
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Neuvonen, Lauri; Wildemeersch, Matthias; Vilkkumaa, Eeva
Supporting strategy selection in multiobjective decision problems under uncertainty and
hidden requirements

Published in:
European Journal of Operational Research

DOI:
10.1016/j.ejor.2022.09.036

Published: 16/05/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Neuvonen, L., Wildemeersch, M., & Vilkkumaa, E. (2023). Supporting strategy selection in multiobjective
decision problems under uncertainty and hidden requirements. European Journal of Operational Research,
307(1), 279-293. https://doi.org/10.1016/j.ejor.2022.09.036

https://doi.org/10.1016/j.ejor.2022.09.036
https://doi.org/10.1016/j.ejor.2022.09.036


European Journal of Operational Research 307 (2023) 279–293 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Decision Support 

Supporting strategy selection in multiobjective decision problems 

under uncertainty and hidden requirements 

Lauri Neuvonen 

a , b , ∗, Matthias Wildemeersch 

b , Eeva Vilkkumaa 

a 

a Department of Information and Service Management, School of Business, Aalto University, Ekonominaukio 1, Espoo, 02150, Finland 
b International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria 

a r t i c l e i n f o 

Article history: 

Received 8 September 2021 

Accepted 25 September 2022 

Available online 7 October 2022 

MSC: 

0 0 0 0 

1111 

Keywords: 

Decision support systems 

Multiobjective optimization 

Robustness 

Pruning 

Implementability 

a b s t r a c t 

Decision-makers are often faced with multi-faceted problems that require making trade-offs between 

multiple, conflicting objectives under various uncertainties. The task is even more difficult when consid- 

ering dynamic, non-linear processes and when the decisions themselves are complex, for instance in the 

case of selecting trajectories for multiple decision variables. These types of problems are often solved 

using multiobjective optimization (MOO). A typical problem in MOO is that the number of Pareto op- 

timal solutions can be very large, whereby the selection process of a single preferred solution is cum- 

bersome. Moreover, preference between model-based solutions may not be determined only by their ob- 

jective function values, but also in terms of how robust and implementable these solutions are. In this 

paper, we develop a methodological framework to support the identification of a small but diverse set 

of robust Pareto optimal solutions. In particular, we eliminate non-robust solutions from the Pareto front 

and cluster the remaining solutions based on their similarity in the decision variable space. This enables 

a manageable visual inspection of the remaining solutions to compare them in terms of practical im- 

plementability. We illustrate the framework and its benefits by means of an epidemic control problem 

that minimizes deaths and economic impacts, and a screening program for colorectal cancer that mini- 

mizes cancer prevalence and costs. These examples highlight the general applicability of the framework 

for disparate types of decision problems and process models. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Decision-makers (DMs) are often faced with complex decision- 

making problems that require making trade-offs between multiple, 

conflicting objectives under various uncertainties. The task is even 

more difficult when considering dynamic, non-linear processes and 

when the decisions themselves are complex in form, for instance 

in the case of selecting profiles for multiple decision variables. Ex- 

amples of such complex decision-making situations can be found 

in, e.g., epidemic control ( Caulkins et al., 2020; 2021 ), pollution 

control ( Lempert, Groves, Popper, & Bankes, 2006 ), water man- 

agement ( Kasprzyk, Nataraj, Reed, & Lempert, 2013 ), and produc- 

tion planning ( Lin, Liu, Hao, & Jiang, 2016 ). These types of com- 

plex decision-making problems can be approached by (i) build- 

ing a model to capture the complex dynamics between underly- 

ing processes and decision variables (see, e.g., Araz, Lant, Fowler, 

& Jehn, 2013; Klein, Dittus, Roberts, & Wilson, 1993; Miller et al., 

∗ Corresponding author. 

E-mail address: lauri.neuvonen@aalto.fi (L. Neuvonen) . 

2005; Van Der Zee & Van Der Vorst, 2005 ), and (ii) optimizing 

the values of these decision variables by using multiobjective opti- 

mization (MOO) techniques ( da Cruz, Cardoso, & Takahashi, 2011; 

Da Cruz, Cardoso, & Takahashi, 2009; Falke, Krengel, Meinerzha- 

gen, & Schnettler, 2016; Meng, Lou, Peng, & Prybutok, 2017; Ran- 

gaiah, 2016; Deb, Pratap, Agarwal, & Meyarivan, 2002; Holzmann & 

Smith, 2018; Miettinen & Mäkelä, 1995 ). The result of an MOO pro- 

cess is a set of Pareto optimal solutions, which cannot be improved 

with respect to any objective without impairing performance on 

some other objective. 

A common problem in MOO is that the number of Pareto op- 

timal solutions is in many cases very large ( Friedrich, Kroeger, & 

Neumann, 2011; Sudeng & Wattanapongsakorn, 2015; Wismans, 

Brands, Van Berkum, & Bliemer, 2014 ). Consequently, the task of 

directly selecting a single preferred solution from this set can be 

difficult. In particular, the objective function values and compli- 

ance with model constraints may not provide sufficient informa- 

tion for choosing the final solution suggested by the model but, 

rather, requirements related to the real-world implementability of 

this chosen solution must also be accounted for. This information 
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can, however, be hidden and therefore hard to elicit and quantify 

in such a manner that it could be included as a constraint in the 

optimization problem. Specifically, the DM may be able to judge 

the implementability of a given solution only after having visual- 

ized this solution and its relevant characteristics in comparison to 

those of other proposed solutions. But how can one offer the DM 

a small representative set of high-quality solutions, out of possi- 

bly hundreds of candidates so that such visual inspection can be 

carried out in a meaningful way? 

This problem can be addressed by pruning the Pareto front, 

i.e., eliminating solutions from it based on one or more addi- 

tional criteria. Pruning is typically done in the objective space. 

In their recent paper, Petchrompo, Wannakrairot, & Parlikad 

(2021) classify pruning methods in the objective space into three 

classes: preference-based methods, efficiency-based methods, and 

diversity-based methods. In preference-based methods, solutions 

are eliminated based on the DMs preferences with respect to 

the objective-function values or trade-offs between them. Salo & 

Hämäläinen (2010, 1995) , for instance, suggest the use of mul- 

ticriteria models with incompletely specified criterion weights to 

identify a subset of Pareto optimal solutions that are not domi- 

nated by any other feasible solution with respect to the DM’s pref- 

erence statements. Efficiency-based methods focus on identifying 

solutions that are efficient according to some pre-set indicators. 

Typically, methods in this class focus on identifying Pareto front 

knees, i.e., regions in which a small improvement in one objective 

would significantly worsen performance on at least one other ob- 

jective ( Sudeng & Wattanapongsakorn, 2016; Wismans et al., 2014 ). 

Diversity-based methods to prune the Pareto front in the objective 

space aim at identifying a diverse subset of solutions that together 

cover the range of different objective function values. 

Diversity-based methods include clustering algorithms which, 

in effect, eliminate solutions whose objective function values are 

too close to one another. Taboada & Coit (2007) , for instance, use 

an iterative k-means algorithm to find a small number of mutually 

dissimilar Pareto optimal solutions. Zio & Bazzo (2011) use a sub- 

tractive clustering approach for similar purposes. Yu, Zheng, Gao, 

& Yang (2017) integrate subtractive clustering with multi-criteria 

tournament decision and gain analysis methods to both maintain 

the shape of the Pareto front and consider the DM’s preferences 

in choosing the final set of representative solutions. Petchrompo 

et al. (2021) , apply k-medoids clustering to a portfolio asset man- 

agement problem with the objective of reducing the full set of 

Pareto optimal solutions to a smaller representative set. Li, Liao, & 

Coit (2009) propose an approach in which self-organizing maps are 

first applied to cluster similar solutions together, after which data 

envelopment analysis is used to identify relatively efficient repre- 

sentative solutions within each cluster. The Pareto front could also 

be pruned in the decision space by, for example, clustering solu- 

tions based on the similarity of the corresponding decision variable 

profiles, and choosing a representative solution from each cluster. 

Pruning in the decision space would be particularly relevant from 

the perspective of implementability; yet, to our knowledge, these 

kinds of approaches have not been presented in the literature. 

In addition to objective function values and diversity, many 

studies see robustness and risk considerations as important fac- 

tors in pruning the Pareto front ( Groetzner & Werner, 2021; Schö- 

bel & Zhou-Kangas, 2021 ). By robustness we refer to the prop- 

erty of strategies to perform well in terms of objective func- 

tion values and/or risk measures under different realizations of 

uncertain model parameters. Techniques for accommodating ro- 

bustness considerations into multiobjective optimization problems 

have been presented by, e.g., Dellnitz & Witting (2009) . A rela- 

tively recent contribution to accommodating robustness consider- 

ations into complex multiobjective decision-making problems is 

the many objective robust decision-making (MORDM) framework 

( Kasprzyk et al., 2013 ). MORDM seeks to combine the computa- 

tional power of multiobjective evolutionary algorithms with robust 

decision-making techniques to help identify strategies that perform 

well across many different trajectories of the deep uncertainties 

affecting the underlying process. Interactive visual analytics are 

suggested to enable the exploration of trade-offs, robustness mea- 

sures, and critical exogenous factors simultaneously. Such an inter- 

active approach is beneficial in generating a deeper understanding 

for the DM about both the model and the decision-making prob- 

lem at hand, but can be prohibitively time-consuming in situations 

requiring fast decisions. In addition to parametric uncertainty, the 

notion of robustness can be applied to other types of uncertainty 

such as variable uncertainty, which can be addressed by means 

of regularization robustness ( Eichfelder, Krger, Schbel, & Eichfelder, 

2015 ). These kinds of techniques can be beneficial in case there are 

uncertainties related to how accurately a chosen strategy can, in 

fact, be implemented. However, here we focus on parametric un- 

certainty. 

In this paper, we propose a methodological framework for de- 

termining a small representative set of non-dominated, robust 

strategies to support DMs in finding implementable solutions to 

multiobjective decision-making problems under uncertainty. The 

framework is designed to be flexible with regard to modeling and 

optimization techniques, whereby it can be used in a wide range 

of problem settings. Importantly, the framework enables the uti- 

lization of existing models, which is beneficial in cases where it 

is possible to leverage the DM’s trust towards certain models with 

which they are already familiar. In our proposed framework, we 

combine a process model with an MOO formulation to find the 

set of Pareto optimal solutions. Then, we prune the Pareto front (i) 

by eliminating solutions whose objective function values are non- 

robust to small changes in the parameters of the process model, 

and (ii) by clustering solutions in the decision space to identify a 

small set of robust solutions that are sufficiently dissimilar from 

one another. Finally, we present effective visualizations of the re- 

maining solutions to enable the DM to compare these solutions 

not only in terms of relevant objective function values and other 

performance metrics, but also their implementability. The general- 

ity of the framework is illustrated by means of two disparate case 

studies. The first case study analyzes how to control the spread 

of the coronavirus, minimizing impacts on both health and the 

economy for different strategy classes corresponding to lockdowns, 

mass testing, and combinations thereof. The second case study ex- 

amines the optimal screening strategy for colorectal cancer, mini- 

mizing cancer prevalence and screening costs. 

The contributions of this paper to the literature are three- 

fold. First, the paper presents a widely applicable methodological 

framework for supporting decision-making in multiobjective prob- 

lems in situations where the recommended solutions should be 

both robust as well as implementable. In particular, while imple- 

mentability is a key consideration in various kinds of complex de- 

cision problems, no methods to support the identification of im- 

plementable solutions have previously been proposed. Second, in 

contrast to most existing methods, we prune the Pareto front in 

the decision space rather than in the objective space. This is par- 

ticularly important in situations where the decisions correspond to 

selecting decision profiles, i.e. time-varying values for multiple de- 

cision variables, in which case the DM could be more interested 

in comparing a diverse set of such profiles rather than a set of 

similar profiles leading to different objective function values. Fi- 

nally, our paper offers some insights into the effectiveness of dif- 

ferent strategies for controlling the spread of the coronavirus and 

the prevalence of colorectal cancer. 

The rest of the paper is structured as follows: In Section 2 , 

we present the methodological framework. This framework is illus- 

trated in detail in Sections 3 and 4 through two example case stud- 
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ies based on the COVID-19 epidemic and colorectal cancer screen- 

ing. Finally, in Section 5 , we present our conclusions and discuss 

the benefits and limitations of our proposed approach. 

2. Methodological framework 

2.1. Framework motivation 

We propose the framework to be a practical tool for decision- 

making especially under the following conditions: (i) When DMs 

are dealing with multiple objectives, which in the absence of pref- 

erence information can result in a large set of alternative solutions. 

In this, clustering is a useful tool that allows DMs to evaluate a re- 

duced set of diverse and representative non-dominated solutions. 

(ii) When there is considerable parametric uncertainty, which can 

be due to the absence of data to estimate the model parameters or 

to exogenous sources of uncertainty, for instance related to human 

behavior. The presence of model uncertainty requires us to study 

the robustness of non-dominated solutions. (iii) When there are 

hidden requirements related to the practical implementability of 

the solutions that the DM finds difficult to recognize or articulate 

as model constraints. This requires the visual inspection of com- 

plex decision vectors for which intuition on optimality and feasi- 

bility is elusive. (iv) When there exists time pressure to provide 

solutions expeditiously, preventing multiple interactions between 

DMs and system modelers. These time constraints can cause addi- 

tional model uncertainty, stressing the need to analyze the robust- 

ness of non-dominated solutions. 

2.2. Framework anatomy 

The proposed methodological framework is summarized in 

Figure 1 . In the first stage, a problem-specific model is designed 

and implemented to capture the most relevant problem character- 

istics and dynamics. This can be a model of any suitable type, e.g., 

an influence diagram, a simulation model, an agent-based model, 

or a dynamical systems model. In the second stage, MOO is used 

together with the problem-specific model to identify the set of 

Pareto optimal solutions. In some cases, it may be relevant to com- 

pute these sets for different classes of strategies, which results in 

multiple Pareto fronts. These strategy classes represent operating 

modes allowing for different decision options which can be in- 

dependently parameterised. An example of strategy classes in the 

context of controlling the COVID-19 epidemic is given in Section 3 . 

In the third stage of the methodology, strategies that are 

non-robust against parametric uncertainty are eliminated from 

the Pareto fronts. When using complex models, it is possible 

that integrating robustness considerations into the formulation of 

the optimization problem leads to numerical intractability. We 

therefore propose that non-robust solutions are eliminated post- 

optimization. In practice this can be done, for instance, by sam- 

pling sets of simulator parameters and running the simulator with 

these different parameter values for each Pareto optimal solu- 

tion. This results in solution-specific distributions for the values 

of selected indicators, which permit the calculation of risk metrics 

(such as the probability of a given event or Conditional Value-at- 

Risk) that can be used to screen out non-robust solutions. 

In the fourth stage of the process, multiple Pareto fronts are 

combined into one to eliminate solutions that are dominated by 

those belonging to another strategy class. This is done only after 

the robustness-based pruning, to avoid the risk of excluding robust 

solutions that are dominated by non-robust solutions. In the fifth 

stage, the solutions are clustered based on their similarity in the 

decision space to obtain a small but diverse set of representative 

solutions. Clustering is done only after robustness-based pruning 

and combination of the Pareto fronts to make sure that no repre- 

sentative solutions need to be eliminated in subsequent stages due 

to inefficiency or non-robustness. By following this order, the num- 

ber of clusters corresponds to the number of solutions that are to 

be subjected to closer visual inspection. In the sixth stage, effec- 

tive visualizations are presented for the small set of remaining so- 

lutions to provide the DM a comprehensive view of each solution 

based on their objective function values, robustness, and imple- 

mentability. The visualizations should present as many of the prop- 

erties of the solutions relevant to the decision-making as possible, 

in a format that allows these solutions to be easily compared. In 

the context of the case studies in this paper, these include objec- 

tive values, decision profiles and risk metrics. A careful inspection 

of such visualizations may reveal preferences or hidden require- 

ments that the DM was unable to articulate at the beginning of 

the modeling process. Such an instance might require a reiteration 

of the framework starting at stage 1 or 2. Finally, the DM chooses 

one of the remaining solutions according to their preferences. 

2.3. Framework applicability 

The framework is applicable to many different decision-making 

problems, and as a consequence the framework is not specific 

about the optimization method, the clustering algorithm to prune 

the Pareto front, nor about the approach for robustness verifica- 

tion. The first two stages consist of setting up an MOO problem 

and computing the Pareto front. The framework is indifferent to 

the optimization approach, as long as the model later allows com- 

puting objective and risk measure values for different parameter 

samples for the non-dominated strategies. Stages 5 and 6 consist 

of clustering and visual analysis. Clustering is based only on de- 

cision variable values, and a suitable clustering algorithm needs 

to be identified to deal with the specific structure of the multi- 

dimensional decision vectors. Visual analysis of the solutions is a 

stage where some creativity is often needed. In general, the vi- 

sualizations are highly dependent on the specific problem setting. 

That being said, there exist several effective techniques for visu- 

alizing, e.g., multidimensional objective and decision spaces, in- 

cluding interactive visualizations as well as projections to two- or 

three-dimensional spaces. 

We have applied the framework, with different algorithmic 

choices within the stages, to analyze two multiobjective deci- 

sion problems. The differences between the approaches used to 

tackle these two problems are profound, including process mod- 

eling methods, optimization algorithm structure and methods, and 

decision variable types. Yet, our proposed decision-support frame- 

work can be readily applied to both cases by selecting suitable op- 

timization methods, clustering algorithms, and robustness metrics. 

3. Case study 1: Epidemic control strategies for COVID-19 

Problem context 

We consider a hypothetical country with a population of 100 

million people, and assume that there is a DM or a group of DMs 

in this country who wish to find an optimal strategy for control- 

ling the spread of COVID-19. For this purpose, an epidemiologi- 

cal model has been built to capture the dynamics of the epidemic 

subject to different control strategies. Assume that the DM uses 

the epidemiological model to consider between six control strat- 

egy classes (representing a catalog of strategies followed by differ- 

ent countries) shown in Table 1 : (i) mass testing with a capacity to 

carry out 3 million perfectly accurate tests per day, (ii) mass test- 

ing with a capacity to carry out 50 million tests per day with 85% 

sensitivity (i.e. probability q + of correct identification of infected 

persons) and specificity (i.e. probability q − of correct identification 
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Fig. 1. The decision support process for arriving at a small diverse set of non-dominated, robust strategies starting from a complex model and multiobjective optimization 

and followed by visual inspection and a decision. 

Table 1 

Strategy classes available to the DM. In all classes control strengths are selected at 30-day intervals. 

Strategy class Decision variables q + & q − Max tests Contact tracing 

Mass testing τt 100% 3M no 

Imperfect mass testing τt 85% 50M no 

Lockdown λLD 
t - - no 

Lockdown with contact tracing λLD 
t - - yes 

Combination strategy λLD 
t , τt 100% 3M no 

Combination str. with imperf. testing λLD 
t , τt 85% 50M no 

of non-infected persons), (iii) a lockdown strategy, (iv) a lockdown 

strategy with contact tracing, (v) a strategy that combines lock- 

downs with the possibility to carry out 3 million perfectly accurate 

tests per day, and (vi) a strategy that combines lockdowns with 

the possibility to carry out 50 million imperfect tests per day 1 . We 

1 The numbers selected for this example case study are illustrative. Yet, they are 

realistic in the sense that high-sensitivity tests are limited by lab capacity whereas 

low-sensitivity antigen tests could be performed at much higher rates, as long as 

model these different operating modes as separate strategy classes 

because we wish to evaluate their relative performance. 

Within each strategy class, the DM is interested in finding 

Pareto optimal strategies that minimize cumulative COVID-19 re- 

lated deaths and cumulative impact on the economy. A reasonable 

approximation for economic output is that it scales with the total 

the production of lateral flow tests can follow the demand. Hence, our results help 

generate qualitative, if not quantitative insights. 
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amount of active workers, i.e. those not in quarantine nor under 

lockdown ( Berger, Herkenhoff, & Mongey, 2020 ). The decision vari- 

ables for optimizing these strategies are the testing rate τt (i.e., the 

share of the population that is tested at time t) and the meeting 

rate λLD 
t for individuals affected by lockdown measures. In the epi- 

demic model, we split the day into 14 time steps (cf. Berger et al., 

2020 ). We allow the DM to adjust the decision profile at 30-day 

intervals 2 (29 for the first interval) starting from day 1 and con- 

tinuing until day 570. In addition to minimizing COVID-19 related 

deaths and economic impact, the DM wants to ensure that the 

strategy that is ultimately selected will not lead to a risk of over- 

loading the intensive care unit (ICU) capacity. Exceeding the ICU 

capacity significantly increases mortality and generates high social 

costs. Therefore, the DM wants to limit the probability of this hap- 

pening given the uncertainties in key epidemic model parameter 

values. The DM is also interested in how much the suggested con- 

trol strategies vary over time, as too much variance would lead to 

the strategies being unimplementable, both from a practical and a 

political viewpoint. However, the DM has not been able to formu- 

late their preferences regarding implementability into explicit opti- 

mization constraints. In what follows, we show how each stage of 

our methodological framework could be carried out in the context 

of the case study. 

Stage 1: Epidemic model 

Building on the work of Berger et al. (2020) , we develop a 12- 

state compartmental model to capture the progression of the epi- 

demic 3 . A visual representation of our model is shown in Figure 2 , 

with a more detailed description given in S1 in the Supplemen- 

tary Materials. The model describes in discrete time t the fractions 

of the population that belong to each of the 12 different compart- 

ments. This model extends the commonly used SEIR model ( Berger 

et al., 2020; DeNegre, Myers, & Fefferman, 2020; IHME COVID-19 

forecasting team, 2021 ), the compartments of which correspond to 

susceptible (S), exposed (E), infected (I) and recovered (R) mem- 

bers of the population. In our model, the 12 compartments cor- 

respond to non-infected (N), infected (I), or recovered (R) people 

who are either asymptomatic (A) or symptomatic (S). These people 

are either in quarantine (Q) or not in quarantine (NQ). The model 

accommodates incomplete information about whether an asymp- 

tomatic person is infected or not by differentiating between known 

and unknown states. In the visual representation, compartments 

corresponding to known states for asymptomatics are denoted by 

asterisks. By means of testing, individuals can be moved from the 

unknown to the known compartments. Compared to the existing 

work of Berger et al. (2020) , our model enables the accommoda- 

tion of the impacts of imperfect testing and contact tracing. Re- 

garding imperfect testing, the model includes compartments corre- 

sponding to false positive (FP) and false negative (FN) test results. 

The details of modeling contact tracing are presented in S1.2, and 

variables related to contact tracing have the superscript index ‘CT’ 

in Figure 2 . 

The state equations capturing the dynamics of the compart- 

ments are compactly denoted by 

X t+1 = SEIR 

+ (X t , X t−1 , λ
LD 
t , τt ) (1) 

2 The 30-day interval is a simplification but reflects real limitations that a DM 

might face: it is not possible to change national policies at a high rate due to issues 

of uptake, communication, and popular resistance to frequent policy changes. 
3 Agent-based models (ABMs) can also be used to model epidemic dynamics 

( Aleta et al., 2020; Basurto, Dawid, Harting, Hepp, & Kohlweyer, 2020; Hoertel et al., 

2020 ), but due to the high computational complexity associated with ABMs, they 

are, in practice, often hard to combine with optimization models in situations with 

a large set of feasible solutions and a large agent population. 

where X t represents the state of the system at time t , and SEIR 

+ 

is a vector-valued function. A detailed description of these equa- 

tions and the associated model parameters can be found in S1 

of the Supplementary Material. The arguments of the state equa- 

tions include the state at time t − 1 due to the accommodation of 

contract tracing (see S1.2). 

Stage 2: Multiobjective optimization 

We consider two objectives in the optimization problem, i.e., 

the minimization of the number of COVID-19 related deaths D 

tot 

and the minimization of economic costs � over the considered 

time horizon. The economic cost at time t is represented by a rel- 

ative loss of workforce and can be written as 

C e (t, λLD 
, τ) = 1 − λLD 

t 

λ

M 

NQ 
t 

N 

− λQ 

λ

M 

AQ 
t 

N 

(2) 

where t ∈ { 0 , . . . , T } , λLD = (λLD 
0 

, . . . , λLD 
T 

) , λLD 
t ∈ [0 . 5 , 1 . 0] , τ = 

(τ0 , . . . , τT ) , τt ∈ [0 . 0 , 0 . 1] , N represents the total population, and 

M 

NQ 
t and M 

AQ 
t denote the number of individuals that are not quar- 

antined and asymptomatic quarantined, respectively, at time t . Pa- 

rameter λ is the default contact rate when no restrictions are in 

place. 4 Let u = { λLD 
, τ} belong to the set A of admissible decision 

variables. Then, the optimization problem can be formulated as fol- 

lows. 

min 

u ∈A 
D 

tot = 

T ∑ 

t=0 

D (t, λLD 
, τ) + S D tot (T , λLD 

, τ) (3) 

min 

u ∈A 
� = 

T ∑ 

t=0 

C e (t, λLD 
, τ) + S �(T , λLD 

, τ) (4) 

subject to X t+1 = SEIR 

+ (X t , X t−1 , λ
LD 
t , τt ) (5) 

N 

test 
t ≤ N 

test , max 
t , t ∈ { 0 , . . . , T } u ∈ A (6) 

As to the terminal costs S X (T , λLD 
, τ) corresponding to each ob- 

jective, we assume linear recovery after T over a recovery time 

�T rec (cf. Caulkins et al., 2021 ). The costs incurred after T over the 

economic recovery time �T rec can therefore be written as follows 

S tot 
D (T , λLD 

, τ) = 

�T rec 

2 

D (T , λLD 
, τ) , 

S �(T , λLD 
, τ) = 

�T rec 

2 

(
1 − λLD 

T 

λ

M 

NQ 
T 

N 

− λQ 

λ

M 

Q 
T 

N 

)
. (7) 

Although the assumption of linear recovery for all objectives is a 

simplification, it allows us to incorporate a consistent logic for all 

terminal costs. Moreover, the terminal cost is an aggregated cost, 

and therefore this cost term can capture different dynamics after 

terminal time T , depending on the value of �T rec . 

We use the Non-dominated Sorting Genetic Algorithm II (NSGA- 

II, Deb et al., 2002 ) to find optimal decision profiles subject to the 

two objectives of minimizing deaths and economic impact. The 

details of the application of this algorithm are presented in S1.3. 

The NSGA-II algorithm is fairly commonly used to find Pareto op- 

timal solutions for multiobjective decision problems but, due to its 

heuristic nature, cannot guarantee optimality. However, exact op- 

timization algorithms cannot in practice be combined with com- 

plex simulation models due to computational issues. The choice of 

4 As we do not consider a structured population model, the shares of individ- 

uals that are not quarantined and asymptomatic quarantined are the same in the 

workforce and in the total population. 
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Fig. 2. Extended SEIR compartmental epidemic model. Compartments where the state of the members is known are noted with ∗ . False information compartments are 

highlighted with red borders. 

using a compartmental simulation model in conjunction with the 

NSGA-II algorithm is our way of balancing between sufficient re- 

alism in modeling epidemic dynamics and the desire to use op- 

timization to find high-quality solutions to the complex decision- 

making problem. This choice enabled us to carry out all compu- 

tations required for developing decision recommendations in our 

methodological framework within 4 days on a computing cluster 

using array runs. 

The two-objective optimization problem (3) - (6) was solved sep- 

arately for each of the six strategy classes. This resulted in six 

Pareto fronts shown in Figure 3 a. Each of these fronts includes 

60 solutions, totaling 360 solution candidates. The solutions are 

well spread between the extremes as a result of a diversity prefer- 

ence in the NSGA-II algorithm. The Pareto fronts corresponding to 

strategies without perfect testing coincide at the high-output ex- 

tremity, corresponding to roughly 229 0 0 0 deaths (0.229% of the 

total population) and 99.1% economic output (i.e., 0.9% loss) com- 

pared to what would be obtained if there was no epidemic nor 

any control measures. These objective function values reflect the 

outcome of applying practically no control strategy at all. Perfect 

testing does not present any tradeoff, since perfect testing both 

improves economic output and lowers COVID-19 related deaths. 

However, the optimal strategy with perfect testing (green dot in 

Figure 3 a corresponding to 128 0 0 0 deaths and 0.995 percent of 

economic output) is determined by the maximum number of tests. 

The combined strategy with perfect testing dominates the other 

strategies with economic outputs higher than approximately 0.95. 

For lower values of economic output as well as deaths, the strate- 

gies with imperfect mass testing become dominating. At the other 

extreme of the fronts, there are solutions with slightly fewer than 

10 0 0 deaths and minimum output (0.5). 

Stage 3: Elimination of non-robust solutions 

Next, uncertainty in the epidemic parameter estimates is con- 

sidered from the viewpoint of such uncertainties creating a risk 

of exceeding the ICU capacity when a Pareto optimal solution is 

implemented. To mitigate this risk, we eliminate solutions from 

the Pareto front that are non-robust in terms of resulting in a 

prohibitively high probability of exceeding the ICU capacity given 

small deviations from the parameters of the epidemic model. In 

particular, we exclude the solutions where the following proba- 

bilistic constraints cannot be met 

P 

[ 
p · ISQ (t, λLD 

, τ) − Q hos > 0 

] 
≤ ε E , ∀ t. (8) 

In these constraints, p is the probability that a symptomatic person 

requires ICU treatment, ISQ is the fraction of the population that is 

infected, symptomatic, and in quarantine (and can therefore be as- 

sumed to require hospital care), Q hos is the hospital ICU capacity, 

and ε E is the highest acceptable probability for exceeding the ICU 

capacity at any time t . Ideally, these constraints would already be 

included in the optimization task itself, but this would lead to nu- 

merical intractability. 
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Fig. 3. Progression of the pruning process as seen in the objective space. 

To estimate the probabilities on the left-hand side of 

Equations (8) , we apply post-optimization sensitivity analysis on 

parameters R 0 (basic reproduction rate) and δ (symptom gener- 

ation rate) that were found to have the strongest combined im- 

pact on model outcomes in simulations performed with strate- 

gies selected from the Pareto fronts (see section S1.4 in the Sup- 

plementary Materials for details). Specifically, we generated 10 

0 0 0 parameter value samples from the distributions of these 

two parameters (see Table S4 for details), and estimated the 

probability of exceeding the ICU capacity for each strategy as 

the share of samples for which p · ISQ (t, λLD 
, τ, φ) ≥ 0 for any t , 

where φ = (R 0 , δ) is an individual sample. The solutions for which 

this share was higher than ε E = 10% were eliminated from the 

Pareto front. The remaining 230 robust solutions are shown in 

Figure 3 b. 

Stage 4: Combining the Pareto fronts 

After robustness-based pruning, the Pareto fronts corresponding 

to different strategy classes are combined to eliminate solutions 

that are dominated by other solutions from a different class. In our 

case study, the combination of the Pareto fronts resulted in a set 

of 74 remaining solutions, which are illustrated in Figure 3 c. 

Stage 5: Clustering the remaining Pareto optimal solutions 

Next, we cluster the remaining solutions in the decision space 

to obtain a small number of representative solutions that to- 

gether cover a diverse set of decision profiles. The k-medoids al- 

gorithm is suitable for when solutions correspond to correlated 

decision profiles over time. The k-medoids algorithm minimizes 

a distance metric with respect to a representative object in the 

cluster ( Kaufmann & Rousseeuw, 1987 ). As we aim to cluster so- 

lution profiles with similar decision profiles, we use the Pearson 

distance to group highly correlated solution profiles in a single 

cluster. Strategies from different strategy classes are set to feature 

a large Pearson distance between them, resulting in no mixing of 

strategy classes within clusters. Let u ∗i and u ∗ j be the control vec- 

tors of two Pareto optimal solutions and let r u ∗i u ∗ j be the Pearson 

correlation coefficient. Then, we can define the Pearson distance as 

d u ∗i u ∗ j 
. = 

√ 

1 

2 

(1 − r u ∗i u ∗ j ) . (9) 

The clustering algorithm selects one of the members of a cluster as 

a medoid, i.e., a representative solution for the considered cluster. 

We cluster the remaining 74 solutions into 10 clusters based on 

strategy class and Pearson distance. The results of the clustering 
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Fig. 4. Summary of results after all pruning steps for visual inspection. In the strategy graphs, red lines depict testing strategies and blue lines lockdown strategies. Solutions 

selected by the DM for final comparison are highlighted with red dots in the strategy graphs and red circles in the Pareto front. The maximum risk level (%) over the con- 

sidered time window is indicated next to each Pareto point. (MT = mass testing, LD = lockdown, CT = contact tracing, s&s = sensitivity & specificity, combo = combination 

strategy with lockdown and testing). 

are shown in Figure 3 c, where solutions corresponding to different 

clusters are depicted by different colours. Even though clustering is 

done in the decision space, we can see that there is little overlap 

between clusters in the objective space. The 10 remaining medoids 

are shown in Figure 3 d. 

Stage 6: Visual inspection of representative solutions 

At this stage, the number of Pareto optimal solutions has been 

pruned from 360 to 10, corresponding to a 97% reduction from 

the original set. The remaining solutions represent robust, non- 

dominated, and relatively dissimilar control strategies, and hence 

they are attractive candidates to be chosen as the final solution. 

Due to the small number of these solutions, visual inspection can 

be applied to compare them with one another. An example of an 

effective visualization is shown in Figure 4 , where red lines in 

the small, solution-specific figures depict the testing rate and blue 

lines depict the strength of lockdown at each time period. 

The DM can now make judgements on the implementability of 

the solutions based on 1) their decision profiles and 2) the pro- 

gression of the epidemic under the remaining strategies (see Fig- 

ure S2 in the Supplementary material section S1.5). Assume that 

the DM holds large temporal fluctuations in the decision profiles 

as unimplementable, and is interested in further investigating so- 

lutions at the extremes of the remaining Pareto front and in the 

knee region (where a small improvement in one objective leads 

to a significant deterioration in the other). Based on visual inspec- 

tion of the medoids presented in Figure 4 , such a DM might select 

the first, seventh, and tenth medoid (counting clockwise from the 

bottom left) for further consideration. The characteristics of these 

three solutions are shown in Table 2 . Strategy 1, where a relatively 

strong lockdown is imposed throughout the entire time horizon, 

leads to a low number of deaths, but also to the economic output 

being reduced to one half. Here, the risk of ICU overload is small 

(only 1.0%). Strategy 3, where a combination of relatively mild lock- 

downs and low testing rates with perfectly accurate tests is used, 

represents the other extreme: economic output is reduced by only 

3%, but the number of deaths is approximately 86 0 0 0. Strategy 

2, which corresponds to mass testing with imperfect tests, can be 

seen as a compromise between the two extremes: the economic 

output is only 4 percentage points lower than with strategy 3, but 

the number of deaths is cut down by a factor of four approxi- 

mately. 

Strategy implications and insights for controlling COVID-19 

During the decision support process and related analyses, sev- 

eral insights were gained into the differences between alternative 

strategies and their implications from the viewpoint of the epi- 

demic’s progression. These insights would be hard to obtain with- 

out the use of optimization and the ability to ultimately focus on a 

small set of representative solutions that together cover the main 

characteristics of different strategies. Yet, the nature of these in- 

sights should be considered qualitative instead of quantitative as 

some of the underlying model assumptions have not been vali- 

dated by experts or based on peer-reviewed literature. 

The first insight is related to the positioning of strategies of dif- 

ferent class on the Pareto front (cf. Figure 3 a). In particular, strate- 
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Table 2 

Remaining non dominated solutions after risk and clustering based pruning and assumed DM prefer- 

ences. 

Strategy # Strategy class Deaths Economic output ICU overload risk 

1 Lockdown 920 0.5 1.0% 

2 Mass testing (sens & spec 85%) 22238 0.93 6.1% 

3 Combination (sens & spec 100%) 86080 0.97 8.6% 

gies at the low death rate, low economic output end of the Pareto 

front use lockdowns, whereas those resulting in high death rates 

and high economic output correspond to testing with perfectly ac- 

curate tests (at a restricted capacity). Most strategies of the lat- 

ter class are nevertheless eliminated in stage 3 of the framework 

based on robustness considerations, since a high death rate is con- 

nected to a high risk of overloading the ICU capacity. In the knee 

area, Pareto optimal strategies use mass testing with imperfect 

tests. Specifically, all of these strategies use high volumes of test- 

ing in the beginning, which significantly slows down the epidemic. 

The longer these high testing volumes are maintained, the fewer 

COVID-19 related deaths there will be. 

The second insight concerns a so-called ‘lockdown by testing’ 

effect related to strategies that use mass testing with imperfect 

tests. This effect stems from the large number of false positive 

results in these strategies, which lead to a large portion of the 

non-infected population being quarantined (cf. Figure S2 in the 

Supplementary material). Thus, direct lockdown measures may be- 

come obsolete. In fact, pure lockdown strategies are dominated by 

those that utilize imperfect tests as long as there is enough testing 

capacity. Nevertheless, issues related to accountability and public 

trust may render strategies utilizing the ‘lockdown by testing’ ef- 

fect unimplementable in real-life situations. 

Our third insight is that all strategies which remain in the 

Pareto front after robustness-based pruning incorporate lockdowns 

in some way, either directly or indirectly through the ‘lockdown 

by testing’ effect (cf. Figure 4 ). To mitigate the risk of ICU over- 

loads (and, thereby, high death rates) with strategies utilizing per- 

fect tests and no lockdowns, a large testing capacity would be re- 

quired. 

4. Case study 2: Colorectal cancer screening 

Problem context 

In Finland, colorectal cancer (CRC) is a crucial concern for public 

health. Incidence rates have increased over the last decades, and as 

of 2017, CRC is the sixth most common cause of death. Screening 

is an effective method to catch and treat potential cancers in their 

early stages, thus improving the prognosis of CRC patients signifi- 

cantly. Screening for CRC is a multi-period process, where partic- 

ipants are screened in, e.g., 2-year intervals. The Finnish program 

utilizes faecal immunochemical testing (FIT) to first filter partic- 

ipants for further examination. Then, those whose FIT result ex- 

ceeds a cut-off level are invited for a colonoscopy ( Finnish colorec- 

tal cancer screening expert groups, 2021 ). During the colonoscopy, 

a visual inspection of the colon is performed, and detected abnor- 

malities in the bowel are recorded, sampled and possibly removed. 

These abnormalities include small benign growths (polyps), differ- 

ent sizes and stages of larger growths (adenomas), and cancerous 

growths (cancers). The samples are then studied to diagnose po- 

tentially cancerous growth, and depending on the results, the cor- 

rect treatment is performed. 

In this example case study, we apply the proposed methodolog- 

ical framework to help improve the current Finnish CRC screening 

program. For the purposes of properly demonstrating each stage 

of our framework, we modify the actual case study presented in 

Neuvonen et al. (2022) , where the model was built in collabo- 

ration with practitioners. In the current program, the FIT cut-off

level is assumed to be the same for both sexes and all age groups, 

which may result in a suboptimal allocation of colonoscopy re- 

sources. Moreover, due to uncertainties related to FIT results and 

participation in the program, there is a risk of exceeding the exist- 

ing capacity of 18 0 0 0 colonoscopies, which could lead to failures 

in carrying out the program or costly rearrangements. To accom- 

modate these considerations, we develop a multistage optimization 

approach based on multiobjective influence diagrams. Specifically, 

we optimize the age- and sex-specific FIT cut-off levels for a five- 

period screening program in view of minimizing both expected 

cancer prevalence and expected costs in the total target popula- 

tion with given colonoscopy resources. Moreover, to mitigate the 

risk of exceeding colonoscopy capacity, we aim to eliminate solu- 

tions that have a higher than 10% chance of exceeding this capac- 

ity. We further assume that the DM is interested in ensuring that 

the strategies make sense from a behavioral perspective, but has 

no quantitative metrics for formally including such considerations. 

A schematic description of the multistage optimization ap- 

proach is shown in Figure 5 . All relevant details of this approach 

can be found in Neuvonen et al. (2022) . In phase 1 (performed sep- 

arately for both sexes), influence diagrams (IDs) are used to cap- 

ture how abnormal bowel states are found and costs generated in 

a given period as a function of screening decisions. An ID can, un- 

der certain assumptions, be transformed into a decision tree and 

solved accordingly ( Howard & Matheson, 2005 ). The case-study- 

specific IDs will be presented in more detail in the description of 

stage 1 of the methodological framework. Within a single period, 

the Modified Augmented Weighted Tchebychev (MAWT) algorithm 

( Holzmann & Smith, 2018 ) is used to optimize the ID for a given 

target segment defined by sex ( g) and age group ( k ), given starting 

prevalences ψ g,k,b for different bowel states b in this segment. This 

produces a set of Pareto optimal solutions with respect to min- 

imizing expected costs and maximizing the expected number of 

detected abnormal bowel states. Corresponding to each such solu- 

tion, the starting prevalences of different bowel states for the next 

period are produced through prevalence update rules that also ac- 

count for the effects of aging. This process is repeated until all tar- 

get segments have been optimized for all possible decision histo- 

ries, i.e., strategies until that period. In phase 2, the Pareto fronts of 

these sex-specific strategies are combined into full strategies, after 

which dominated strategies are removed. The number of strategies 

available is nearly 26 billion, which, together with chance events 

and parametric uncertainties, makes this a numerically complex 

decision-making problem. 

Stage 1: Cancer screening model 

The cancer screening process for an individual member of the 

population in a given period and with a given starting prevalence 

is modeled by an ID. This ID, shown in Figure 5 , is based on the 

current Finnish CRC screening programme. The ID contains deci- 

sion nodes (squares), chance nodes (circles), and utility nodes (di- 

amonds). An instance where exactly one value is realized for each 

chance and decision node is called a path through the ID. A choice 

of a combination of values for the decision nodes (given the real- 
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Fig. 5. Schematic description of the multistage optimization approach to solve the CRC screening optimization problem. 

izations of chance nodes preceding these decision nodes, in case 

there are any) is called a strategy . Thus, a strategy is a collection 

of paths corresponding to all possible realizations of chance nodes 

that can be attained given the choice of values for the decision 

nodes. 

In Figure 5 , the decision nodes 1, 2, and 3 correspond to deci- 

sions about 1) what FIT cut-off value to use to select participants 

for a colonoscopy in the given target segment, 2) whether to use 

an incentive to boost participation rate among invitees in this seg- 

ment (specifically, we assume that an incentive worth 10 euros 

halves the number of non-returned samples) and 3) whether to 

invite the target segment to the screening program. Let us denote 

by s j ∈ S j the alternatives for decision j. Here, the sets S j of such 

alternatives are S 2 = S 3 = { yes, no} and S 1 = { 10 , 20 , 30 , 40 , 50 } μg 

Hg/g of blood in the stool sample. Let (g, k ) with g ∈ G = { F , M} , k ∈ 

{ 1 , 2 , 3 , 4 , 5 } be the target segment, where F and M refer to fe- 

male and male, respectively, and numbers k to the screening pe- 

riod. These periods correspond to a participant’s age in 2-year in- 

tervals so that period 1 refers to 60-year-olds, period 2 to 62-year- 

olds etc. The decisions regarding which alternatives s j to select 

for each target segment are modeled as binary decision variables 

z g,k (s j ) ∈ { 0 , 1 } so that z g,k (s j ) = 1 if and only if alternative s j is 

selected for segment (g, k ) . A full screening strategy Z is a collec- 

tion of these decision variables for all target segments and can be 

written as Z = 

⋃ 

g,k Z g,k where the segment-specific strategies are 

defined as Z g,k = 

⋃ 

j∈ D z g,k (s j ) , ∀ g, k . 

Chance nodes correspond to returning a FIT sample, FIT re- 

sults, continued participation, the discovery of polyps and polypec- 

tomy in a colonosopy, and adverse effects from the colonoscopy. 

In particular, nodes 5 and 8 reveal information about the par- 

ticipant’s bowel state. Here, we assume that the bowel state b ∈ 

B = { N , B , L , R } of a participant can be Normal (N), Benign growth 

(B), Large growth (L) or CRC (R). These bowel states are reflected 

at the population level by prevalences ψ g,k,b = N g,k,b /N g,k , where 

N g,k,b is the number of participants in segment (g, k ) with bowel 

state b, and N g,k is the total number of participants in segment 

(g, k ) . The starting prevalences ψ F, 1 ,b , ψ M, 1 ,b , ∀ b ∈ B as well as the 

segment-specific conditional probabilities for chance nodes are ob- 

tained from the literature. 

The progression of the prevalences of different bowel states are 

affected by two factors: natural progression and screening. The 

natural progression of colorectal cancer is reflected by transition 

probabilities T 

g,k 

b,b ′ between bowel states b, b ′ ∈ B. We assume that 

this progression follows the adenoma-carcinoma sequence, mean- 

ing the transition through bowel states can be represented by a 

linear recurrence relation. Screening, on the other hand, helps de- 
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crease the prevalences of abnormal bowel states in the popula- 

tion, depending on the selected FIT cut-off level and incentive. In 

particular, we assume that any benign growth, large growth, or 

CRC found during the screening pathway is removed and that the 

bowel returns to a normal state. Taken together, the starting preva- 

lences in period k + 1 can be computed using the following differ- 

ence equations: 

ψ g,k +1 ,B (Z g,k ) = (ψ g,k,B − ˜ ψ g,k,B (Z g,k ))(1 − T 

g,k 
B , L 

) + ψ g,k, N T 

g,k 
N , B 

(10) 

ψ g,k +1 , L (Z g,k ) = (ψ g,k, L − ˜ ψ g,k, L (Z g,k ))(1 − T 

g,k 
L , R 

) 

+ (ψ g,k, B − ˜ ψ g,k, B (Z g,k )) T 

g,k 
B , L 

(11) 

ψ g,k +1 , R (Z g,k ) = ψ g,k, R − ˜ ψ g,k, R (Z g,k ) 

+(ψ g,k, L − ˜ ψ g,k, L (Z g,k )) T 

g,k 
L , R 

(12) 

ψ g,k +1 , N (Z g,k ) = 1 −
∑ 

b∈{ B , L , R } 
ψ g,k +1 ,b (Z g,k ) , (13) 

where ˜ ψ g,k, B (Z g,k ) stands for the fraction of participants found to 

have bowel state b in period k as a result of applying screening 

strategy Z g,k . 

Finally, the utility nodes describe the outcomes of a given path 

through the ID. Here, the ‘Cost’ node sums all costs accrued within 

the path, whereas nodes ‘Found R’, ‘Found L’ and ‘Found B’ obtain 

a value of 1 if CRC, large adenoma, or benign growth are found 

along the path, respectively, and a value of 0 otherwise. Node ‘P 

Col.’ collects information about whether a colonoscopy was carried 

out within the path. A strategy is associated with a distribution 

of outcomes for each utility node, where these distributions are 

determined by the probabilities of the paths corresponding to this 

strategy. These distributions can be used to formulate objectives or 

constraints for the optimization problem. 

Stage 2: Multiobjective optimization 

We assume that the DM wants to minimize the combined ex- 

pected prevalence of colorectal cancer across all target segments 


R (Z) = 

∑ 

g,k N g,k, R (Z) / 
∑ 

g,k N g,k as well as the total expected costs 

�(Z) so that the expected total number of colonoscopies N Col (Z) 

does not exceed the capacity of 18 0 0 0. The multi-period optimiza- 

tion problem can thus be formulated as follows: 

min 

Z 

R (Z) (14) 

min 

Z 
�(Z) (15) 

s.t. N Col (Z) ≤ 180 0 0 . (16) 

As illustrated in Figure 5 , the optimization of strategies for the 

complete screening program is carried out in two phases. In phase 

1, the MAWT algorithm ( Holzmann & Smith, 2018 ) is used for find- 

ing the set of Pareto optimal solutions for each segment (g, k ) in 

view of minimizing expected costs and maximizing the probability 

of finding abnormal bowel states (B, L, R). The MAWT algorithm 

was chosen as it helps generate the complete Pareto front for a 

discrete multiobjective optimization problem with any number of 

objectives relatively efficiently compared to other existing meth- 

ods. Specifically, phase 1 of the screening optimization algorithm 

starts by identifying the Pareto optimal solutions for the first pe- 

riod for both sexes based on starting prevalences that have been 

estimated from data. Subsequently, for each of these solutions, up- 

dated prevalences are computed using Equations (10) - (13) to gen- 

erate a list of possible starting prevalence vectors for the next pe- 

riod. This process is repeated in the next period for each possi- 

ble starting prevalence vector and continued until the last screen- 

ing period. This results in a strategy tree, where each branch cor- 

responds to a complete screening strategy. Dominated strategies 

as well as those for which the expected total number of colono- 

scopies exceeds the capacity of 18 0 0 0 are cut out during the pro- 

cess. In phase 2, a single Pareto front is produced for the multi- 

period optimization problem defined in (14) - (16) by first creating 

all possible combinations of the female and male strategies, and 

the expected cancer prevalences and costs corresponding to these 

strategy combinations. Then, the Pareto front is obtained by re- 

moving all dominated strategy combinations from this set. The re- 

sult is depicted in Figure 6 a. At this stage, the front consists of 181 

solutions. 

Stage 3: Elimination of non-robust solutions 

In stage 3, the aim is to eliminate those solutions from the 

Pareto front for which the probability of exceeding the capacity 

for colonoscopies is, due to uncertainties in the model parame- 

ters, higher than 10%. The most important parameters in this re- 

spect are the probability of returning a FIT sample (cf. chance 

node 4 in the ID) and the sensitivity (i.e., true positive rate) and 

specificity (i.e., true negative rate) values of the FIT with a given 

cut-off level determining a positive result (cf. chance node 5 in 

the ID). This is because the probability of returning the sample 

was estimated from previous trials where a different sampling 

method was used, and because the FIT sensitivity and specificity 

estimates were based on literature regarding non-Finnish popu- 

lations. Furthermore, the probability of a colonoscopy being per- 

formed depends on these parameters through equations defining 

the ID (see Section S2.1 in the Supplementary Material for de- 

tails). We, nevertheless, assume that the parametric uncertainty re- 

lated to continuing in the program after a positive FIT result is 

low because the probability of continuation can be reliably esti- 

mated based on previous screening trials in the Finnish popula- 

tion. Furthermore, we assume that the starting prevalences and 

transition probabilities have been accurately estimated, whereby 

uncertainty related to prevalences produced by the model in sub- 

sequent periods can be excluded from this robustness analysis as 

well. 

To estimate the probability of exceeding the capacity of 18 0 0 0 

colonoscopies, we created 10 0 0 0 samples of the chosen param- 

eters using the following distributions: The FIT return rate is as- 

sumed to follow a truncated normal distribution with expected 

value at the original parameter value estimate and a standard de- 

viation of 10% of the expected value. FIT sensitivity is sampled as a 

proportional deviation from the original estimate, where the devia- 

tion is assumed to follow a truncated normal distribution between 

-1 and 1, with a standard deviation of 0.1 and expected value of 

0. The deviation is the same for all FIT sensitivity parameters per 

sample, i.e., all FIT sensitivity parameters are assumed to be per- 

fectly correlated. FIT specificity samples are modeled in a simi- 

lar fashion. Their deviations are assumed to be independent from 

those of the sensitivity parameter. An estimate for the probability 

of exceeding the maximum colonoscopy capacity for a given strat- 

egy Z is obtained as the ratio of samples in which this capacity 

was exceeded to the total number of samples. The solutions for 

which this estimate was higher than 10% were removed, which led 

to the low-risk Pareto front in Figure 6 b. The number of solutions 

remaining in the Pareto front after robustness-based pruning was 

137. 
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Fig. 6. Progression of the pruning process as seen in the objective space. 

Stage 4: Combining the Pareto fronts 

Since we did not consider different strategy classes in this case 

study, stage 4 can be omitted. 

Stage 5: Clustering the remaining Pareto optimal solutions 

Strategies in this case study can be considered categorical by 

type, in that two out of three decision variables (whether to in- 

vite the target segment to the program and whether to use an in- 

centive to boost participation) are binary (yes / no), and the third 

variable (the FIT cut-off value) only has five possible values. Hence, 

we apply the k-modes approach ( Chaturvedi, Green, & Caroll, 2001 ) 

to cluster the remaining 137 strategies in the decision space into 

10 clusters. The k-modes approach uses a similarity measure that 

counts matches in categories between the members of a cluster. 

Clustering was performed using the ‘kmodes’ (v.0.11.1) package for 

Python ( de Vos, 2015–2021 ). The effect of clustering in the objec- 

tive space can be seen in Figure 6 c. 

Stage 6: Visual inspection of the representative solutions. 

The representative solutions for each of the 10 clusters are pre- 

sented along with their objective values in Figure 7 . The 10 re- 

maining solutions represent 5.5% of the initial 181 solutions. The 

probability of exceeding the capacity for colonoscopies is indicated 

next to the marker for the representative solution in the objec- 

tive space. It can be seen that solutions for which this probability 

is highest are mostly found in the high-cost end of the spectrum. 

This, however, is to be expected as a large portion of possible costs 

are related to the colonoscopy operation, and treatment and ad- 

verse effects depending on its outcome and results. 

The DM can use Figure 7 to review the representative strate- 

gies and visually assess their implementability. In this particular 

case, the implementability of a strategy could be judged by con- 

sidering whether the use of incentives within a strategy makes 

sense from a behavioral perspective. For example, the two incen- 

tivized strategies could be considered unimplementable due to in- 

centives being used for some invited age groups but not all. This 

kind of an incentive structure could prove to be difficult to com- 

municate to program invitees and, at worst, lead to the youngest 

age groups not participating at all. The rest of the strategies could 

be considered equally implementable and, coincidentally, equally 

robust in that each of them also has a 0.0% probability of exceeding 

the colonoscopy capacity. Among these strategies the DM might 

then choose, e.g., the one that minimizes the expected total can- 
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Fig. 7. Summary of CRC case study results after all pruning steps for visual inspection. In the strategy graphs, red triangles depict the selected strategy for females and blue 

triangles for males. The solution potentially selected by the DM is highlighted with a red dot in the strategy graph and a red circle in the Pareto front. The risk of exceeding 

the maximum colonoscopy limit (%) is indicated next to each Pareto point. 

cer prevalence in the population (i.e., the strategy corresponding 

to the lower-left corner strategy graph). 

Insights from the cancer screening case study. 

Several insights were gained as a result of the application of the 

framework to this problem. As in the epidemic case study, these 

insights should be considered qualitative by nature. The first in- 

sight is that in most cases, screening with a low FIT cut-off level 

is preferred (cf. strategy graphs in Figure 7 ). Specifically, the cut- 

off levels used in most representative strategies vary between 10- 

20 μg Hg/g, whereas the cut-off level used in the current Finnish 

screening strategy is 25 μg Hg/g. A possible explanation for the 

preference for low cut-off levels is that the use of a higher cut-off

level decreases the number of performed colonoscopies, whereby 

a larger share of abnormal bowel states could go undetected. This, 

in turn, would lead to lower health benefits. Nevertheless, the spe- 

cific reasons for why the suggested cut-off levels differ from cur- 

rent practice merits a more thorough investigation. 

Our second insight is that for females, the lowest FIT cut-off

level is used for nearly all age groups that are invited to the 

screening program. On the other hand, males in many represen- 

tative strategies should start with a higher cut-off level which is 

then decreased in the older age groups. This can be interpreted 

to mean that for females the improved hit rate in screening re- 

sulting from the age-related increase in cancer prevalence does 

not cancel out the benefits gained from catching earlier stages 

in cancer development early on, whereas for males the situa- 

tion might be reversed. A third insight is that, under these as- 

sumptions, incentives would not be very cost-effective, and are 

not used except for males in the high-cost end of the Pareto 

front. 

5. Conclusions and discussion 

In this paper, we have developed a methodological framework 

to support the identification of a small but diverse set of robust 

Pareto optimal solutions to complex, non-linear decision-making 

problems. The main benefit of our framework is that it helps prune 

a possibly very large set of Pareto optimal solutions to a handful 

of robust, non-dominated solutions that represent a diverse set of 

decision alternatives. The small number of such solutions enables 

their thorough visual inspection, which can help make judgments 

about the relative characteristics and implementability of these so- 

lutions in view of practical and political criteria that are not easily 

converted into constraints for the optimization model. Visual in- 

spection in the decision space can be particularly helpful when the 

number of objectives is large so that comparisons in the objective 

space become difficult. Another benefit of our framework is that 

between initial problem structuring and the visual inspection of 
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the remaining solutions, no interaction with the DM is necessarily 

required. This can be useful in cases where time constraints are a 

major issue. If time permits, more interaction can of course be in- 

troduced to different stages of the framework to enhance learning 

and produce a sense of ownership of both the model and the de- 

cision recommendations ( Franco & Montibeller, 2010 ). Such inter- 

action could, for instance, include the iteration of the optimization 

model to include constraints related to implementability require- 

ments that were hidden at the start of the decision process, but 

ultimately discovered through visual inspection. Finally, our frame- 

work is generic in that it can be applied to various types of process 

and optimization models (including black box models), as long as 

the computational burden required for solving the Pareto fronts or 

carrying out the robustness analysis does not become excessively 

high. 

We have illustrated our framework using two example case 

studies: epidemic control and cancer screening program design. 

Both case studies demonstrated the potential of our framework 

for generating insights into complex decision problems that would 

have been hard to obtain without the use of optimization and the 

ability to ultimately focus on a small set of representative solu- 

tions. Although the epidemic case study is more stylized by nature, 

it nonetheless allowed us to get qualitative insights into optimal 

solution pathways. For instance, the framework helped discover a 

so-called ‘lockdown by testing’ effect related to strategies that use 

mass testing with imperfectly accurate tests. Moreover, it showed 

that given adequate testing capacity, mass testing even with imper- 

fect tests can dominate pure lockdown strategies as well as strate- 

gies based on perfect tests but lower capacities. On the other hand, 

in the cancer screening case study, the framework suggested much 

lower cut-off levels for positive FIT results than those currently 

used in the screening program. 

The main limitation of our proposed framework is the high 

computational effort required to solve the sets of Pareto opti- 

mal solutions and to perform the robustness analysis in a situa- 

tion where the dynamics of the underlying processes and decision 

variables are captured by a complex, nonlinear model. In many 

cases long yet manageable computation times (such as the four- 

day computation time in the epidemic control case study) do not 

constitute a major barrier for the application of our framework 

given that it is intended to support large-scale and infrequent (if 

not one-off) decisions. If needed, this effort could be decreased 

by reducing precision in the optimization, or even in the process 

model. The complexity of the system description is a balancing act 

between the numerical tractability of the optimization algorithm 

and the realism of the process model. Often using even inexact al- 

gorithms or heuristics to solve an optimization problem that cor- 

rectly represents the decision at hand can yield considerable ben- 

efits compared to using exact algorithms to solve a much simpler 

problem, or not using an optimization approach at all. Therefore, 

simplifying the process model should be carefully considered be- 

cause this would inevitably reduce the real-life relevance of the 

model results. Finally, the visualization of solutions and objectives 

is an important phase in the proposed framework. Yet, such visual- 

izations in more than three dimensions are known to be difficult. 

However, there exist techniques, such as animations and projec- 

tions, that can help in this task. 

This research opens up several interesting avenues for future 

work. First, it would be important to test the framework in differ- 

ent kinds of contexts in collaboration with real DMs. Potential con- 

texts include, for instance, environmental decision-making and en- 

ergy policy decisions. These kinds of context-specific applications 

are likely to reveal limitations in the applicability of our framework 

as it is currently presented. Some of these limitations could be 

overcome by improving the ways in which the stages in our frame- 

work are carried out. For instance, compared to how we conducted 

the robustness-based pruning of the Pareto fronts in our case stud- 

ies, more advanced sampling techniques could be required in real- 

life applications to enable a larger sample size. Moreover, sensitiv- 

ity analyses could be extended to cover not only the process model 

parameters but also the decision profiles. In the context of the 

COVID-19 case study, for instance, these kinds of sensitivity analy- 

ses could be used to examine the impact of small changes in the 

timing and strength of controls on relevant risk metrics. 
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