Stochastic programming of energy system operations considering terminal energy storage levels

Teemu Ikonen¹, Dongho Han², Jay H. Lee² and Iiro Harjunkoski¹,³

¹Aalto University, Finland
²Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
³Hitachi Energy Research, Germany

email: teemu.ikonen@aalto.fi

FOCAPO / CPC 2023, San Antonio, TX, January 8-12, 2023
Introduction

- Energy storage units provide vital balancing power for energy systems.

- When trading electricity in the day-ahead market, the optimization of energy system operations follows a repeating pattern.

- If the end-effect is not handled, the energy storage is drained empty at the end of each optimization horizon.
Outline

- Overview of methods to mitigate the end-effect
- Proposed approach: electricity price-based valuation of terminal storage level
- Case studies
 - Energy storage arbitrage
 - Hybrid energy system of photovoltaic power and energy storage
A brief overview

Methods to mitigate the end-effect in the literature of energy systems

<table>
<thead>
<tr>
<th>Method</th>
<th>Example references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling horizon</td>
<td>Mauch et al. (2012); Cao et al. (2019); Ding et al. (2015)</td>
</tr>
<tr>
<td>Starting and terminal energy levels enforced to be equal</td>
<td>García-González et al. (2008); He et al. (2015); Wang et al. (2017); Han and Lee (2021)</td>
</tr>
<tr>
<td>Starting and terminal energy levels enforced to be within a given tolerance</td>
<td>Ding et al. (2012); Krishnamurthy et al. (2017)</td>
</tr>
<tr>
<td>Value function approximation</td>
<td>Shin et al. (2017)</td>
</tr>
<tr>
<td>Terminal energy level valuation</td>
<td>Kahvecioğlu et al. (2022)</td>
</tr>
</tbody>
</table>
End-effect mitigation via the objective function

- No mitigation

\[
\max \sum_{t \in H} P_t, \quad |H| = |T|
\]

- Rolling horizon

\[
\max \sum_{t \in H} P_t, \quad |H| > |T|
\]

- Terminal energy level valuation

\[
\max \sum_{t \in H} P_t + V E_{|T|}, \quad |H| = |T|
\]

Indices
- \(t\): A time slot

Sets
- \(T\): Time slots of the day ahead
- \(H\): Time slots of the optimization horizon

Parameters
- \(V\): Value of the stored energy at the end of the horizon

Variables
- \(P_t\): Profit of time slot \(t\)
- \(E_t\): Stored energy level at the end of time slot \(t\)
Proposed end-effect mitigation

| | horizon length $|H|$ | terminal level valuation V |
|-------------------------|-----------------|-------------------------------|
| **proposed methods** | | |
| min price-based valuation | 24 | predicted **minimum** electricity price during the next period |
| mean price-based valuation | 24 | predicted **mean** electricity price during the next period |
| **reference methods** | | |
| no mitigation | 24 | 0 |
| equal start and terminal levels1 | 24 | 0 |
| rolling horizon | 48, 72 | 0 |
| perfect foresight2 | 24, 48, 72 | 0 |

1 Enforced by an additional constraint.

2 Actual price and variable renewable energy (VRE) information.
Multi-day-ahead electricity price forecasting

▶ We forecast electricity prices using the Lasso Estimated AutoRegressive model (Uniejewski et al., 2016)
▶ An open-source implementation for day-ahead prices is available at github.com/jeslago/epftoolbox (Lago et al., 2021)
▶ We have extended the forecast horizon to multiple days
▶ The following features are used:
 ▶ Past electricity prices
 ▶ Forecasted electricity demand
 ▶ Aggregated wind and solar forecast
 ▶ Day of week using a binary representation (e.g., Tuesday is [0, 1, 0, 0, 0, 0, 0])
Multi-day-ahead electricity price forecasting

- Prediction accuracy in the German day-ahead market during April 1 - July 31, 2022

<table>
<thead>
<tr>
<th>N-days-ahead</th>
<th>Mean absolute error [EUR/MWh]</th>
<th>R^2 [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.65</td>
<td>0.821</td>
</tr>
<tr>
<td>2</td>
<td>50.25</td>
<td>0.608</td>
</tr>
<tr>
<td>3</td>
<td>58.12</td>
<td>0.503</td>
</tr>
</tbody>
</table>
Case study 1: energy storage arbitrage

\[
\text{max } \tau \sum_{t \in T} \left[\pi_t (p_i^d - p_i^c) - C_c p_i^c - C_d p_i^d \right] + V E_{|T|}
\]

s.t. bounds on charging,
\[
\text{ bounds on discharging,}
\]
conservation of energy, and
\[
\text{bounds on energy storage.}
\]

Parameters

\[\pi_t\] Electricity price at \(t\)
\[\tau\] Length of time slot
\[V\] Value of the stored energy
\[C_c\] Cost of charging
\[C_d\] Cost of discharging
\[E_0\] Initial stored energy

Variables

\[p_t^c\] Charging power at \(t\)
\[p_t^d\] Discharging power at \(t\)
\[p_t^{\text{da}}\] Traded power at \(t\)
\[E_t\] Stored energy level at the end of time slot \(t\)
Case study 1: energy storage arbitrage

\[
\begin{align*}
\text{max } & \tau \sum_{t \in T} \left[\pi_t (p_t^d - p_t^c) - C_c p_t^c - C_d p_t^d \right] + V E_{|T|} \\
\text{s.t.} & \quad 0 \leq p_t^c \leq C_{\text{max}}, \quad t \in T \\
& \quad 0 \leq p_t^d \leq D_{\text{max}}, \quad t \in T \\
& \quad E_t = E_{t-1} + \eta_c \tau p_t^c - \frac{\tau}{\eta_d} p_t^d, \quad t \in T \\
& \quad E_{\text{min}} \leq E_t \leq E_{\text{max}}, \quad t \in T
\end{align*}
\]

Parameters
- \(\pi_t\): Electricity price at \(t\)
- \(\tau\): Length of time slot
- \(V\): Value of the stored energy
- \(C_c\): Cost of charging
- \(C_d\): Cost of discharging
- \(E_0\): Initial stored energy

Variables
- \(p_t^c\): Charging power at \(t\)
- \(p_t^d\): Discharging power at \(t\)
- \(p_t^{\text{da}}\): Traded power at \(t\)
- \(E_t\): Stored energy level at the end of time slot \(t\)
Case study 2: photovoltaic power & energy storage

New set
\[\Omega \text{ Scenarios} \]
New parameters
\[\gamma^+, \gamma^- \text{ Pos./Neg. deviation penalty coefficient} \]
\[\rho_\omega \text{ Probability of scenario } \omega \]
New Variables
\[\Delta^+_t, \Delta^-_t \text{ Pos./Neg. deviation at } t \text{ in } \omega \]
\[p^s_{t,\omega}, p^d_{t,\omega} \text{ Photovoltaic power at } t \text{ in } \omega \]

\[
\max \sum_{\omega \in \Omega} \rho_\omega \left\{ \tau \sum_{t \in T} \left[\pi_t (p^s_{t,\omega} + p^d_{t,\omega} - p^c_{t,\omega}) - C_c p^c_{t,\omega} - C_d p^d_{t,\omega} - \gamma^+ \pi_t \Delta^+_t - \gamma^- \pi_t \Delta^-_t \right] + V_E |T|_\omega \right\}
\]

s.t. bounds on charging,
bounds on discharging,
conservation of energy, and
bounds on energy storage.

bounds on photovoltaic power,
positive deviation from the day-ahead bidding,
negative deviation from the day-ahead bidding,
Case study 2: photovoltaic power & energy storage

New set
\[\Omega \quad \text{Scenarios} \]
New parameters
\[\gamma^+, \gamma^- \quad \text{Pos./Neg. deviation penalty coefficient} \]
\[\rho_\omega \quad \text{Probability of scenario } \omega \]
New Variables
\[\Delta^+_t, \Delta^-_t \quad \text{Pos./Neg. deviation at } t \text{ in } \omega \]
\[p^s_{t,\omega} \quad \text{Photovoltaic power at } t \text{ in } \omega \]

\[
\max \sum_{\omega \in \Omega} \rho_\omega \left\{ \tau \sum_{t \in T} \left[\pi_t \left(p^s_{t,\omega} + p^d_{t,\omega} - p^c_{t,\omega} \right) - C_c p^c_{t,\omega} - C_d p^d_{t,\omega} - \gamma^+ \pi_t \Delta^+_t, \omega - \gamma^- \pi_t \Delta^-_t, \omega \right] + VE_{|T|, \omega} \right\}
\]

s.t. \[0 \leq p^c_{t,\omega} \leq C_{\text{max}}, \quad t \in T, \omega \in \Omega \]
\[0 \leq p^d_{t,\omega} \leq D_{\text{max}}, \quad t \in T, \omega \in \Omega \]
\[0 \leq p^s_{t,\omega} \leq S_{t,\omega}, \quad t \in T, \omega \in \Omega \]
\[\Delta^+_t, \omega \geq p^s_{t,\omega} + p^d_{t,\omega} - p^c_{t,\omega} - p^d_{t,\omega}, \quad t \in T, \omega \in \Omega \]
\[\Delta^-_t, \omega \geq -(p^s_{t,\omega} + p^d_{t,\omega} - p^c_{t,\omega} - p^d_{t,\omega}), \quad t \in T, \omega \in \Omega \]

\[E_{t,\omega} = E_{t-1,\omega} + \eta_c \tau p^c_{t,\omega} - \left(\tau / \eta_d \right) p^d_{t,\omega}, \quad t \in T, \omega \in \Omega \]
\[E_{t,\omega} \leq E_{t,\omega} \leq E_{\text{max}}, \quad t \in T, \omega \in \Omega \]
Solar irradiance scenarios

- Probabilistic predictions and past of data Global Horizontal Irradiance (GHI) are obtained from Solcast (2019)

- We use a variation of the statistical method by Pinson et al. (2009) to generate scenarios
Energy system and the data

- **Energy system**
 - Energy storage unit is a lithium ion-battery with the maximum discharge/charge power is 4 MW and the total capacity is 16 MWh
 - Photovoltaic power plant with the maximum power of 10 MW (only Case Study 2)
 - Located in Bavaria, Germany
 - Evaluation period of August 1 - October 28, 2022

- **Electricity market data**
 - German Federal Network Agency (https://www.smard.de/en)
 - Transmission system operator Tennet (https://netztransparenz.tennet.eu/)
 - ENTSO-E transparency platform (https://transparency.entsoe.eu/)

- **Solar irradiance data**
 - Predictions and actual values are obtained by Solcast (2019)
Case study 1: Average daily profits

► Min price-based valuation and no mitigation have the same average daily profit with a gap of 7.3% to perfect foresight with $|T| = 72$
► Perfect foresight with $|T| = 24$ is only 0.4% worse than with $|T| = 72$
► Draining the storage empty is beneficial in this case
Case study 2: Average daily profits

- The average profits are expressed relative to the perfect foresight.
Case study 2: cost breakdown

- Min price-based valuation has 1.6 to 38.8% smaller operating costs and 2.4 to 67.4% smaller penalties than no mitigation.
- In comparison to rolling horizon ($|T| = 48$), the corresponding differences are -0.4 to 22.1% and -5.2 to 25.3%.
Case study 2: Demonstration with $\gamma^+, \gamma^- = 2$

- GHI scenarios
 - stored energy
 - no mitigation
 - stored energy
 - min price-based valuation
Case study 2: Demonstration with $\gamma^+, \gamma^- = 2$

- GHI scenarios
- stored energy
 - no mitigation
- stored energy
 - min price-based valuation
Case study 2: Demonstration with $\gamma^+, \gamma^- = 2$

- GHI scenarios
- stored energy
 - no mitigation
- stored energy
 - min price-based valuation
Case study 2: Demonstration with $\gamma^+, \gamma^- = 2$

- GHI scenarios
- stored energy
 - no mitigation
- stored energy
 - min price-based valuation
Case study 2: Demonstration with $\gamma^+, \gamma^- = 2$

- GHI scenarios

- stored energy
 - no mitigation

- stored energy
 - min price-based valuation
Conclusions

▶ We propose the **minimum price-based valuation** method for optimization of energy system operations with energy storage
 ▶ 0.0 to 14.0% greater profits than with no mitigation
 ▶ 0.0 to 3.4% greater profits than with rolling horizon + shorter time horizons!

▶ The method has also **desirable operation characteristics**
 ▶ Reduced cycling of the energy storage → extended life
 ▶ Smaller deviations from the day-ahead bidding

▶ Additional remarks
 ▶ The method of **enforcing start and end storage levels to be equal** is often used in the literature but yields a low profit on the studied energy systems
 ▶ Energy storage arbitrage: draining the storage empty at the end of the horizon is often a part of the optimal operation strategy, if an optimization period starts with cheap electricity prices
References

References (cont.)

Acknowledgement

The financial support from Academy of Finland, through project RELOOP (project number: 330388) is gratefully acknowledged. The calculations presented in this work were performed using computer resources within the Aalto University, School of Science, “Science-IT” project.