70 mm2 
conductor cross-section with a steady-state rating of 205 A, so 
the line ampacity is well within limits. 

 
Fig. 9. Daily profile for one LV prosumer (node 6) in the District Heating 

scenario 

TABLE I.  BASE SCENARIO (NO EV OR PV) 

 

TABLE II.  DISRICT HEATING SCENARIO WITH CONTROLLED EV 

CHARGING AND ROOF-TOP PHOTOVOLTAICS 

 
It remains to check the health of the existing network if it is 

subject to uncontrolled EV charging. The results for this are 
shown in Table III. Table III implies that ampacity (thermal 
rating) is acceptable, but the voltage drop is of concern. 
Remembering that the LV network shown in Figs. 1 and 2 only 
goes to the LV connection point, we must allow for voltage 
drop in the customer’s property, sometimes known as the 
service network. 

If we follow some guidelines, e.g. [11], voltage drop in the 
utility LV network should be kept below 5%, and therefore the 
existing network would have to be stiffened to cope with this 
technical parameter. This is especially the case if one considers 
voltage rise during times of maximum sunlight. The change in 

voltage between maximum load and maximum DG is likely to 
be around 8%. 

The final result to relate in this simple but illustrative case 
study is the likely cost of making this network robust enough to 
cope with uncontrolled EV charging at every prosumer 
location.  

D. Extent of Network Upgrade Required to Cope with 
Uncontrolled EV Charing and the Associated Costs 

Fig. 10 shows that when the entire network area is analysed 
(corroborated by TrimbleNIS), 4 out of the 5 main outgoing 
feeders need to be stiffened (increasing their conductor size 
from 70 mm2 to 120 mm2). The most common transformer size 
in the network region this simulation was based on is 315 kVA. 
The total demand of the worst-case uncontrolled charging for 
the district heating scenario is 540 kVA, whereas for the 
controlled charging it is 272 kVA. 

TABLE III.  DISRICT HEATING SCENARIO WITH UNCONTROLLED EV 

CHARGING AND ROOF-TOP PHOTOVOLTAICS 

 
 

 
Fig. 10. The yellow feeder sections (encircled with the dotted lines) have to be 

upgraded to contain the voltage if the network is subjected to 100% of 

uncontrolled EV charging (the District Heating scenario) 

The northeast network section has the most severe voltage 
problems (Tables I to III covered the northwest section). 
Upgrading these sections would cost between 24 k€ and 45 k€. 



If the cables are located in composite plastic tubes, it may be 
that they can be pulled out and the new cables pulled in. This 
seldom goes 100% smoothly. However, if they directly buried 
the line routes will have to be excavated and the costs will 
come close to the upper limit. The MV/LV transformer would 
also require upgrading. A 633  kVA unit costs about 10 k€. 
This would account to a 30 to 40 €/annum increase in tariff for 
the customer base in this LV network area, and might be worth 
the flexibility and unpredictability of how loads will change 
over the next 20 years or so.  

IV. DISCUSSION 

This paper relates a study that takes the first step in making 
a transparent tool for analysing time series data of the various 
consumption, generation and storage components implicit in 
tomorrow’s LV prosumer. The results portrayed in this paper 
are specific to a somewhat simplified treatment of specific case 
studies, but they are somewhat believable if Finland really is 
serious about becoming carbon neutral by 2035. There will be 
considerable electrification, and checking whether the 
infrastructure is up to the job is of critical importance in the 
energy transition. 

As far as the scenario quantified in this paper is concerned, 
the incremental cost of stiffening the main LV feeders and 
upgrading the feeding transformer does not seem too punitive. 
However, the distribution tariff of LV customers does not just 
cover the LV network. How all these incremental increases 
aggregate to the MV and HV levels will presumably also entail 
costs, as will changes in protection to handle power flows in 
the reverse direction during times of peak distributed 
generation. These are not hypothetical but real occurrences 
already in many countries. The scenarios illustrated amount to 
Brownfied planning on a mature network that has undergone 
radical changes in loading. An alternative to stiffening the main 
trunk feeders would be to implement a more nuanced control of 
the EV charging and coordination with other loads.  

What is the answer to the main aim expressed in the 
introduction; can the case-studied existing network cope with a 
high penetration of PV and EV in Finnish suburban conditions? 
The answer is almost! The network is thermally adequate (in 
terms of the steady-state current limits of the lines, with room 
for some contingency operation, i.e., backup, which is not 
shown). However, there are problems with voltage if the rather 
punitive limit of 5% voltage drop is enforced. Smart charging 
will alleviate these problems. 

Taking a rather wider survey of suburban LV (utilising NIS 
data), quite often 185 mm2 conductor sections are used for the 
trunk feeders, and so it is expected that the Finnish suburban 
LV networks are mostly up to the job of coping with the likely 
impact of EV charging and rooftop PV in the near to medium 
future. Of course this is a general statement and needs to be 
checked case by case. And, our load data did not show the 
impact of, e.g., a 5 kW sauna. Care should be taken that the 
evening sauna does not coincide en masse with the 
uncontrolled charging of a neighbourhood full of high 
performance EVs! Presumably electric saunas and the winter 

(electric) heating of internal combustion engine cars are in part 
responsible for the relative stiffness of Finnish LV networks. 

Dealing with one year of hourly-resolution data is probably 
computationally manageable for LV planning, but the thesis 
this paper is derived from also took a look at how deterministic 
parameters such as coincidence factors (made very much 
higher by both EV and PV) and loss times are affected and 
whether they are useful parameters going into the more 
stochastic future in MV planning, where there are typically 
hundreds rather than 10s of nodes. 
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