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The first version of this code (Mackay et al., 2013) [10] implemented long-range hydrodynamic 
interactions into the open-source molecular dynamics package LAMMPS. This was done through the 
creation of a fix, lb/fluid which was subsequently included as a user-package in the main LAMMPS 
distribution. Here we substantially update this package by making improvements to its accuracy, adding 
significant new features, and by simplifying the use of the package. A new two-pass interpolation and 
spreading scheme is introduced which results in the improved accuracy and numerical stability. New 
features include new output options, several added computes, and mesh geometry option suitable for 
micro- and nano-fluidic device simulations. The original package could require fairly careful calibration 
to obtain accurate thermostating and accurate reproduction of properties related to the hydrodynamic 
size of objects such as colloids. This process has now been largely automated so that the default settings 
should suffice for most applications.

Program summary
Program title: fix lb/fluid
CPC Library link to program files: https://doi .org /10 .17632 /2289cnrdtz .1
Licensing provisions: GPLv3
Programming language: C++
Journal reference of previous version: Comput. Phys. Commun. 184 (2013) 2021–2031.
Does the new version supersede the previous version?: Yes
Reasons for the new version: The new version improves accuracy, adds new features, and simplifies the use 
of the package.
Summary of revisions: A new two-pass interpolation and spreading scheme is introduced to relate 
properties on the fluid mesh to off-lattice particle properties. New features include output options, 
several added computes, and mesh geometry suitable for micro- and nano-fluidic device simulations. 
Calibration processes have been largely automated so that the default settings should suffice for most 
applications.
Nature of problem: The inclusion of long-range hydrodynamic effects into molecular dynamics simulations 
requires the presence of an explicit solvent. Prior to the implementation of this fix, the only option 
for incorporating such a solvent into a LAMMPS [1] simulation is the explicit inclusion of each of the 
individual solvent molecules. This is obviously quite computationally intensive, and for large system sizes 
can quickly become impractical.
Solution method: As an alternative, we have implemented a coarse-grained model for the fluid, 
simplifying the problem, while retaining the solvent degrees of freedom. We use a thermal lattice-
Boltzmann model for the fluid, which is coupled to the molecular dynamics particles at each fluid time 
step.
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1. Introduction

Particles and aggregates in fluids such as colloids and polymers 
can exhibit interesting behavior over a wide range of time scales. 
While local rearrangements can be quite fast, long range hydrody-
namic interactions can lead to relatively slow dynamics. This can 
be true even for single particles in confined environments. For ex-
ample, inertial migration of a particle in a channel [1] can be very 
slow process. Hydrodynamic effects are important for a wide range 
of systems including confined polymers in solutions [2,3], protein 
folding [4], colloidal aggregation [5] and sedimentation [6,7].

Classical molecular dynamics (MD) simulations use Newton’s 
equations of motion to solve for the trajectories of particles in-
teracting via intermolecular forces. LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) is an open-source MD 
package [8] that is parallelized using a spatial domain-decomposi-
tion [9]. It is especially attractive as it is fairly straightforward 
for a user to modify and extend due to its extensive documen-
tation.

We implemented a lattice-Boltzmann (LB) fluid into LAMMPS in 
[10]. LB schemes are based on a discretized version of the Boltz-
mann equation and parallelize well in the domain-decomposition 
scheme used by LAMMPS. In order to couple the fluid to the 
MD particles, a force proportional to the local velocity difference 
between the fluid and particle was used [11–13]. This package 
was subsequently incorporated as a user-package in the standard 
LAMMPS distribution.

In this paper we describe a significant update to the LAMMPS 
lb/fluid package. Substantial improvements are made to the accu-
racy and stability by making use of a new algorithm described 
here for spreading the particle contributions onto the fluid mesh. 
This also substantially simplifies the use of the method as pre-
vious algorithmic values that had to be supplied by the user are 
now automatically calculated. We also add significant new features 
including boundaries suitable for simulations of micro and nano-
fluidic systems.

The following section describes the method and algorithms 
used. Section 3 describes how the code is installed and executed 
as part of a LAMMPS run, while Section 4 provides several test ex-
amples of the new package.

2. Theoretical background

2.1. The lattice-Boltzmann algorithm

The previous version of lb/fluid had multiple implementations 
of the lattice-Boltzmann (LB) algorithm: There was the “standard” 
integrator and an exponential integrator coupled with separate 15 
and 19 velocity models [10]. The inclusion of the exponential in-
tegrator was primarily to improve stability that is tested by the 
coupling force to the particles. However, the current version re-
lies on conservative forces without free parameters that results in 
a more stable method. As a result, we include only the classic lat-
tice Boltzmann method in this version, again with separate 15 and 
19 velocity implementations.

We briefly outline the standard LB algorithm here so that con-
ventions and notation used are clear. Our description follows fairly 
closely to that given in [14]. The starting point is the BGK ap-

proximation of the Boltzmann equation which describes the time 
evolution of the fluid distribution function f [15],(

∂

∂t
+ ∂xγ

∂t

∂

∂xγ
+ ∂ pγ

∂t

∂

∂ pγ

)
f = − 1

τ

(
f − f eq) , (1)

where the summation convention on repeated Greek indices is 
assumed, f eq is the equilibrium distribution, xγ is a position com-
ponent, and pγ is a component of the momentum density. Dis-
cretization is done first by expanding f in terms of tensor Hermite 
polynomials to second order in momentum and evaluating the ex-
pansion coefficients using a Gaussian quadrature [16]. This process 
defines N discrete velocities ek , and a set of weights wk giving rise 
to a D3Q N discrete Boltzmann model. This produces the set of N
lattice Boltzmann equations

(
∂t + ekγ ∂γ

)
fk = − 1

τ

(
fk − f eq

k

) − F f γ ∂pγ fk, (2)

where fk is the distribution function corresponding to one of the 
discrete velocities ek (contributing fkek to the fluid momentum 
density), and F f γ = ∂ pγ /∂t is the force density on the fluid (from 
forces external to the fluid). The lattice equilibria f eq

k from the sec-
ond order Hermite expansion are

f eq
k = wk

(
ρ + 3

c2
pγ ekγ

+ 9

2c4
Hλν

(
ρ

(
a0 − c2

3

)
δλν + pγ pν

ρ

))
,

(3)

where Hλν = ekλekν − c2

3 δλν , c = 	x/	t is the lattice velocity, the 
isotropic pressure is ρa0 and, unless specified, a0 is set to c2

3 . The 
mass density ρ and momentum density p = ρu are moments of 
the distribution function:

ρ =
N∑

k=0

fk, ρu =
N∑

k=0

fkek. (4)

The forcing term on the right hand side of Eq. (2) is approximated 
to lowest order as F f γ ∂pγ fk ≈ F f γ ∂pγ f eq

k which is then rolled into 
a term similar to the collision term making use of the fact that its 
lowest moments are [17,18]∑

k

F f γ ∂pγ f eq
k = 0, (5)

∑
k

F f γ ∂pγ f eq
k ekα = F f α, (6)

∑
k

F f γ ∂pγ f eq
k ekαekβ = uα F f β + F f αuβ . (7)

Eq. (2) is a system of hyperbolic partial differential equations 
which can be converted to a system of first order ordinary differ-
ential equations (ODEs) using the method of characteristics (here 
the characteristics are straight lines along the ei directions). The 
resulting ODEs can be solved to second-order using the implicit 
trapezoidal method to obtain
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fk(x + ek	t, t + 	t) − 	t

2
Rk(x + ek	t, t + 	t)

= fk(x, t) − 	t

2
Rk(x, t),

(8)

where Rk(x, t) is the right hand side of Eq. (2). By defining auxil-
iary distribution functions,

f̄k(x, t) = fk(x, t) − 	t

2
Rk(x, t), (9)

these equations can be made explicit:

f̄k(x + ek	t, t + 	t) = f̄k(x, t) + 	t Rk(x, t). (10)

To evaluate the collision term in Rk using the f̄k (rather than the 
fk), Eq. (9) must be inverted. Doing this and then substituting into 
Eq. (10) yields [14,19]

f̄k(x + ek	t, t + 	t)

= f̄k(x, t) + 	t

τ + 	t/2

[
−

(
f̄k − f eq

k

)
− τ F f γ ∂pγ f eq

k

]
.

(11)

In order to construct f eq
k we need ρ and p = ρu which can be 

found from the f̄k using [14]

ρ =
N∑

k=0

f̄k (12)

pα = ρuα =
N∑

k=0

f̄kekα + 	t

2
F f α. (13)

Another interpretation of the auxiliary distribution f̄k is being 
the true distribution defined at the half time steps 	t/2, 3	t/2, 
5	t/2, . . . while the fk are the true distribution on the full time 
steps 	t, 2	t, 3	t, . . . [20]. Using this interpretation, one can de-
fine a “half-step” fluid velocity as

ρūα =
N∑

k=0

f̄kekα, (14)

which will be useful in constructing the particle-fluid coupling 
force in the next subsection.

How the steps of the LB algorithm fit into LAMMPS is illus-
trated in Algorithm 1, which is a modified version of the pseudo-
code given in the LAMMPS documentation [21]. For comparison, 
we have also shown the steps for the standard LAMMPS NVE fix, 
which is typically used in conjunction with the lb/fluid fix to move 
the particles.

2.2. Coupling MD particles to the fluid

Here we will derive the force coupling between the Molecu-
lar Dynamics (MD) particles and the fluid. This is the main change 
from the earlier version of the package. While we will see the form 
is similar to that in Ref. [22], the new derivation eliminates all free 
parameters from that formalism. The goal here is to achieve an 
immersed boundary style method [23] where the velocity of the 
particle (or node on the surface of the extended particle) exactly 
matches the velocity of the fluid (interpolated to the location of 
the particle/surface node) at the end of each time step. Similar to 
other constraints in LAMMPS such as the SHAKE algorithm [24,25], 
this is done by finding the set of constraining forces (equal and 
opposite for the particles/fluid) that ensure that the particles ve-
locity match the (interpolated) velocity of the fluid at the particles 
location at the end of the time step. As we will see, the algorithm 
below does this exactly in two limits, first when the particles are 

Algorithm 1 LAMMPS pseudo-code illustrating calls for lb/fluid.
for n = 1 to Nt do � Loop over Nt timesteps

ev_set()

fix→initial_integrate()
nve:

vi(t + 	t/2) = vi(t) + 	t/(2mi)Fi(t)
xi(t + 	t) = xi(t) + vi(t + 	t/2)	t

lb/fluid:
calculate f eq

k (ρ(t), u(t)) on local subgrid

calculate/comm f̄k(t + 	t)
calculate/comm ρ = ∑

k f̄k , ρū = ∑
k f̄kek

fix→post_integrate()

LAMMPS neighbor list update and particle communication

force_clear()
fix→pre_force()

force→compute(),
where force ∈ {pair, bond, angle,dihedral, improper, kspace}

comm→reverse_comm()

fix→post_force()
lb/fluid: if (fixviscouslb)

calculate and comm interpolation weights
calculate and comm Force on fluid F f

comm particle FH (t + 	t) mass field
end if

lb/viscous: Fi(t + 	t) = FH,i + mi/(mi + mn,i) Fx,i

fix→final_integrate()
nve: vi(t + 	t) = vi(t + 	t/2) + 	t/(2mi) Fi(t + 	t)
lb/fluid: u(t + 	t) = ū + 	t/(2ρ) F f

fix→end_of_step()
lb/fluid: output fluid � If output to write

output→write() � If output to write
end for

far apart and second when they are very densely packed. Between 
these limits there is a finite, but bounded, error (difference be-
tween the velocities). Just as with other constraints in LAMMPS, 
the total number of degrees of freedom (DOF) in the system are 
reduced by these constraints. As such, this must be accounted for 
when doing things like computing the temperature. This account-
ing is also provided by fix outputs described in a later section.

An interpolation stencil is used to interpolate values from the 
fluid mesh to the particle location (which typically does not coin-
cide with a mesh point). The weight from mesh site j at particle 
(node) i location is denoted as ξi j . By construction we require that ∑

j ξi j = 1. This can then be used to interpolate the value of the 
fluid density to particle i’s location as

ρi =
∑

j

ρ(x j)ξi j, (15)

where ρ(x j) is the density at the mesh site x j . However, for the 
fluid velocity we use a mass-weighted average for the interpolation 
so that

ui =
∑

j ρ(x j)u(x j)ξi j∑
j ρ(x j)ξi j

. (16)

In other words, we actually interpolate the momentum density to 
the location of the particle and then divide by the mass density 
interpolated to the particle site. This helps ensure an exact conser-
vation of momentum in the algorithm. Spreading is the converse 
process to interpolation, and is the term used to describe how the 
particle properties are distributed onto the fluid mesh. The main 
quantity that needs to be spread is the equal-and-opposite force 
to the hydrodynamic force on the i’th particle F i

H . In the previ-
ous version of the package the spreading weight of particle i onto 
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fluid mesh site j was always equal to the interpolation weight ξi j . 
In the current version this will only be true for a limiting case. We 
denote the spreading weight of particle i at lattice site j as ηi j . We 
will not require this sum to one, but will need the normalization 
which is denoted

ηi A =
∑

j

ηi j. (17)

To derive the required constraining forces, we need to also con-
sider the velocity-Verlet algorithm [26] typically used in MD (vari-
ants work fairly similarly). In LAMMPS, the particle velocity at the 
end of the step is computed from the half-step velocity (cf. Algo-
rithm 1) in the final_integrate step:

vi(t + 	t) = vi(t + 	t/2) + 	t

2mi

[
−Fi

H + mi

mi + mi
n

Fi
x

]
, (18)

where mi is the particle mass, mi
n is the fluid mass constrained to 

move with the particle (which we will determine below), Fi
H is the 

constraining force on the particle (making it move with the fluid), 
and Fi

x is the other forces (inter-particle or other MD forces) on 
the particle. Note that the particle and accompanying fluid move 
together so form a pseudo-particle with total mass mi + mi

n . The 
corresponding step for the fluid is from Eq. (13) which, in terms 
of the specific forces in Eq. (18) and converted from momentum 
densities to total momentum for fluid site j, is

ρ ju j	x3 = ρ jū j	x3 + 	t

2

∑
i

[
Fi

H + mi
n

mi + mi
n

Fi
x

]
ηi j

ηi A
. (19)

As an aside, we note that these equations conserve the total 
momentum P in the system:

	P = 	P particles + 	P f luid (20)

=
∑

i

[
mivi(t + 	t) − mivi(t + 	t

2
)

]
(21)

+
∑

j

[
ρ ju(x j) − ρ jū(x j)

]
	x3 (22)

= 	t

2

∑
i

[
−Fi

H + mi

mi + mi
n

Fi
x

]
(23)

+	t

2

∑
i

[
Fi

H + mi
n

mi + mi
n

Fi
x

]∑
j

ηi j

ηi A
(24)

= 	t

2

∑
i

Fi
x. (25)

where in Eq. (24) we have made use of Eq. (18) and (19) and 
switched the order of summation for the second term. To go from 
Eq. (24) to Eq. (25) we have made use of Eq. (17) to find the sum 
over j to be one. Note that if Newton’s third law is obeyed by 
the MD algorithm (which is the case) we should have either: a) ∑

i Fi
x = 0 if the Fi

x are inter-particle forces only or, b) this sum will 
result in the total external force on the system if external forces 
are present. As a result, total momentum is conserved, or changes 
in accordance to Newton’s laws in the presence of external forces.

We now turn to determining Fi
H and mi

n using the constraint 
that we want the end-of-step velocities vi(t + 	t) and u j interpo-
lated to the i’th particle position to be identical. Using the inter-
polated velocity definition Eq. (16) with the final fluid velocity we 
get

ui(t + 	t)

=
∑

j ξi j

(
ρ jū(x j) + 	t

2	x3

∑
s

{
Fs

H + ms
n

ms+ms
n

Fs
x

}
ηsj
ηsA

)
∑

j ρ jξi j
, (26)

= ūi + 	t

2	x3

∑
s

{
Fs

H + ms
n

ms + ms
n

Fs
x

} ∑
j ξi jηsj

ηsA
∑

j ρ jξi j
, (27)

where the first term is the interpolated half-step fluid velocity at 
particle i’s location, and we have switched the order of summation 
in the second term. Now taking the difference between the inter-
polated final fluid velocity and the particle velocity (Eq. (18)) we 
get

ui(t + 	t) − vi(t + 	t) = (ūi − vi(t + 	t/2)) (28)

+ 	t

2
Fi

H

( ∑
j ξi jηi j

ηi A
∑

j ρ jξi j	x3
+ 1

mi

)
(29)

+ 	t

2

Fi
xmi

n

mi + mi
n

( ∑
j ξi jηi j

ηi A
∑

j ρ jξi j	x3
− 1

mi
n

)
(30)

+ 	t

2	x3

∑
s �=i

{
Fs

H + ms
n

ms + ms
n

Fs
x

} ∑
j ξi jηsj

ηsA
∑

j ρ jξi j
, (31)

where we have separated out the term in the sum over particles 
corresponding to particle i. At this point we have not specified mi

n , 
Fi

H , or ηi j and we will use the goal of minimizing this expression 
(difference between the final velocities) to determine these quan-
tities.

We note two limiting cases:

1. Isolated Particles case where there is only one particle or all 
particles are separated. In this case for any mesh site j only 
one particle contributes and ξi jηsj = 0 for i �= s. As a result the 
last line is zero and the choice

mi
n

?= ηi A
∑

j ρ jξi j	x3∑
j ξi jηi j

(32)

will zero the third line (the ?= is used here as we will modify 
this slightly below). Finally

Fi
H = 2

	t

mimi
n

mi + mi
n
(ūi − vi(t + 	t/2)) (33)

will zero the first two lines yielding ui(t + 	t) = vi(t + 	t) as 
desired. Note that this is the same coupling force expression 
derived in Ref. [22] except that now mi

n and the times scale 
for the impulse are fully specified.

2. Coinciding Particles case where particles are either isolated or 
exactly coincide so for any mesh site j either only one particle 
i has ξi j �= 0 or there are Q particles that exactly coincide. 
With a slight modification of mi

n ,

mi
n ≡ η2

i A

∑
j ρ jξi j	x3∑
j ξi jηi j

(34)

and defining the spreading weight ηi j as

ηi j = ξi j
|ξi j|∑Q

r=1 |ξr j|
, (35)

we will show below that this zeros the difference between the 
particle and interpolated fluid velocity in both this case and 
in the isolated particle case, with the choice of Eq. (33) in all 
cases.

4
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To see that Equations (33), (34), and (35) work for both limit-
ing cases, first note that in case 1 the sum in the denominator 
Eq. (35) always has only one term, which cancels with the term in 
the numerator and the spreading weight ηi j = ξi j , the interpolation 
weight. As a result, in case 1 the spreading normalization ηi A = 1
and so Eq. (34) and (32) become numerically identical. Thus these 
expressions again yield ui(t +	t) = vi(t +	t) as desired for case 1.

For limiting case 2, the denominator in Eq. (35) is Q |ξi j |, where 
particle i is one of the Q coinciding particles (so all have same 
interpolation weight), and ηi j = 1

Q ξi j . The normalization then be-
comes ηi A = 1/Q . In this case, the effect will be that the Q coin-
ciding particles equally split the properties of one “super” pseudo-
particle with a total full weight of ξi j . Further, the last line in the 
velocity difference equation, Eq. (31) can be rewritten as identical 
terms to the first terms in the brackets on the previous two lines 
(so a total of Q such terms). As ηi A = 1/Q in this case, we once 
again get ui(t + 	t) = vi(t + 	t) as desired.

In the more general case where the interpolation weights for 
multiple particles may overlap, but not perfectly coincide, Eq. (35)
is a weighted sum of the Q particles contributing to a fluid mesh 
site j. In this case we may not get ui(t + 	t) = vi(t + 	t) exactly, 
but it should be very close.

One downside to using Eq. (35) is that it requires two passes 
over the particles to compute. The first pass works out

w1, j =
∑

s

|ξsj|, (36)

which is stored in an array (with dimensions of the fluid mesh 
size) and in the second pass over the particles we work out

ηi j = 1

w1, j
ξi j|ξi j|, (37)

for each particle. While more expensive than a single pass, the 
overall fluid-particle force calculation is still O(N) for N particles. 
In most examples of using the lb/fluid package this calculation is a 
small part of the total computational load so that the extra work is 
negligible and well worth the cost. Significantly, this removes the 
need for the user to specify a correct value for mi

n . This seemed to 
be a significant issue for many users of the first version of lb/fluid
as poor choices for mi

n resulted in poor performance, especially in 
thermostating of the particles when a fluid with thermal fluctua-
tions was used.

2.3. Interpolation stencils

The algorithm above requires a choice of interpolation stencil 
with weights ξi j which interpolated particle i information at loca-
tion rpi = (xpi, ypi, zpi) to fluid mesh site r f j = (x f j, y f j, z f j). The 
stencil weight

ξi j = φ(	xij)φ(	yij)φ(	zi j)

where 	ri j = (rpi − r f j)/	x and 	x is the lattice spacing. Three 
different stencils are provided in the package with the choice spec-
ified by the user in the input script:

1. Trilinear stencil: This is a standard 2-point linear interpolation 
(in each dimension) so

φ(	) = 1 − |	|, |	| < 1. (38)

2. Three-point immersed boundary stencil: This is a commonly used 
immersed boundary stencil [23],

φ(	) =
{

1
3 (1 + √

1 − 3	2), |	| ≤ 0.5
1
6 (5 − 3	 − √

1 − 3(1 − 	)2), 0.5 < |	| < 1.5.

(39)

3. Keys’ cubic spline interpolation stencil: This 4-point stencil is of-
ten used for scaling images and video as it preserves detail 
better than linear interpolation. Keys showed that this pro-
duces third-order accuracy [27]. The stencil is

φ(	) =
{

3
2 |	|3 − 5

2 	2 + 1, |	| ≤ 1

− 1
2 |	|3 + 5

2 	2 − 4|	| + 2, 1 < |	| < 2.
(40)

These stencils are all zero outside their defined range. The default 
stencil (used if not otherwise specified by the user) is the trilinear 
stencil.

There are advantages and disadvantages to each stencil. The tri-
linear stencil’s main advantage is that it extends at most 	x from 
the particle which allows particles to approach walls (and each 
other) without significant overlap of the stencil. The disadvantage 
of the trilinear stencil is that it has stronger commensurability 
effects from the underlying mesh [18]. The immersed boundary 
stencil reduces these mesh effects [23] but at the cost of re-
duced accuracy. In addition, the re-weighting necessary for densely 
packed nodes in the spreading stencil ηi j somewhat negates the 
stencil smoothness over the mesh. The 4-point stencil produces 
similar results to the trilinear stencil. It produces a more accurate 
interpolation at the cost of extending up to 2	x from the particle. 
However, the stencil accuracy appears to be one of the smaller dis-
cretization errors overall so usually one of the other two stencils 
would be preferred.

2.4. Degrees of freedom and temperature

As with the earlier package version, it is possible to add ther-
mal fluctuations to lb/fluid (via the noise option). The algorithm 
for the noise in the first version of the package was documented 
in [13]. Here, as we have removed the exponential integrator and 
use the standard LB algorithm, the noise implementation is equiv-
alent to that in [28]. The noise is that of an ideal fluid obeying the 
fluctuation dissipation relation

〈sαβ(r, t)sγ ν(r′, t′)〉 = 2ηαβγ νkB T δ(r − r′)δ(t − t′), (41)

where sαβ is the fluctuating stress and ηαβγ ν is the viscosity (ten-
sor). Nonideal fluids would require augmenting this approach [29]
which is not done here.

As noted above, the particle-fluid coupling acts as a constraint 
that forces the particle velocity and fluid velocity interpolated to 
the particle location to match. As a result, the i’th particle moves 
as a pseudo-particle with an effective mass mi +mi

n . If the temper-
ature of the particle is then “measured” using the kinetic energy 
and equipartition, then this effective mass is what should be used 
in the kinetic energy. However, if two or more particles are in close 
proximity the particle-fluid constraint on each particle can make 
them dependent on each other. This is most clear for coinciding 
particles (case 2 in the previous subsection). In that case, if we 
have two coinciding particles, they are effectively both constrained 
to move together with their accompanying fluid. Two such parti-
cles should only count as one particle when counting the degrees 
of freedom (dof ). Similar issues in counting degrees of freedom are 
encountered in other constraints in LAMMPS such as the SHAKE 
constraint. A fairly convenient measure for dof in this case would 
be

dofLB = 3
∑

s

ηsA . (42)

For isolated particles ηsA = 1 so this just gives three degrees of 
freedom per particle (as would be expected for a point particle). 
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For Q coincident particles ηsA = 1/Q so we would get just 3 de-
grees of freedom as would also be expected as they act as a single 
particle. The lb/fluid fix has a scalar output for the particle temper-
ature using equipartition giving

T =
∑

i(mi + mi
n)v2

i

dofLBkB
. (43)

If other constraints, such as the rigid fix, are also present then 
the dof removed by the other constraint will not be accounted for. 
However, in that case the user can usually calculate the number of 
degrees of freedom fairly straightforwardly (e.g. 6 per rigid body 
that can translate and rotate freely in 3 dimensions) and so there 
is an option for the user to specify the dof to override the default 
calculation.

There is also a vector output that the user can access for output 
(for instance in a thermo command) that give the fluid tempera-
ture, total mass, and total momentum in the system. Total here 
includes fluid plus all particles.

3. Installation and execution

The LB fluid and particle force calculations are implemented in 
LAMMPS through the creation of a series of “fixes” in the lb/fluid
package. In the LAMMPS formalism a “fix” is almost any opera-
tion performed during the execution of a normal time step of the 
program. This package is included as a user package and so must 
be included in the build either using the make yes-latboltz
if building using make, or cmake -D latboltz=yes if using 
CMake (this copies the package source files into the main LAMMPS 
source directory). Further steps in compiling LAMMPS are de-
scribed well in the standard LAMMPS documentation.

The main fix is lb/fluid. This is called with three required argu-
ments and also has several optional arguments. The first required 
argument, as with all LAMMPS fixes, is nevery which is an in-
teger which tells LAMMPS to call this fix every nevery time 
steps. In almost all cases, this should be set to 1. The second and 
third required arguments are the fluid viscosity and density. 
These should be specified in the same units as used in the rest of 
the input file (usually specified via the LAMMPS units command 
earlier in the input script). Convenient units when using the pack-
age include the micro and nano units (for micro and nano-fluidic 
simulations respectively).

The algorithm uses LAMMPS MPI domain decomposition to 
partition the lattice across processors. As a result, each processor is 
responsible for the atoms and LB lattice sites within its portion of 
the domain. In addition, each local lattice has a “ghost” region of 
width two dx around it that overlaps the domain in neighboring 
processors. Information in these ghost regions is communicated 
between the processors (indicated by comm in Algorithm 1) in each 
timestep. To ensure proper functioning of the algorithm, it is im-
portant that the communication cutoff in LAMMPS, for particles 
that interact with the LB fluid, is large enough to cover the 2dx
ghost region of the LB lattice (i.e. LAMMPS needs to know about 
the ghost atoms in the ghost region covered by the LB lattice). This 
can be set via the LAMMPS comm_modify cuttoff command. 
Care should be taken, however, that you don’t inadvertently set 
this too small based on the other potentials present in the system.

Optional arguments for lb/fluid include dx, the mesh spacing for 
the fluid grid, and dm, the mass unit for internal LB calculations. 
For computational efficiency it is typically best to select dx to be 
no smaller than absolutely necessary. Generally dm should be cho-
sen so that the fluid density scaled to units of dm/dx3 is of order 
one (to minimize roundoff errors). The lattice Boltzmann algorithm 
uses the same time step as the rest of LAMMPS which is set us-
ing the standard LAMMPS timestep command. For a number of 

algorithmic reasons, the speed of sound is set to c/
√

3 (see dis-
cussion of a0 in Section 2.1). Generally this will not be the actual 
speed of sound in the fluid you are modeling. As the algorithm is 
not designed to accurately reproduce sound wave dynamics, this is 
not a problem as long as there is a separation of velocity scales 
in your problem (i.e. any fluid velocities that arise in your prob-
lem are roughly an order or magnitude, or more, smaller than 
c/

√
3). This is a common constraint of standard LB algorithms and 

not unique to the lb/fluid package. By default the algorithm uses 
a 15-velocity LB model but a 19-velocity model can be used by 
specifying the D3Q19 option.

The stencil option can be used to select among the sten-
cils discussed in Section 2.3. This option takes a second integer 
argument to select the 2, 3, or 4-point stencil (2-point is the de-
fault). Fluids exhibit thermal fluctuations at small length scales 
(nm) leading to Brownian motion of suspended particles. Thermal 
fluctuations are controlled via the noise option that takes two 
further arguments, a Temperature (typically in Kelvin) and a seed 
for the random number generator (integer). The resulting temper-
ature in the fluid can be assessed via the array variable f_ID[1]
where ID is the fix id (set by the user in the input script) for the 
lb/fluid fix.

There are also a variety of options for system boundaries. One 
could, in principle, use atoms in fixed positions to form the fluid 
boundaries as that is what the immersed boundary method is de-
signed for. However, for flat boundaries along coordinate directions 
it is simpler and more computationally efficient to apply boundary 
conditions at these walls. The boundary conditions for lb/fluid are 
specified independently to those for the atoms. Usually the user 
will specify similar boundary conditions for both, but there are 
cases where it can be useful to specify different boundary condi-
tions [3]. The simplest case, and default if not specified, is periodic 
boundary conditions in all directions for the fluid. The next sim-
plest case is periodic boundaries in two directions and flat bound-
aries coinciding with the mesh in the other (taken to be along z) 
using the zwall_velocity option. In this case, the velocity of 
the fluid can be specified on the top/bottom boundary, providing 
a straightforward way of implementing Couette flow (shear) in the 
system between the walls. The user can also specify a body force 
using the bodyforce option on the fluid which, when between 
stationary walls, provides Poiseuille flow. Much more complex ge-
ometries can be created using the pit geometry options. In this 
case the boundary condition at the walls is always no-slip/no-flow 
and the boundaries are technically located halfway between lat-
tice sites. The pit options allow channels, pits, barriers, and other 
geometries and will be illustrated in Section 4.

The main form of output is the dumpxdmf option that takes 
two arguments, an integer indicating the dump is done every this 
number of time steps, and a file name to write to. The full grid 
density and velocity field is written in xdmf format, a binary for-
mat that can be read by programs such as the open source Par-
aview [30]. In addition to plotting, Paraview also provides some 
tools for analysis of the density/fluid flow and can also read nor-
mal LAMMPS dump files written in the VTK format. Density and 
fluid flow plots in Section 4 were produced with Paraview.

Finally, there is a write_restart option to write data pe-
riodically to restart the lb/fluid fix and a corresponding read_
restart option to read data to restart the fix. These restart files 
would need to be used in conjunction with corresponding restart 
commands for LAMMPS in order to completely restart the simu-
lation. Care should be taken to ensure they are written at cor-
responding time steps. The lb/fluid restart files can be very large 
when the fluid mesh has a large number of sites.

A second fix that will almost always be used with the lb/fluid
fix is the lb/viscous fix included as part of this package. This fix 
is analogous to the standard LAMMPS viscous fix. This fix applies 
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the hydrodynamic forces to the particles. It also rescales the non-
hydrodynamic forces by mi/(mi + mi

n) so that the particles move 
as if they have a mass mi + mi

n , as discussed in Section 2.2 above. 
For the particles to actually move though, an additional standard 
LAMMPS fix such as the NVE or RIGID fix needs to be invoked. 
Note that during a timestep, fix operations run in the order they are 
invoked in the input script. As a result, any forces added by fixes 
such as the addforce fix, as opposed to standard pair/bond forces, 
will only be properly rescaled if they are called before the lb/fluid
and lb/viscous fixes. If they are added after these fixes, lb/fluid will 
not know about these forces and you will not end the time step 
with matching velocities of the particle and fluid interpolated to 
the particle position.

There is also a fix, lb/momentum that works analogously to the 
built-in momentum fix for particle momentum only, but addition-
ally includes the fluid momentum. This allows the user to subtract 
off the total (particle plus fluid) linear momentum from the sys-
tem. The algorithm should conserve momentum to numerical pre-
cision so this fix is primarily useful for long runs and systems with 
large mesh sizes and/or large numbers of particles.

Documentation is provided in the /doc directory in a format 
compatible with the standard LAMMPS documentation.

4. Test run descriptions

We provide here some tests that illustrate the use and perfor-
mance of the package. These examples, along with some sample 
output, are included in the /examples/PACKAGES/latboltz directory. 
Although this version of the package is faster than the original, and 
much faster than modeling the “solvent” explicitly using particles, 
the majority of the computational time is still typically spent up-
dating the lattice Boltzmann fluid. As such, in most cases increas-
ing the number of lattice sites will significantly increase the com-
putation time while increasing the number of particles will only 
modestly increase the computational time. However, the package 
parallelizes well so using additional processors can ameliorate the 
added wall clock time. Note that the system dimensions must be 
divisible by 	x. The parallelization uses the standard LAMMPS do-
main decomposition so if you wish to use N processors in a given 
direction then L/(N	x) must also be an integer (where L is the 
system size in the given direction).

4.1. Subgrid particles

Force couplings between fluids and particles that are related 
to the velocity difference between the fluid and particle, such as 
the one we use in Eq. (33), are very closely related to the Debye-
Bueche-Brinkman (DBB) model [31–33] (similar model except the 
linearized Navier-Stokes is used). In such a model, the drag force 
experienced by a spherical particle with radius R moving with 
speed v through an otherwise quiescent fluid is

F = 2β2

2β2 + 9
F S , (44)

where F S = 6πηR v , and β is a dimensionless parameter given 
by β = R

√
γ λ/η. γ is the coefficient of the velocity difference in 

Eq. (33) so here

γ = 2

	t

mimi
n

mi + mi
n
. (45)

Finally, λ is the density of particles so for a uniform density we 
would have λ = N/(4/3π R3) if N is the total number of particles 
comprising our composite spherical particle. Putting this together 
one can obtain the following relation:

Fig. 1. Inverse of the drag coefficient measured using a constant force in the 
x-direction to pull the particle through the fluid (solid symbols) and using the 
fluctuation-dissipation relation valid in the no-slip limit (open symbols) using the 
trilinear (a) and three-point immersed boundary (b) stencils. Circles are for single 
point particles (N = 1), squares are for 4-point (Nr = 4) and triangles for 6-point 
(Nr = 6) composite particles, both with nodes within a shell of radius 0.204	x
and with fixed relative distances (implemented using the standard LAMMPS rigid
fix), and diamonds for 4-point composite particles (Nb = 4) with harmonic bonds 
between the nodes (same average size as the corresponding rigid composite parti-
cles). Results for different particle constructions at the same value of 	t have been 
shifted slightly horizontally so that they can be distinguished. The lines correspond 
to linear fits through the corresponding data (blue for v/F and orange for D/kB T ). 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

v

F
= 1

6πηR
+ mi + mi

n

2mimi
n N

	t. (46)

The constant is the inverse of the drag coefficient for Stokes Drag 
limit that is achieved as 	t → 0. Note that the term proportional 
to 	t is only the error related to the DBB-like coupling term be-
tween the fluid and particle. There could be other discretization er-
rors although one would expect those to be proportional to 	t2 as 
that is the order of discretization errors for the lattice-Boltzmann 
(and velocity-Verlet should be proportional to 	t4).

We first examine “subgrid” particles, that is those of size less 
than 	x. As the resolution of the mesh is 	x, this limits the effec-
tive size of a particle [18]. To some degree, such particles represent 
the “worst case scenario”, at least for relative errors, as the particle 
size is comparable to the resolution of the algorithm. We con-
struct “composite” particles from one, four, and six nodes. Nodes 
are placed uniformly on a shell of radius of 0.204	x initially and 
their relative location is either held fixed using the LAMMPS rigid
fix to integrate the composite particles motion or are bonded with 
a harmonic bond of unit strength. The single node particle and 
bonded particles are integrated using the LAMMPS NVE fix. Hydro-
dynamic forces are created via the lb/fluid and lb/viscous fixes as 
discussed above. The total mass of the composite particle is the 
same for all constructions. Here we use values for the fluid density 
and viscosity appropriate for water and use LAMMPS nano units 
for all measurements (nm, ns, ag).

The drag force is measured in two different ways. In the first, 
a constant force is applied in the x-direction to pull the particle 
through the fluid and measure its resulting speed v . To avoid bias 
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from selecting a specific particle path relative to the mesh sites 
a small oscillating force is applied in the transverse directions so 
that the particle samples distances of 1-2 	x in the transverse di-
rection. Results are shown using solid symbols in Fig. 1a for the 
trilinear stencil and in Fig. 1b for the three-point stencil. Note that 
all subgrid particle constructions (one, four, six nodes, rigid and 
elastically bonded) give similar average results for a given sten-
cil indicating that the stencil overlap is accurately being accounted 
for. The results also follow the linear relationship expected from 
Eq. (46). One significant difference between the results for the tri-
linear and three-point stencil is the much wider range of values 
measured in the trilinear as the composite particles traverse the 
lattice. This is expected and was seen in earlier versions of the 
algorithm [18]. The three-point immersed boundary stencil is ex-
plicitly constructed to avoid this issue [23], at the cost of smearing 
the particle over a finite range. In particular, the maximum of the 
immersed boundary stencil is 1/2 (along each coordinate direc-
tion) while the trilinear stencil maximum is one when the particle 
and fluid mesh node coincide. In this algorithm, the three point 
stencil has a uniform, and larger, mi

n across the lattice whereas mi
n

varies for the trilinear stencil depending on where in a given lat-
tice cell the particle is. The larger effective size of the particles for 
the 3-point stencil is also evident in the intercept (proportional to 
1/R in Eq. (46)) for this case being smaller than for the trilinear 
stencil.

In the second method, we make use of the fluctuation-
dissipation relation that is true in the no-slip limit, where the 
drag coefficient should be kB T /D where D is the diffusion con-
stant for the particle in a fluid with thermal fluctuations at tem-
perature T . Technically this is only true in the no-slip limit so 
agreement between the value from the fluctuation-dissipation and 
drag measurements can be used as a test of whether or not we 
have achieved that limit, or at least an acceptable approximation 
to that limit. Here we put 100 subgrid particles (constructed in 
the same manner as for the drag test) in the box and measure 
their diffusion constant using the built-in LAMMPS msd compute 
(mean-square-displacement) and following closely to the DIFFUSE 
example included in the LAMMPS distribution. In principle, the 
diffusion constant will be affected by the presence of the other 
particles. However, this is a very dilute solution and we verified 
that a single particle (in a much longer run) has the same dif-
fusion constant within the statistical errors of our measurement 
in this case. Not surprisingly, the drag coefficient values for the 
two methods only coincide as 	t → 0. For all practical purposes 
though, a time step of 0.0001 yields statistically indistinguishable 
results and a time step of 0.00025 would probably be acceptable 
for many situations.

Considering that we are explicitly forcing the particle and fluid 
velocity at the particle to match at the end of the time step it 
might be surprising that the results above demonstrate that the 
“no-slip” limit is only achieved in the limit that 	t → 0. The 
deviation comes from the fact that what we are actually simu-
lating is a DBB style model where the force coupling, Eq. (33), 
necessarily contains the inverse of the time step so in the limit, 
F H ∼ (u − v)/	t → 0/0 as 	t → 0. The algorithm fairly faith-
fully reproduces the expected analytical results of the DBB model 
in this. Earlier implementations of the algorithm often gave poor 
temperature reproduction. That is not the case here. The average 
kinetic temperature (scalar fix output computed via the kinetic en-
ergy using Eq. (43)) is found to be reasonably independent of 	t
and is within a few degrees of the set point (300 K in this exam-
ple).

Fig. 2. (a) Starting configuration for 284 “atoms” in LAMMPS created inside a spher-
ical region (using built-in LAMMPS commands). (b) Final configuration of atoms 
where they have condensed onto a spherical surface (making use of LAMMPS wall 
potential on the surface) after a normal MD run using a Langevin thermostat with 
a gradually decreasing temperature. This configuration is then used as the surface 
mesh of a colloid in an LB fluid simulation. (c) Inverse of the drag coefficient mea-
sured using a constant force in the x-direction to pull the colloid through the fluid 
(solid symbols) and using the fluctuation-dissipation relation valid in the no-slip 
limit (open symbols) using the trilinear (squares) and three-point immersed bound-
ary (circles) stencils. The Diffusion constant is corrected for finite-size effects which 
are more significant in this simulation than for the subgrid particles in the previ-
ous section. Results for different particle constructions at the same value of 	t have 
been shifted slightly horizontally so that they can be distinguished.

4.2. Extended surface with mesh

This example illustrates how standard LAMMPS routines can be 
used to create a surface mesh to model a large colloidal sphere. A 
sequence of MD runs is first done to create the sphere. The ini-
tial configuration consists of 284 randomly created atoms (using 
LAMMPS create_atoms command) inside a spherical region (defined 
via the region command), as illustrated in Fig. 2a. LAMMPS soft po-
tential (repulsive) is used during a short MD run (20000 steps) 
to push particles, some initially very close together, apart. At the 
same time, a Lennard-Jones potential is put in place on the wall 
of the sphere (using a LAMMPS fix wall/region command) which 
starts the condensation of atoms onto the wall of the sphere. This 
is followed by a somewhat longer longer run (500000 steps) where 
the particles interact with each other via a repulsive Lennard-Jones 
potential, interact with the sphere wall with an attractive Lennard-
Jones potential, and experience a gradually decreasing temperature 
(using a fix langevin command). A quick minimization then finalizes 
the atom locations on the surface of the colloidal sphere leaving 
the configuration illustrated in Fig. 2b.

The colloid is then subject to simulations using the lb/fluid
package similar to those for subgrid particles. We first measure 
the drag force coefficient for the colloid by applying a constant 
force in the x-direction and then measuring it’s resulting speed 
through the fluid. This is plotted in Fig. 2c as solid symbols for 
both the trilinear stencil (square) and immersed-boundary 3-point 
stencil (circle). The colloid is 6.67	x in diameter and the relative
difference in the drag coefficient between the two stencils, or as a 
function of 	t is considerable less than seen for the subgrid parti-
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cles. As mentioned above, this smaller relative error is expected as 
the particle size increases to a size substantially larger than 	x.

We also do a simulation with thermal noise in the fluid. In 
the x-direction we add an external harmonic potential centered 
at x = 0, V = 1

2 ax2. The equipartition theorem then allows a tem-
perature measurement independent of Eq. (43) as Tx = a〈x2〉/kB . 
As the particle is unbound in the yz-plane it undergoes a random 
walk from which we can measure the diffusion constant. Similar 
to the subgrid particles, the fluctuation-dissipation theorem relates 
the inverse of the drag coefficient to D/kB T in the no-slip limit. 
As there is only one colloid in this simulation and the drag force is 
considerably larger (hence smaller diffusion constant) for the col-
loid than for the subgrid particles, these simulations needed to be 
considerably longer than those for the subgrid particles to obtain 
similar statistical accuracy. The results for the diffusion measure-
ment are shown in Fig. 2c as open spheres. As for the subgrid 
particles, the no-slip limit is achieved within statistical errors for 
	t = 0.0001.

Eq. (43) is not as accurate in measuring the temperature for the 
large extended particles. This is not surprising as the derivation 
is only exact in the limit of very closely, or very widely, spaced 
nodes. For the trilinear stencil the temperature from Eq. (43) gave 
an average of 313 K, compared to a set point of 300 K while the 
three-point stencil gave an average of 259 K. The statistical error is 
estimated at 1-2 K so this suggests a systematic error. There was 
no discernible variation with 	t . To test whether the variation was 
due to the approximations in deriving the formula or an actual 
systematic error in the temperature we made use of the equipar-
tition theorem for the particles diffusing in a harmonic potential 
to get an independent measure of the temperature. This yielded 
temperatures within 10 K (3%) of the 300 K setpoint for both sten-
cils, smaller than the statistical errors for this measurement. (The
correlation time for kinetic temperature is very short whereas the 
correlation time for a measurement based on positions is much 
longer, hence the larger statistical errors.) From this we conclude 
that the large colloid is well thermalized in the LB fluid.

4.3. Immersed boundary wall

Boundary conditions for the LB algorithm can be implemented 
using a number of methods, the most common of which is the 
bounce-back condition that will be discussed in the next subsec-
tion. However, since the LB fluid is coupled with MD procedures of 
LAMMPS, it is also possible to create complex bounding geometries 
using MD particles. In this section, we illustrate such immersed 
boundaries with the example of translocation of a single polymer 
chain through a solid-state pore.

Our system consists of a polymer chain with composite mono-
mers, a solid-state nanopore carved out of an atomistic wall, and 
the LB fluid. The simulation box has dimensions of 48 nm ×
30 nm×30 nm. Snapshots of the system at the initial stages of the 
simulation and upon insertion of the polymer are shown in Fig. 3. 
Normally these simulations would be done with thermal noise, but 
here we illustrate the flow without noise to demonstrate the back-
flow effect (as mentioned above, it is straightforward to turn on 
the noise in the package with the noise option).

The polymer chain comprises of composite monomers with one 
central atom and 31 shell atoms. The shell atoms interact with the 
fluid via fix lb/fluid and fix lb/viscous while the excluded volume 
effects are ensured using a shifted-truncated Lennard-Jones (LJ) 
pairwise interaction between the central atoms, and the central 
and wall atoms. The presence of the shell gives the monomers a 
well defined hydrodynamic radius [18]. The composite monomers 
are treated as a rigid body by applying fix rigid. This decreases 
the computational cost of the simulations without compromising 

Fig. 3. A realization of polymer translocation simulated using multiscale MD-LB 
method. The blue curves show the fluid streamlines on the central plane, the poly-
mer chain is shown as a succession of green spheres, and the grey block of spheres 
is the solid-state wall. The nanochannel is created by a hole in the middle of the 
wall. (a) Shows an initial state where the chain is far away from the pore while 
(b) shows the chain as it threads through the nanochannel. The presence of the 
chain inside the channel decreases the cross-section and creating a backflow which 
results in formation of vortices around the channel.

accuracy. The central atoms are connected via Finitely Extensible 
Nonlinear Elastic (FENE) bonds [34].

The wall atoms, similar to shell atoms, interact with the lb fluid 
via fixes lb/fluid and lb/viscous. The nanopore is made by deleting 
a 10 nm × 4 nm × 4 nm block from the middle of the wall. The 
calculated forces on the wall are set to zero at every timestep by 
applying fix freeze from LAMMPS routines.

The viscosity and density of the fluid is set to 1/10 of that of 
water to accelerate diffusive dynamics and reduce the simulation 
time while the kinematic viscosity is left identical to that of water. 
The scaleGamma flag with scale factor -1 is invoked for wall atoms 
which explicitly takes the limit mi → ∞ in Eq. (33), (18), and (19)
consistent with the walls being immobile. This prevents any flow 
going through the wall as well as makes any momentum build-up 
in the system insignificant. This can also be obtained by setting 
the mass of the wall atoms to a large number [35]. However, us-
ing scaleGamma flag is less computationally costly. In this case, it 
is possible to hollow out the middle sections of the wall in order 
to improve computational speed and total wall time. Care must be 
taken to ensure the wall does not get too thin, however. A slight 
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Fig. 4. Pit geometry examples.

change in the velocity profile indicating leakage is detectable for 
very thin walls (one or two atomic layers) so the number of lay-
ers should be tuned for particular purposes. The trilinear stencil is 
used as interpolation scheme due to advantages motioned in [36]. 
The pressure-driven flow is implemented by applying a pressure 
jump at the boundaries in the x-direction using the flag pressure-
bcx. The thermal noise was turned off for the tests presented in 
this section, but we expect the average velocity profile to be simi-
lar to that shown in 3 for fluid with thermal noise [35].

In Fig. 3, snapshots of the system at initial stages and while 
threading are shown. The fluid streamlines are illustrated on the 
central plane (x = 15). The streamlines are read from an xdmf file 
output by fix lb/fluid command and visualized in the open-source 
data analysis, and visualization tool Paraview [30]. This feature can 
be turned on by adding the flag dumpxdmf. The size of the polymer 
beads are exaggerated for illustration purposes. At the beginning 
when the chain is far away from the pore the streamlines are only 
slightly affected by the presence of the chain. However, due to 
backflow effects, vortices appear around the pore as the chain goes 
through the nanopore.

4.4. Pit geometry

The package has a pits option that implements bounce-back 
boundary conditions (no-flow, no-slip) at the top and bottom (in 
z), and front and back (in y), of the simulation domain. In addition, 
the lower wall(s) can have a more complex geometry specified by 
a number of pits whose dimensions can be set by the pits option 

arguments. A couple of examples are illustrated in Fig. 4. The di-
mension arguments are illustrated in Fig. 4(a).

In both of these examples, the flow along the x-direction is 
generated by the pressurebcx boundary condition that imposes a 
pressure jump at the entrance to the channel. In Fig. 4(a) there 
are periodic boundary conditions in the y-direction whereas in 
Fig. 4(b) there are sidewalls and the pit extends across the whole 
domain in the y-direction. The geometry in Fig. 4(b) is similar to 
that used in [37].

Lattice sites outside of the active domain are not updated to 
ensure efficient computation but are present in the arrays (so take 
up memory space). This should be considered when dividing up 
the domain among processors (which can be set via the LAMMPS 
processors command). For example, if you had four processors to 
assign to the problem illustrated in Fig. 4(b), dividing this domain 
into a 2 × 2 grid in the xz-directions would leave the processor 
in the lower left with essentially nothing to do. A linear division 
along y would balance the load among processors (at the cost 
of more communication at the processor boundaries) and a 2 × 2
grid in the xy-directions would give all processors some work but 
those that include the pit would have considerably more. Given 
the variation in processor communication versus compute speed 
for various hardware configurations, it is not a priori obvious which 
of these divisions will lead to the fastest runtime.

4.5. Restart

The lb/fluid fix also includes a restart option. This just restarts 
the fluid and the standard lammps restart procedure is required 
for restarting the particle portion of the simulation. The frequency 
of writing the restart for the particles should normally be the same 
as that for the fluid to restart where the simulation left off.

Unfortunately, the simulation will not restart exactly, though 
should provide statistically similar results. This is because the hy-
drodynamic forces used depend on the atom velocities at the half-
step which are not saved by LAMMPS. This is similar to the sit-
uation with other LAMMPS pair styles such as granular, dpd, and 
lubricate pair styles where the same situation arises and leads to 
similar consequences on restart.

Restart files are written at the end of a step. As should be clear 
from the pseudo-code in Algorithm 1 and our discussion of the LB 
algorithm, it is the auxiliary distribution that is followed in the 
algorithm (cf. Eq. (9)), which is effectively the distribution at a 
half-step. At the end of a step we have updated the fluid veloc-
ity to the correct time point but the distribution is effectively half 
a step behind. To enable restarts with just saving the fluid dis-
tribution (i.e. and not also the fluid velocity and forces) we first 
compute the distribution at the end of the full step and then save 
that for the restart (using Eq. (9) and corresponding equations like 
Eq. (13)).

4.6. Scaling

We now turn to a couple of more complex simulations to 
demonstrate the timing and scalability in representative imple-
mentations of the method. The first example consists of colloidal 
particles in water sheared between two walls. This is a minimally 
updated example used to demonstrate the scalability of the first 
version of the lb/fluid package [10]. The second example is a toy 
car driving along a long channel (between two fixed walls) in air. 
The two examples are chosen to test different limits.

The colloidal example consists of 480 composite particles, each 
of radius 0.726 μm, in a system of size 16.8 μm × 16.8 μm ×
6.0 μm. The system is periodic in the x and y directions and has 
walls which move at ±20 μm/μs to impose the shear. The den-
sity and viscosity is chosen to match water at standard conditions. 
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Fig. 5. Toy car example.

The system is discretized in space using 	x = 0.06 μm and uses a 
times step of 	t = 0.001 μs. Each composite particle is comprised 
of 3612 surface nodes. The resulting system contains 1734240 par-
ticles and 7.84 million lattice sites. More details, including an il-
lustration can be found in [10] and a detailed examination of this 
system can be found in [38].

The second example is a model of a toy car driving down a 
long air-filled channel and is illustrated in Fig. 5. The system is 
96 cm × 720 cm × 96 cm and the car is about 40 cm long, 15 cm 
wide and 12–15 cm high. The car was made by using LAMMPS cre-
ate_atoms to put 5092 atoms in simple geometric regions (prisms, 
cylinders, blocks, and a sphere) and then using the LAMMPS fix 
wall/region in an annealing run to condense the atoms onto the 
surfaces (similar to what was done in Section 4.2). The system 
is discretized in space using 	x = 1 cm and uses a times step of 
	t = 0.025 s. The car was set in motion with a velocity of 7.5 cm/s 
in the y-direction and maintains this velocity by using the fix set-
force command to zero the forces on the car body. The wheels were 
allowed to freely rotate about the x-direction while having center-
of-mass forces zeroed (rotation corresponding to “rolling” occurs 
naturally to reduce what would otherwise be very high shear rates 
between the bottom of the wall and the floor of the channel). The 
density (0.0012 g/cm3) and viscosity (0.0002 Poise) are appropriate 
for air at standard conditions.

The simulations were run on a Compute Canada cluster (Narval) 
equipped with 1109 AMD Rome 7532 processors at 2.4 GHz linked 
with an InfiniBand Mellanox HDR network. The confined colloid 
example was timed for 400 timesteps and the toy car example was 
timed for 5000 timesteps (the time spent condensing the atoms 
onto the car’s surfaces was not included). Fig. 6 shows both the 
speedup (t1/tp) and efficiency (t1/(p · tp)), where ti is the wall 
clock time for the code to run on i processors.

As can be seen, the efficiency for the confined colloid exam-
ple is very good (greater than ∼ 75%) while the toy car is a bit 
lower (still greater than ∼ 50%). This difference is likely due to the 
fact that in the confined colloid example both the fluid and parti-
cles are homogeneously distributed across the system, making for 
a fairly uniform load for all processors (the system is parallelized
using domain decomposition). In contrast, in the toy car example 
only the fluid is homogeneously distributed. The particles, how-
ever, are very localized (likely to 1 or 2 processors) meaning that 
the workload is imbalanced. As the number of particles is not too 
large, this imbalance is not severe, but is noticeable.

5. Summary

The new version of the lb/fluid package implemented into 
LAMMPS is a significant improvement. The new spreading algo-
rithm described in Section 2.2 is exact in both the dilute and 
concentrated limit of node densities and provides excellent perfor-
mance, as demonstrated in the examples provided. The added fea-
tures, such as compute outputs, and pit geometries greatly expand 
the variety of problems that can be solved. We also demonstrated 
the package shows good scaling performance with the number of 
processors available.

We plan on continuing to develop the lb/fluid package. Fu-
ture anticipated features include a gpu accelerated version, a more 
general pit geometry, multiple relaxation times for viscoelastic flu-
ids, and more general lattice partitions across different processors. 

Fig. 6. Speedup (t1/tp ) and efficiency (t1/(p · tp)), where ti is the wall clock time 
for the code to run on i processors.

The process for incorporating these changes are reasonably clear 
as there are examples from the literature. Others, such as mul-
tiphase fluids that also have widely tested algorithms could also 
be incorporated. However, more work needs to be done on un-
derstanding noise fluctuations in non-ideal fluids [29] to ensure 
these are added correctly. The current implementation’s accuracy 
breaks down when the gap between immersed bodies becomes 
very small, at which point lubrication forces become dominant. 
There is some work on including such forces in LB [39] but it is 
not yet clear the best way to add the effect of thermal fluctuations 
to such lubrication forces.
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